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Abstract

Video source attribution is an important operation in

forensics applications. Identifying which specific device or

camera model took a video can help in authorship verifi-

cation, but can be also a precious source of information

for detecting a possible manipulation. The key observa-

tion is that any physical device leaves peculiar traces in

the acquired content, a sort of fingerprint that can be ex-

ploited to establish data provenance. Moreover, absence or

modification of such traces may reveal a possible manipu-

lation. In this paper, inspired by recent work on images,

we train a neural network that enhances the model-related

traces hidden in a video, extracting a sort of camera finger-

print, called video noiseprint. The net is trained on pristine

videos with a Siamese strategy, minimizing distances be-

tween same-model patches, and maximizing distances be-

tween unrelated patches. Experiments show that methods

based on video noiseprints perform well in major foren-

sic tasks, such as camera model identification and video

forgery localization, with no need of prior knowledge on

the specific manipulation or any form of fine-tuning.

1. Introduction

Creating false images and videos has never been easier,

thanks to advances in computer graphics and deep learning,

and to the diffusion of powerful media editing tools. This is

fun, most of the times, but may also be dangerous. Visual

data can be manipulated for a number of malicious or even

criminal purposes, like discrediting people, falsifying news,

or fabricating false evidence. Such attacks are becoming

more and more frequent and sophisticated, escaping easily

visual scrutiny. Fig.1 shows a very recent example. On

April fools day, 2019, a video featuring a giant Amazon

blimp sending out a swarm of delivery drones circulated

widely on Twitter. A large number of users were freaked

out by the video, labelling it as “terrifying” or “dystopian”.

The video was a fake, created by a digital artist in Japan.

Still it was realistic enough to fool a large number of view-

ers. Examples like this one show how easy it is to create
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Figure 1: A video that recently appeared on the internet

showing an Amazon blimp delivering drones1. Top: sample

frames. Bottom: heatmaps obtained using our approach in

a blind scenario as described in Section 5.2.

realistic fakes, and raises a serious alarm over the general

trustfulness of multimedia assets, especially videos. The

level of alarm has grown exponentially with the advent of

deep learning tools. A number of publicly available pack-

ages already exist (e.g. [1]), which allow even non-expert

users to generate fake videos with a high level of realism,

given only the availability of large amounts of data. In this

context, establishing the integrity of visual resources has

become of primary importance.

The research community has been working for several

years on detecting fake content in videos [31]. Early papers

focused mostly on frame-level manipulations, consisting

in the deletion, insertion or replication of entire groups of

frames [17, 15]. Pixel-level manipulations, targeting com-

pact video objects and allowing for more flexible and subtle

content modifications, were still difficult to perform, and

hence raised a more limited attention [13, 12]. However,

things are changing. With the rapid progresses in computer

graphics and deep learning, removing, inserting, and copy-

ing video objects, both natural and computer-generated, is

becoming easier and easier. Hence, this is by now the fore-

most form of video manipulation, and the object of this

work.

To discover and localize manipulated material, we follow

an anomaly detection strategy. Indeed, each video patch has

a peculiar digital history which points to its origin, that is,

1. https://www.youtube.com/watch?v=92AMWbamo6s
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the specific hardware and software involved in its genera-

tion. Of course, all patches of a video are expected to have

the same source. Therefore, inconsistencies in the histo-

ries of different patches of the same video suggest that alien

material was inserted, and allow one to tell it apart from

pristine material.

In this work, we will rely on the traces left by the cam-

era used for acquisition. In particular, we will leverage the

image noiseprint [11], a sort of camera model fingerprint

extracted from acquired images, and extend it to work on

videos for applications like source identification and forgery

detection. It is worth underlining that, although this ap-

proach is learning-based by definition, the training phase

involves only pristine videos. Therefore, noiseprint-based

video forensics is by no means limited to cameras seen in

the training phase, nor to a limited set of manipulations

known in advance, thereby sharing many valuable proper-

ties of blind methods.

In the rest of the paper, we will analyze related work

(Section II), provide background information (Section III),

give details on video noiseprint extraction (Section IV), and

finally describe experimental results on source identifica-

tion and forgery detection (Section V).

2. Related work

In the literature several different clues have been ex-

ploited to perform video forensics, often extending image-

oriented methods. However, it is much more challenging

working on videos than on images due to much stronger

compression level. As a matter of fact, the first approaches

proposed in the literature rely on compression artifacts

[36, 24], with the evidence of tampering originated by dou-

ble MPEG compression. Another popular approach is to

detect editing based-artifacts [4, 12], which arise when a

video object is copy-moved in the target video, possibly ro-

tated or rescaled to better fit into the background.

