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Abstract

This paper reviews the NTIRE 2019 challenge on real

image denoising with focus on the proposed methods and

their results. The challenge has two tracks for quantitatively

evaluating image denoising performance in (1) the Bayer-

pattern raw-RGB and (2) the standard RGB (sRGB) color

spaces. The tracks had 216 and 220 registered participants,

respectively. A total of 15 teams, proposing 17 methods,

competed in the final phase of the challenge. The proposed

methods by the 15 teams represent the current state-of-the-

art performance in image denoising targeting real noisy im-

ages.

1. Introduction

Image denoising is a fundamental and active research

area (e.g., [28, 38, 40, 11]) with a long-standing history in

computer vision (e.g., [19, 21]). A primary goal of image

denoising is to remove or correct for noise in an image, ei-

ther for aesthetic purposes, or to help improve other down-

stream tasks. For many years, researchers have primarily

relied on synthetic noisy image for developing and evaluat-
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ing image denoisers, especially the additive white Gaussian

noise (AWGN)—for example, [6, 9, 38]. Recently, more

focus has been given to evaluating image denoisers on real

noisy images [1, 25]. It was shown that the performance

of learning-based image denoisers on real noisy images can

be limited if trained using only synthetic noise. Also, hand-

engineered and statistics-based methods have been shown to

perform better on real noisy images. To this end, we have

proposed this challenge as a means to evaluate and bench-

mark image denoisers on real noisy images.

This challenge is based on the recently released Smart-

phone Image Denoising Dataset (SIDD) [1] that consists of

thousands of real noisy images with their estimated ground-

truth, in both raw sensor data (raw-RGB) and standard RGB

(sRGB) color spaces. Hence, in this challenge, we provide

two tracks for benchmarking image denoisers in both raw-

RGB and sRGB color spaces. We present more details on

both tracks in the next section.

2. The Challenge

The NTIRE 2019 Real Image Denoising Challenge is

aimed to gauge and advance the state-of-the-art in image

denoising. The focus of the challenge is on evaluating im-

age denoisers on real, rather than synthetic, noisy images.

In the following, we present some details about the dataset

used in the challenge and how the challenge is designed.
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2.1. Dataset

We used the SIDD dataset [1] for providing training, val-

idation, and testing images for the challenge. The SIDD

dataset consists of thousands of real noisy images and their

corresponding ground truth, from ten different scenes, cap-

tured repeatedly with five different smartphone cameras un-

der different lighting conditions and ISO levels. The ISO

levels ranged from 50 to 10,000. The images are provided

in both raw-RGB and sRGB color spaces. We believe this

dataset is a good fit for benchmarking image denoisers on

real noisy images, mainly due to the great extent of variety

in noise levels and lighting conditions found in the dataset.

Also, this dataset is large enough to provide sufficient train-

ing data for learning-based methods, especially, convolu-

tional neural networks (CNNs).

2.2. Challenge Design and Tracks

Tracks We provide two tracks to benchmark the proposed

image denoisers based on the two different color spaces:

the raw-RGB and the sRGB. Images in the raw-RGB for-

mat represent minimally processed images obtained directly

from the camera’s sensor. These images are in a sensor-

dependent color space where the R, G, and B values are

related to the sensor’s color filter array’s spectral sensitiv-

ity to incoming visible light. Images in the sRGB format

represent the cameras raw-RGB image that have been pro-

cessed by the in-camera image processing pipeline to map

the sensor-dependent RGB colors to a device-independent

color space, namely standard RGB (i.e., sRGB). Different

camera models apply their own proprietary photo-finishing

routines, including several nonlinear color manipulations,

to modify the raw-RGB values to appear visually appeal-

ing (see [16] for more details). We note that the provided

sRGB images are not compressed and therefore do not ex-

hibit compression artifacts. Denoising a raw-RGB would

typically represent a denoising module applied within the

in-camera image processing pipeline. Denoising an sRGB

image would represent a denoising module applied after

the in-camera color manipulation. As found in recent

works [1, 25], image denoisers tend to perform better in the

raw-RGB color space than in the sRGB color space. How-

ever, raw-RGB images are far less common than sRGB im-

ages which are easily saved in common formats, such as

JPEG and PNG. Since the SIDD dataset contains both raw-

RGB and sRGB versions of the same image, we found it

feasible to provide a separate track for denoising in each

color space. Both tracks follow similar data preparation,

evaluation, and competition timeline, as discussed next.

Data preparation The provided training data was the

SIDD-Medium dataset that consists of 320 noisy images in

both raw-RGB and sRGB space with corresponding ground

truth and metadata. Each noisy or ground truth image is a

2D array of normalized raw-RGB values (mosaiced color

filter array) in the range [0, 1] in single-precision floating

point format saved as Matlab .mat files. The metadata files

contained dictionaries of Tiff tags for the raw-RGB images,

saved as .mat files.

The validation data consisted of 1280 noisy image blocks

(i.e., croppings) form both raw-RGB and sRGB images,

each block is 256×256 pixels. The blocks are taken from 40
images, 32 blocks from each image (40 × 32 = 1280). All

image blocks are combined in a single 4D array of shape

[40, 32, 256, 256] where the four dimensions represent the

image index, the index of the block within the image, the

block height, and the block width, respectively. The blocks

have the same number format as the training data. The

testing data consisted of 1280 noisy image blocks differ-

ent from the validation block but following the same format

as the validation data. Image metadata files were also pro-

vided for the 40 images from which the validation/testing

data was extracted.

We also provided the simulated camera pipeline used to

render raw-RGB images into sRGB for the SIDD dataset 1.

The provided pipeline offers a set of processing sages sim-

ilar to an on-board camera pipeline. Such stages include:

black level subtraction, active area cropping, white bal-

ance, color space transformation, and global tone mapping.

Additionally, we provided the noise level estimates of the

SIDD images. The range of noise level functions (NLFs) is

[1.1841−4, 2.1949−2] for β1 and [2.0024−06, 1.7506−3] for

β2. For Gaussian σ, the estimated range is [0.242, 11.507]
in the space of [0, 255].

Evaluation The evaluation is based on the comparison of

the restored clean (denoised) images with the ground-truth

images. For this we use the standard peak signal-to-noise

ratio (PSNR) and, complementary, the structural similar-

ity (SSIM) index [33] as often employed in the literature.

Implementations are found in most of the image process-

ing toolboxes. We report the average results over all image

blocks provided.

For submitting the results, participants were asked to

provide the denoised image blocks in a multidimensional

array shaped in the same way as the input data (i.e.,

[40, 32, 256, 256]). In addition, participants were asked to

provide additional information: the algorithm’s runtime per

mega pixel (in seconds); whether the algorithm employs

CPU or GPU at runtime; and whether extra metadata is used

as inputs to the algorithm.

At the final stage of the challenge, the participants were

asked to submit fact sheets to provide information about the

teams and to describe their methods.

1https://github.com/AbdoKamel/

simple-camera-pipeline



Timeline The challenge timeline was performed in two

stages. The validation stage started on January 13, 2019,

and lasted for approximately 8 weeks. The final testing

stage started on March 12, 2019, and lasted for 12 days.

Each participant was allowed a maximum of 20 and 6 sub-

missions during the validation and testing phases, respec-

tively. The challenge ended on March 24, 2019.

3. Challenge Results

From approximately 220 registered participants in each

track, 15 teams entered in the final phase and submitted re-

sults, codes/executables, and factsheets. Tables 1 and 2 re-

port the final test results, in terms of peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM) index [33],

for the raw-RGB and sRGB tracks, respectively. The tables

show the method ranks based on each measure in subscripts.

We present the self-reported runtimes and major details pro-

vided in the factsheets submitted by participants. Figures 1

and 2 show a 2D visualization of PSNR and SSIM values

for all methods in both raw-RGB and sRGB tracks, respec-

tively. For combined visualization, both figures are overlaid

in Figure 3. The methods are briefly described in section 4

and team members are listed in Appendix A.
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Figure 1: Combined PSNR and SSIM values of method

from the raw-RGB track.