Recently, CNN-based methods have shown great po-

tential in video forensics, especially for advanced forms

of manipulation, such as DeepFake, Face2Face and

FaceSwap. However, they usually require large amount of

forged/pristine data for training [33, 2, 19], or at least a form

of fine tuning to newer manipulations [10].

Some other methods, addressing face manipulations, ex-

ploit visual artifacts such as eye blinking, inconsistent head

poses or other facial asymmetries [25, 37, 29]. Though in-

teresting, these approaches exploit weaknesses of current

deep learning-based generation methods, that are likely to

disappear with new advances in the generation phase.

On the contrary, methods based on the PRNU pattern

[26] are very general and stable, and do not depend on spe-

cific artifacts. The PRNU pattern is caused by imperfec-

tions in the device manufacturing process. Because of its

uniqueness and stability in time, it can be regarded as a de-

vice fingerprint, and used to perform many forensic tasks.

These include source identification and forgery localization

in images [6, 7] and videos [32]. On the down side, PRNU-

based methods need a large number of frames coming from

the target device in order to obtain reliable results. More-

over, they do not exploit all camera artifacts (actually, they

suppress most of them). This latter drawback is especially

relevant. In fact, digital image acquisition involves a large

number of processing steps, both in-camera (e.g., interpola-

tion, gamma correction) and out-camera (e.g., compression,

enhancement), which leave many subtle traces in the final

image. Different camera models are characterized by dif-

ferent sets of traces, due to proprietary algorithms and spe-

cific settings. Obviously, exploiting all these traces rather

than just one can only provide more reliable video foren-

sics. This is the reason for which several approaches are

based on noise residuals, obtained by high-pass filtering, in

order to to discover different types of video manipulations

[20, 13].

The approach proposed in [11] follows this direction,

and improves the residual extraction process by leverag-

ing the power of data-driven methods. The aim is to re-

move effectively the semantic image content, and to en-

hance all camera model-related artifacts, not just some spe-

cific ones. Training is carried out using siamese networks

on pristine images coming from different camera models

in order to extract a camera-related fingerprint, that is, the

noiseprint. Siamese networks have been used in forensics

also in [30, 21]. Unlike in [11], however, the training pro-

cess of [21] relies on metadata information (e.g. Digital-

ZoomRatio, GainControl, LensModel). A weak point is that

metadata can be easily deleted or manipulated. In [30], in-

stead, high-level camera model features are first extracted

through a CNN, and then fed to a similarity network which

compares them to accomplish the camera model identifica-

tion task.

3. Background

In this section we will briefly describe the work proposed

in [11]. The aim is to extract a residual image from the

original one by removing the semantic scene content and

highlighting camera-model artifacts. This is accomplished

by training a suitable neural network. Considering that ar-

tifacts arise from a multiplicity of processes, different from

camera to camera and only partially known, no mathemat-

ical model is known in the literature to describe and repro-

duce them. Therefore, training cannot rely on simulated ex-

amples of the desired output, and requires a more elaborate

procedure.

The core idea is to use two CNNs in Siamese config-

uration, namely, two nets with identical architecture and

weights working in parallel. The training is carried out by

feeding in parallel the two branches with pairs of patches
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Figure 2: Building a noiseprint extraction. Patches coming

from different cameras are used to train a siamese network

so as to minimize the distance among patches coming from

the same camera and maximing the distance among patches

coming from different cameras.

extracted from the same (label +1) or different (label -1)

camera model and spatial position (see Fig.2). When in-

put patches are aligned, they can be expected to contain the

same artifacts. Therefore, the output of each branch can be

used as reference for the input of the other one, by-passing

the need for the unavailable clean examples. We under-

line explicitly that, due to the spatially-varying nature of

camera-model artifacts, a positive label is associated only

with pairs that come from the same model and the same

spatial position.

At the end of the training process, the CNN can be

used to extract from each input image the correspond-

ing noiseprint, displaying enhanced camera model arti-

facts. Of course, noiseprints will also exhibit random distur-

bances, including traces of the high-level scene. Nonethe-

less, the enhanced artifacts appear to be strong enough to

provide a satisfactory basis for forensic operations. In-

deed, noiseprints have already proven useful for several ap-

plications [11, 3]. In Fig.3 we show some examples of

noiseprints extracted from different fake images, with the

corresponding heatmaps obtained by feature clustering. In

the first case the noiseprint clearly shows the 8 × 8 grid of

the JPEG format.