Main ideas All of the proposed method are based on deep

learning. Specifically, all methods employ convolutional

neural networks (CNNs) based on various architectures.

Most of adapted architectures are based on widely-used net-

works, such as U-Net [26], ResNet [14], and DenseNet [15].

The main ideas included re-structuring existing networks,

introducing skip connections, introducing residual connec-

tions, and using densely connected components.

Most teams used L2 or L1 loss as the optimization func-

tion while some teams (BMIPL UNIST and Team Incep-

tion) adopted a mixed loss between L1 and multi-scale
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Figure 2: Combined PSNR and SSIM values of method

from the sRGB track.
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Figure 3: Combined PSNR and SSIM values of all meth-

ods from both raw-RGB (in blue) and sRGB (in red) tracks.

Note the different axes and scales for each track.

structural similarity (MS-SSIM) [34]. Team “IID Research;

Pervasive Visual Intelligence Team” used KL divergence as

the optimization function to infer the mean value of a pixel

as well as the noise variance at that pixel’s location.

Top results The top three methods achieved very close

performances, in terms of PSNR and SSIM, with less than

0.02 dB differences in raw-RGB space, as shown in Fig-

ure 1, and with less than 0.06 dB differences in the sRGB,

as shown in Figure 2. The differences in SSIM values were

similarly close, with less than 1 × 10−4 in raw-RGB space

and less than 5 × 10−4 in sRGB space. The best perform-

ing method for raw-RGB denoising (team Megvii) achieved

52.114 dB PSNR while the best method for sRGB denois-

ing (team DGU-3DMlab) achieved 39.932 dB PSNR. The

next best two methods in both tracks were proposed by team

Eraser, as shown in Figure 3.



Team Username PSNR SSIM Runtime

(s/Mpixel)

CPU/GPU

(at runtime)

Platform Ensemble Loss

Megvii memono11 52.114(1) 0.9969(1) 0.169 RTX 2080Ti PyTorch models ensemble

(×8)

L1

Eraser Songsaris 52.107(2) 0.9969(2) 3.381 RTX 2080Ti PyTorch models (×2),

flip/rotate (×8)

L1

Eraser kkbbbj 52.092(3) 0.9968(3) ∼ 2 RTX 2080Ti PyTorch models (×2),

flip/rotate (×8)

L1

HIT-VPC opt 51.947(4) 0.9967(5) ? GTX 1080Ti PyTorch flip/rotate (×8) L1

BMIPL UNIST BMIPL denoiser 51.939(5) 0.9967(4) 3.132 Titan X TensorFlow/

PyTorch

models (×3),

flip/rotate (×8)

Mixed (L1 and

MS-SSIM)

DGU-3DMlab DGU-3DMlab1 51.754(6) 0.9966(6) 0.8965 Titan Xp PyTorch None L1

CVIP Korea DP Lim 51.698(7) 0.9965(9) 1.983 Titan Xp TensorFlow None L2

TTI iim lab 51.684(8) 0.9965(7) 2 Titan X PyTorch flip/rotate (×8) L1

TeamInception swz30 51.611(9) 0.9965(8) 0.48 Titan Xp PyTorch flip/rotate (×8) MSE

VIDAR ChangC 51.582(10) 0.9964(11) 0.665 Tesla V100 PyTorch models (×3),

flip/rotate (×8)

MSE

VIDAR eubear 51.579(11) 0.9964(10) 0.665 Tesla V100 PyTorch models (×3),

flip/rotate (×8)

MSE

Orange Cat orange cat 51.417(12) 0.9963(12) 0.064 GTX 1080Ti TensorFlow models (×11) L1

Table 1: Results and rankings of methods submitted to the raw-RGB denoising track.

Team Username PSNR SSIM Runtime

(s/Mpixel)

CPU/GPU

(at runtime)

Platform Ensemble Loss

DGU-3DMlab DGU-3DMlab 39.932(1) 0.9736(1) 0.5577 Titan Xp PyTorch None L1

Eraser kkbbbj 39.883(2) 0.9731(2) ∼ 2 GTX 1080Ti PyTorch models (×2),

flip/rotate (×8)

L1

Eraser Songsaris 39.818(3) 0.973(3) 3.416 GTX 1080Ti PyTorch models (×2),

flip/rotate (×8)

L1

HIT-VPC opt 39.675(4) 0.9726(7) ? GTX 1080Ti PyTorch flip/rotate (×8) L1

VIDAR eubear 39.611(5) 0.9726(5) 0.903 Tesla V100 PyTorch models (×3),

flip/rotate (×8)

MSE

VIDAR ChangC 39.576(6) 0.9726(6) 0.903 Tesla V100 PyTorch models (×3),

flip/rotate (×8)

MSE

BMIPL UNIST BMIPL denoiser 39.538(7) 0.9727(4) 3.132 Titan X TensorFlow/

PyTorch

models (×s),

flip/rotate (×8)

Mixed (L1 and

MS-SSIM)

TTI iim lab 39.482(8) 0.9717(9) ∼ 2 Titan X PyTorch flip/rotate (×8) L1

TeamInception swz30 39.415(9) 0.9721(8) 1.136 Titan Xp PyTorch flip/rotate (×8) MSE

Meteor loseall 39.248(10) 0.9712(13) 0.13 Titan X TensorFlow/

PyTorch

flip/rotate (×8) Multi-level L1

UIUC-IFP fyc0624 39.242(11) 0.9717(10) 10.73 GPU TensorFlow flip/rotate (×8) ?

IID Research;

Pervasive Vi-

sual Intelligence

zsyue 39.225(12) 0.9712(12) 0.0283 RTX 2080Ti PyTorch flip/rotate (×8) KL divergence

IVL Zino 39.168(13) 0.971(14) 0.02 Titan V PyTorch model snapshots

(×3 epochs)

L1

offire of-fire 39.117(14) 0.9714(11) 3.83 Titan Xp PyTorch None L1

Table 2: Results and rankings of methods submitted to the sRGB denoising track.

Ensembles To boost performance, most of the methods

applied different flavours of ensemble techniques. Specif-

ically, most teams used a self-ensemble [30] technique

where the results from eight flipped/rotated versions of the

same image are averaged together. Some teams applied ad-

ditional model-ensemble techniques.

Training data Most of the teams relied solely on the

training data provided by the SIDD dataset while applying

usual data augmentation strategies, such as flipping and ro-

tating images. However, some teams (e.g., Meteor) used

additional training data from other datasets, such as DIV2K

dataset [29, 2], DSB500 dataset [4], and Waterloo Explo-

ration Database [23].

Conclusions From the analysis of the presented results,

we can conclude that the proposed methods achieve state-

of-the-art performance in real image denoising on the SIDD

benchmark. The methods proposed by the top ranking

teams (i.e., DGU-3DMlab, Megvii, and Eraser) achieve



(a)

(b)

Figure 4: Eraser’s DIDN architecture. (a) Overall architec-

ture. (b) U-Module.

consistent performance across both color spaces—that is,

raw-RGB and sRGB (see Figure 3).

4. Methods and Teams

4.1. Eraser Team

The Eraser team proposed two methods for image de-

noising, each has been applied to both raw-RGB and sRGB

tracks. Both methods are discussed in the following.

Deep Iterative Down-Up Network (DIDN) for Image De-

noising DIDN [37] is a hierarchical network inspired by

U-Net [26]. A modified U-Net architecture is used as a

module, and multiple modules are connected in a sequen-

tial manner. In U-Net module, convolution with stride of 2

is used for down-sampling, and subpixel layer is used for

up-sampling. Local and global residual learning are used

in the network. The same network structures are used for

both of raw-RGB and sRGB tracks, however, the number

of modules is different: 9 and 10 modules were used in the

raw-RGB track while 8 modules were used for the sRGB

track. The proposed network architecture is shown in Fig-

ure 4.