Training is performed on minibatches of 200 48×48

pixel patches. Each minibatch is formed by 50 groups

of 4 homogeneous (same model, same position) patches.

To boost the information conveyed by each minibatch, all

available pairs of patches are used for training. Therefore,

a single minibatch provides 300 positive and 19600 nega-

tive training pairs, allowing a relatively fast convergence.

For a more detailed description, the reader is referred to the

original paper [11].
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Figure 3: Examples of manipulated images (top) with ex-

tracted noiseprints (middle) and corresponding heatmaps

(bottom). The first image is a real example coming from

the web2.

4. Training video noiseprint extractors

The image noiseprint extractor used in [11] was trained

on a large dataset including 125 different cameras. It proved

quite effective also on images acquired by models never

seen in training. However, the statistics of videos depart sig-

nificantly from those of images, and the image-oriented net-

work does not work well on them. Therefore, in this work

we performed dedicated training on suitable video datasets.

Unfortunately, video forensics is not as mature a field

as image forensics, and there is a limited number of video

datasets suitable for noiseprint training. In this work we

rely on the VISION dataset [34], which includes videos ac-

quired with 35 devices of 28 models. On the average, 18

videos per device are available, with duration going from

26 to 92 seconds. All videos are H.264 compressed at good

quality. Following developments in the related problem of

video PRNU estimation [?], we consider two alternative

modalities to train the noiseprint extractor, i) using only the

intra-coded frames (I frames) of the videos or ii) using both

intra-coded and predicted frames. Given the video duration

and the coding parameters, each video contributes only 26

to 142 I-frames. Therefore, although interframe prediction

and low-rate coding may disrupt the weak traces we are in-

terested in, it is possible that the information provided by

additional frames proves valuable anyway.

In the training phase, all frames are treated like indepen-

dent images, following the same protocol adopted in [11]

to create minibatches, with the only difference that patches,

2. https://www.cnn.com/2018/03/26/us/

emma-gonzalez-photo-doctored-trnd/index.html
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here, have size 64×64 rather than 48×48, to compensate for

the lower quality of the source. Compared with the dataset

used for image noiseprints, we have a much lower variety

of models and substantially less data. This may have a non-

negligible impact on the overall performance, and using a

richer dataset is one of the first priorities for future work.

When dealing with videos, a number of new problems

arise which are not present or less relevant in the image

case. In this initial analysis we skip over most of them.

Most notably, we leave for future work an analysis of the

impact of video recompression and resizing on the effec-

tiveness of extracted noiseprint. However, we feel manda-

tory to consider the peculiar problem of video stabilization.

Indeed, most videocameras use automatic stabilization of

videos to compensate for unwanted user movements. As a

consequence, in a stabilized video, frames are often shifted

and/or rotated with respect to one another, causing a spatial

misalignment of the model-related artifacts the noiseprint

extractor works on. This phenomenon may impact heavily

on performance, as is well known in the PRNU literature,

where suitable methods have been proposed [35, 22, 28] to

deal with stabilized videos. To account for this problem, we

consider two different datasets, one including only 18 cam-

eras with non-stabilized videos, corresponding to the favor-

able case of perfect alignment, and a second one includ-

ing 26 available cameras with all their videos, irrespective

of stabilization (we discarded two cameras from VISION

which have a very low resolution).

Eventually, taking the combinations of interests, we con-

sider the following three settings for training:

a) only I-frames, only from non stabilized videos;

b) only I-frames, from all videos;

c) all frames from all videos.

For the first setting (non stabilized) we use 18 cameras of

different models (12 for training and 6 for validation), while

for the other settings we use 26 cameras of different models

(20 for training and 6 for validation). As for computational

complexity, extracting the noiseprint of a 720×1280-pixel

frame costs about 0.5 seconds using a NVIDIA Tesla P100

16GB GPU.

5. Experimental Analysis

We use video noiseprints for two major forensic tasks:

source identification and forgery manipulation detection.

5.1. Source identification

In this section, we evaluate the ability of the proposed

method to identify the video provenance, in particular

whether two videos come from the same camera model or

not. In this scenario we follow the standard pipeline used

Noiseprint

Extractor

A
V

G

MSE/NCC Score

Noiseprint

Extractor

A
V

G

Video 1

Video 2

Figure 4: Block scheme of the reference-based pipeline.