The main contributions of this solution are as follows:

(1) a modified U-Net architecture for image denoising us-

ing local residual learning and changed down-up scaling

layers; (2) U-Net modules are sequentially connected at

a small resolution, and this repetitive up-down sampling

is shown to be effective for denoising; (3) instead of us-

ing max-pooling and deconvolution layer, convolution with

stride of 2 and subpixel layers are used for down-up sam-

pling stage, therefore minimizing the loss caused by the

resolution changes; (4) by reducing the resolution of feature

maps by three steps, the computation and memory usage are

reduced, which results in the model with a lot of parameters.

Figure 5: DHDN architecture by Eraser team.

Figure 6: DCR block architecture.

Densely Connected Hierarchical Network for Image De-

noising (DHDN) DHDN [24] is inspired by U-Net [26],

DenseNet [15], ResNet [14], and Residual Dense Net-

work [43]. Figure 5 shows the architecture of the DHDN.

There are two Densely Connected Residual blocks (DCR

blocks) in each step. Figure 6 shows the architecture of the

DCR block. Feature maps of DCR block are densely con-

nected where growth rate is set to half of the number of the

input feature maps. The last convolution layer restores the

number of the feature map to apply local residual learning.

The input of a down-sampling block is connected to the out-

put of the up-sampling block with dense connectivity. Final

convolution layer generates 3 feature maps for sRGB data,

and 1 feature map for raw-RGB data. Global residual learn-

ing was applied by connecting input image with the output

of the final convolution layer.

4.2. DGU3DMlab Team

The DGU-3DMlab team proposed a Grouped Residual

Dense Network (GRDN) for Image Denoising [17]. This

method uses grouped residual dense units. The network ar-

chitecture is mainly motivated by the residual dense net-

work (RDN) [43]. The architectures for both raw-RGB and

sRGB tacks are shown in Figures 7 and 8, respectively. We

made the RDN as a component (denoted as GRDB in Fig-

ure 9) and built a network by cascading GRDBs. The RDB

Residual connections are applied in three or four differ-

ent levels (global residual connection, semi-global residual

connection, semi-global residual connection in GRDB, and

local residual connection in each RDB). Down-sampling

and up-sampling layers are included to enable a deeper

and wider architecture and the convolutional block attention

module (CBAM) [35] is also applied.



Figure 7: GRDN architecture for raw-RGB track.

Figure 8: GRDN architecture for sRGB track.

Figure 9: Architecture of GRDB. The architecture of RDB

is shown in Figure 10.

Figure 10: Architecture of RDB.

4.3. Megvii Team

The Megvii team proposed the method Bayer Pattern

Normalization and Bayer Preserving Augmentation [22]

for the raw-RGB track only.The method is based no the U-

Net architecture [26]. To preserve the consistency of the

network input despite the discrepancy between different in-

put images, the team designed a crafted method of data

pre-processing. It enabled the application of the same net-

work to inputs with different Bayer patterns, and thereby

to train the network using a larger set of training images

without dampening the performance. Also, this method al-

lowed to incorporate data augmentation methods like rota-

tion and flipping, which would alter Bayer patterns if ap-

plied directly. These advantage led to a better performance

of the obtained network with only a subtle portion of extra

running time. The team applied three different strategies:

(1) using the given validation set to monitor the training;

(2) using only a part of the training set without applying the

data augmentation method; (3) applying a mixture of both

strategies (1) and (2). The last strategy achieved better re-

sults than the other two.

4.4. HITVPC Team

The HIT-VPC team proposed the method Deep Resid-

ual U-Net for Image Denoising. This method is based

on the U-Net architecture [26] and ResNet [14]. In or-
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Figure 11: The ResUNet architecture.

der to take advantage of both U-Net and ResNet, a deep

residual U-Net (ResUNet) which plugs residual blocks into

U-Net is proposed for image denoising. Note that similar

idea of combining U-Net and ResNet can also be found

in [32, 45]. The architecture of the proposed ResUNet is

illustrated in Figure 11. The network has five scales with

identity skip connections between encoding and decoding

of the same scale. Specifically, an inverse pixel-shuffle

downsampling (PixelUnshuffler) [40] is directly applied af-

ter the input, and correspondingly, the pixel-shuffle upsam-

pling (PixelShuffler) [27] is adopted before the final de-

noised output. Such a simple strategy is expected to speed

up the inference. For the other downsamplings and upsam-

plings, 2 × 2 strided convolution (SConv) and 2 × 2 trans-

posed convolution (TConv) are respectively used. To ex-

ploit the merits of ResNet, a group of 10 residual blocks

are adopted in the encoding and decoding of all the scales

except the first one. Following [20], each residual block

is composed of two 3 × 3 convolutional layers with ReLU

activation in the middle and an identity skip connection

summed to its output. The channel number of feature maps

in each layers is fixed to 128. Geometric self-ensemble

strategy based on flipping and rotation [30] is adopted dur-

ing testing.

4.5. BMIPL UNIST Team

The BMIPL UNIST team presented a study and a

method under the title: Investigation on Deep Neural Net-

work based Denoising Methods with Real Photographs.

In their ensemble strategy, the outputs from different net-

works were summed together and averaged by the num-

ber of networks in the ensemble to get the final denoised

image. In this way, they take the advantage of the power-

ful denoising capabilities of various network architectures.

The results revealed that ensemble of networks was always

better than individual networks. They used three networks

that have significant differences in their architectures and

used different combinations of them (ensembles) to get the

best performance in raw-RGB and sRGB denoising tracks.

These networks are: (1) U-Net [26, 5]; (2) Dual-Domain

Denoising Network (D3Net); (3) Down-Up Scaling Net-

work (RCAN-DU).

Dual-Domain Denoising Network (D3Net) The team

proposed D3Net to denoise images in spatial and Fourier



Figure 12: Different Encoder-Decoder structure based

CNNs for image denoising. (a) Classic U-Net network (b)

Proposed RCAN Down-Up scaling network (RCAN-DU)

(c) Proposed Dual-Domain Denoising network (D3Net).

domains. Inspired by the [18], the D3Net strives to preserve

high-contrast features such as edges by optimizing convo-

lutional kernels in a spatial domain and reinforces the de-

tail features like textures by learning prior information in a

Fourier domain. The D3Net consists of three U-Net blocks

with three convolutional layers with non-linearity function

PReLU [13] followed by average pooling in encoder part

and bilinear upsampling; followed by the three convolu-

tional layers with PReLU in decoding part. The outputs

of spatial and transform domain U-Net blocks are concate-

nated and feed the third U-Net block to obtain residual im-

age. See Figure 12c.

Down-Up Scaling Network (RCAN-DU) The team also

proposed another network, shown in Figure 12, that is based

on the Residual Channel Attention Network (RCAN) [41].

RCAN has shown a great performance in single image

super-resolution problem due to its large receptive field

and various skip connections such as long skip connection

(LSC) and short skip connection (SSC). The team adopted

RCAN as a backbone to the encoder-decoder based net-

work to deal with real noisy sRGB images. The input im-

age firstly downscaled by convolutional layers with stride 2

and then goes to the backbone network. The backbone net-

work consists of a Long Skip Connection and 10 Residual

Groups (RG) with the same structure as the existing RCAN.

See Figure 13. Each Residual Group consists of a 20 Resid-

ual Channel Attention Blocks (RCAB). Unlike the existing

residual blocks [14, 20], RCAB does not use batch normal-

ization and uses a channel attention (CA) mechanism to

learn global context information. As an up-scaling opera-

tor, the team chose Pixel-shuffle method, because of its low

computational complexity. In addition, proposed RCAN-

DU utilizes skip connection for faster training.