Noiseprint is extracted from several frames belonging to a

reference video and the test video. All the noiseprints are

then averaged and compared using a similarity measure.

also for PRNU: first, for each camera model a reference

fingerprint is extracted by averaging a certain number of

frames; then, a new fingerprint is extracted from the video

under test and compared with these references (see Fig. 4).

To evaluate the similarity between two noiseprints (NPs)

we use two different measures: the Normalized Correlation

Coefficient (NCC) and the Mean Squared Error (MSE). As-

suming Gaussian distributed scene-related noise, the MSE

arises as the solution of a generalized likelihood ratio test,

provided it is scaled by the factor N1N2/(N1 + N2) with

N1, N2 the number of frames taken from the two videos to

perform the estimate. In all cases, we work on the central

region of 720× 1280 pixels, which is the minimum resolu-

tion present in the dataset.

As baseline, we consider the classic PRNU-based proce-

dure with Peak-to-Correlation Energy (PCE) as a similarity

measure [18]. In this baseline, residuals are obtained by ap-

plying a wavelet-based denoiser on the luminance compo-

nent of the frames. Then, the PRNU is estimated by a maxi-

mum likelihood approach. Finally, the averages of each row

and column are subtracted and a Wiener filter in the Fourier

domain is applied [5]. To ensure a fair comparison, for each

model we take only one device, so that camera model iden-

tification becomes equivalent to device identification. The

test set is composed by 60 videos, 10 from each of 6 devices

coming from the Socrates dataset [16] completely unrelated

with VISION. We consider two separate cases, with non

stabilized videos (Set 1) and stabilized ones (Set 2).

Results are reported in Table 1 in terms of Area Under

ROC curve (AUC). On non stabilized videos (Set 1), the

PRNU-based method achieves the best performance (0.907)

but only if all the frames of the video are used, otherwise

the AUC drops to 0.810. This is opposite to what has been

shown in [8], but more in-line with recent findings [23].

The best NP-based value is 0.832, obtained using only I

frames. As expected, all performance figures reduce on sta-

bilized videos (Set 2). For the PRNU baseline the loss is

dramatic, with AUC down to about 0.64, while it is much

more graceful for NP-based methods, and more robust to

misalignments caused by stabilization, with a top value of
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only I-frames all frames

Set 1 Set 2 Set 1 Set 2

PRNU-based 0.810 0.642 0.907 0.641

NP, setting a, MSE 0.830 0.752 0.689 0.679

NP, setting a, NCC 0.832 0.686 0.707 0.694

NP, setting b, MSE 0.832 0.806 0.686 0.676

NP, setting b, NCC 0.792 0.729 0.703 0.701

NP, setting c, MSE 0.759 0.827 0.678 0.720

NP, setting c, NCC 0.768 0.761 0.694 0.746

Table 1: Source identification results (AUC).

0.827. In the next section we will apply PRNU estima-

tion on small patches for forgery localization and compare

it with the noiseprint-based approach.

5.2. Forgery detection and localization

In this experiment, we use video noiseprints to localize

manipulations. Again, we consider various scenarios:

1. we build a reference pattern by extracting the

noiseprint from a set of pristine frames coming from

the same video. That is, we suppose to know a priori

that some frames are unaltered and use the fingerprint

extracted from them as a reference;

2. we restrict tests only to a suspect specific area of the

video (region of interest). This is also a realistic sce-

nario that happens either when we have two sources

and want to establish which one is authentic, or when

we care only for a specific area (e.g. the blimp shown

in Fig. 1);

3. we do not have any type of prior information on the

video and analyze it in a blind fashion.

Scenario 1: reference pattern. This scenario is quite sim-

ilar to the pipeline shown in Fig. 4, but the techniques

work in a sliding window modality on patches of dimension

128×128, computing features based on co-occurrences that

are used to obtain the final heatmaps as specified in [9]. The

reference pattern is estimated on 50 frames. For training the

video noiseprint extractor we use setting c) and apply it on

videos (stabilized and non stabilized) which include some

frames known to be pristine. Noiseprints are averaged on

20 consecutive frames. Again, we compare results with the

PRNU-based reference, which now performs much worse

than NP-based methods, as clearly appears from the exam-

ples of Fig. 5. The main reason is that PRNU relies on a

less reliable reference (only 50 frames) and is estimated on

small patches.