Loss function For raw-RGB denoising, the team used L1

loss as a cost function. However, for sRGB denoising they

used a recently proposed mix loss [46]. The mix loss is

Figure 13: Backbone structure of the proposed RCAN-DU

network.

a combination of L1 and a multi-scale structural similarity

(MS-SSIM) losses and can be formulated as:

LMix(θ) = α LMS-SSIM + (1− α) LL1
(1)

where θ is a set of network parameters and α = 0.78.

4.6. VIDAR Team

The VIDAR team proposed two methods for blind and

non-blind image denoising and applied both methods to

both raw-RGB and sRGB tracks.

The method Blind Real-World Image Denoising with

Deep Boosting is a deep boosting framework for blind real-

world image denoising based on the team’s previous publi-

cation [7]. A series of ensemble methods, such as model

average, self-ensemble, and model-ensemble, have been

adopted to promote the overall performance. An overview

of the framework is shown in Figure 14.

The method Non-blind Real-world Image Denoising

with Deep Boosting is also based on the framework in [7].

This method is a deep boosting framework for non-blind

real-world image denoising. Generally, when the train-

ing data is sufficient for a learning-based method, a non-

blind denoising model would perform better than a blind

one. However, due to the lack of enough training data in

the real-world condition, it is difficult to directly train sep-

arate models for each camera setting. To address this is-

sue, the team first trains a blind model from scratch. Then,

based on the ISO and smartphone type information in meta-

data, they select specific training data to fine-tune the pre-

trained model for each setting, which performs a non-blind

transfer for better performance. More implementation de-

tails, ablation results, and reproducible codes are available

at https://github.com/ngchc/deepBoosting.
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Figure 15: Architecture of DBPN implemented by TTI

team.

4.7. TTI Team

The TTI team proposed a method inspired by their prior

work on Deep Back-Projection Networks (DBPN) [12].

The team constructed iterative down-up projection units.

This idea is based on the assumption that down-projection

unit can be used to remove the noise by downscaled the

feature-maps. Then, the up-projection unit is used to up-

scale the feature-maps back to the original resolution. We

use error feedbacks from the up- and down-scaling steps

to guide the network to achieve optimal result as shown in

Figure 15.

4.8. TeamInception

TeamInception proposed a deep residual network with

spatial and depth-wise attention. The complete framework

is shown in Figure 16. The method has three main build-

ing blocks: (1) encoder (2) detail decomposition module

(DDM), and (3) decoder. Inspired from the work of [42]

on super resolution, the proposed method is recursive in na-

ture. The main idea is to gradually remove the noise sig-

nal from the image signal while preserving edges, texture

and colors. At the entry point of the RDAN network, an

encoder is employed to extract features at multiple scales.

Then, the DDM progressively separate the information re-

lated to the desired clean image from the input noisy image.

Figure 16: Architecture of RDAN proposed by TeamIncep-

tion.

Features that are less important get suppressed at the DAB,

and only useful information is propagated onward. To dis-

cern such features, the team applied two types of attention

mechanisms in DAB: depth-wise attention, and spatial at-

tention. Finally, the decoder receives deep features from the

last RRG, applies upscaling and pixel shuffling, and yields

the final image with the same resolution as of the input noisy

image.

Loss Function The team used MSE loss in the raw-RGB

track and a mixed loss function, similar to Equation 1, in

the sRGB track.

4.9. CVIP Korea Team

The CVIP Korea team proposed a Deep Factorized Net-

work for image denoising (DeFNet). The proposed net-

work mainly consists of two parts: the main denoiser and

post processing unit which are composed of several factor-

ized sub-networks. Unlike conventional image processing

networks based on deep learning [8, 38, 39], these factor-

ized residual sub-networks are expected to act ensemble-

like and learn different kinds of residual data for the fi-

nal goal [31]. The main denoiser consists of a series of

10 sub-denoisers. Each sub-denoiser, as shown in Fig-

ure 17, estimates residual information (i.e., noise compo-

nent) in the clean image inferred on the current step and

accumulates the estimated residuals so far, and transfer it

to the following sub-denoiser. In addition, similar to re-

current neural network utilizing the hidden states to infer

some meaningful information acquired from previous step

to next step, our proposed architecture also uses hidden state

to transfer information acquired from current sub-denoiser

to next sub-denoiser. The final residual information is es-

timated by accumulating entire residual information esti-

mated from each sub-denoiser. Likewise, the post process-

ing unit, shown in Figure 19, consists of three compen-

sators which also consist of series of 10 sub-compensators.