Frame Reference Mask PRNU-based Proposal

Figure 5: Some results using reference-based methods. The

first two videos come from a non stabilized camera (Huawei

P7mini, Nokia Lumia 520), the last one from an iPhone 7

with video stabilization.

Scenario 2: region of interest. We consider this sce-

nario for the datasets created in [33], where faces have been

manipulated using Face2Face (F2F), DeepFake (DF) and

FaceSwap (FS). We use a face detector based on the HOG

features to automatically select a bounding box including

the face, while the rest of the frame is used as a reference.

We adopt a strategy similar to [9] for obtaining the final heat

map. In particular, for each pixel of a regular sampling grid,

a feature vector is built from the spatial co-occurrences of

the extracted noiseprint. Feature vectors of the reference

area are used to estimate reference statistics. Then, for each

feature vector of the suspect area, we compute the Maha-

lanobis distance w.r.t. the reference. The 99-th percentile of

all these Mahalanobis distances is used as the manipulation

score. This procedure is summarized in Fig. 6.

Experiments are carried out on the test set of FaceForen-

sic++ dataset [33] which includes 140 genuine videos, 140

Face2Face manipulated videos, 140 FaceSwap manipulated

videos and 140 Deepfake manipulated videos. Note that we

do not use these videos to fine-tune the noiseprint extractor,

which is fixed, as already said. Using the described strategy,

a single score is computed for each video. To improve the

estimation of noiseprint, we average it over some consecu-

tive frames. In Fig. 7 we show the resulting ROCs. Results

are always quite good, and improve significantly when the

number of averaged frames grows to 20.

The average accuracy on this dataset is 92.14%, which

is worse than than the 99.41% achieved by the best CNN-

based method used in [33]. However our net has never seen

these (nor any other) fake videos during the training phase,

and not even the pristine ones. Looking at Table 2, the best

results are obtained using setting c) and on the FaceSwap

dataset, with a Recall equal to 92.14%, while the most dif-

ficult manipulation to detect is Face2Face with 82.14%.

Finally, in Fig. 8 we show sample results from this

dataset. We applied this very same method also to the video

mentioned in the introduction, where the fake blimp is cor-
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Figure 6: Block scheme for the detection of manipulations in a limited region of interest (face). Noiseprint is extracted on a

certain number of frames and then averaged. Features are extracted from the background and the region of interest and the

Mahalanobis distance between them is computed in order to obtain the final heat map.

Recall

DF F2F FS Pristine Accuracy

setting b 85.00 81.43 91.43 95.00 90.48

setting c 87.14 82.14 92.14 97.14 92.14

Table 2: Recall on DeepFakes (DF), Face2Face (F2F),

FaceSwap (FS) and on pristine frames and accuracy on all

the dataset by averaging noiseprint on 20 frames.

rectly detected (see Fig. 9) and to another video with a real

blimp, which is by no means highlighted in the heatmap.

Scenario 3: completely blind. Here we show some results

obtained in a blind scenario, where no prior information is

available. In this case, noiseprint-based methods work on

whole frames, and the heatmap is obtained using the same

post-processing as described in [11]. Some sample results

are shown in Fig. 10, compared with the results of several

blind approaches proposed for images [14, 27, 21, 9, 11]

and applied on individual frames. We selected the best

methods, according to results in [11], among those that

do not rely on JPEG artifacts. Results show that apply-

ing image-based methods to individual frames of a video

does not provide satisfactory results, while a suitable video-

oriented procedure, like the one proposed in this paper, can

give better results.

5.3. Conclusions

This work represents a first attempt to extend the

noiseprint approach to videos. Experiments have been con-

ducted on two forensic applications: video camera identi-

fication and forgery detection/localization, considering var-

ious scenarios. Methods based on video noiseprints show

very promising results, especially considering that the net-

work has been trained once and for all, only on pristine

videos, and never fine-tuned on data belonging to the test

set. Future work will focus on improving the extraction of

video noiseprints by exploiting the temporal direction both

in the extraction phase and in the denoising process. We

will also work on compressed videos with low quality fac-

tor to account for situations typically encountered on so-

cial networks. Advances in media editing capabilities are

bound to make video forensics a more and more relevant

problem, and a major research issue for the research com-

munity. Video noiseprint represents a promising new tool

in the hand of the forensic analyst.
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