Each sub-compensator, as shown in Figure 18, has simi-

lar but lightweight structure with sub-denoiser and has an

additional input, an acquired latent clean image from main
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Figure 19: Structure of a post-processing unit used in

DeFNet.

denoiser. We found that each sub-network (i.e., the sub-

denoiser and the sub-compensator) estimates different type

of data for the final goal and transfers it to next sub-network

while corresponding each other via hidden state. There-

fore, the entire network can robustly acquire desired results

by accumulating the data estimated from each sub-network.

The network architecture is illustrated in Figure 20. The

team used the same described architecture for both raw-

RGB and sRGB tracks, only the input data was different.

4.10. Meteor Team

The Meteor team proposed the method A Multi-Level

Network for Real Image Denoising (MLDN), motivated

by the strategy that noise can be smoothed and easier to

remove when images are down-scaling to a smaller size.

The team applied a multi-level architecture, which begins

to denoise down-sampled images and progressively grows
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Figure 20: Architecture of DeFNet.

up to denoise the full-size image. The model diagram is

illustrated in the Figure 22. The team built a 4-level ar-

chitecture, each level contains a noise-remover and an up-

sampler, except for the last level which replaces the up-

sampler by a single convolution layer. The input images

are down-sampled by averaging pooling layer at the power

of 2: 1/8, 1/4, and 1/2 for level 1–3, respectively. At the

1st level, the team used a stacked CNN-BN-ReLU architec-

ture [38] as the noise extractor (NE) to estimate noise for

the 1st level. The extracted noise is then concatenated to the

1/8 down-sampled noisy images and fed into the 1st level.

Outputs from the previous level are concatenated to the next

level’s inputs. The team used outputs of the 4th level as the

final denoised images.

Each level has a local loss function Lossi = ‖yi − ŷi‖1.

The loss for noise extractor is L2 between estimated noise

and down-sampled ground-truth noise. Eventually the total

loss is expressed as:

Loss = ‖n− n̂‖2 +
L
∑

i=1

λi ‖yi − ŷi‖1 , (2)

where ‖x‖p is the Lp norm for x and L is the total number of

levels. λi is the weight for level i, and we empirically set all

λi to 1.0. The detail structure of noise-remover is shown in

the Figure 21. The team adapted modules from CARN [3]

and RCAN [42]. Two cascade blocks are stacked for each

level. The cascade block is composed of three residual

dense blocks and one channel attention layer. A pixel shuf-

fle layer in levels 1–3 is responsible for up-sampling images

by a factor of 2. A block diagram of the MLDN architecture

is shown in Figure 22.

4.11. UIUCIFP Team

The UIUC-IFP team proposed the method Image De-

noising with Kernel and Residual Prediction Networks.

The method aims to predicts both kernels and residuals. In

the networks, the team used multiple wide activated resid-

ual blocks proposed by [36, 10], then the feature maps are

branched to kernels and residuals. The predicted kernels



Figure 21: The structure of a cascade block used in the

MLDN architecture.

Figure 22: A block diagram of the MLDN architecture pro-

posed by Meteor team.

Deep 

Net

Noise

Image
KernelFeature Conv + Softmax

Conv Residual

Noise

Image

Denoised

Image

Figure 23: Kernel and Residual Prediction Network pro-

posed by UIUC-IFP team.

will apply to the original noisy image and added to residu-

als. The network structure is illustrated in Figure 23.

4.12. IID Research; Pervasive Visual Intelligence
Team

The team proposed a method for Fast and Felxible

Blind sRGB Image Denosing. The team denote the real

ground-truth image as Z and the estimated ground-truth

image (i.e., the almost noise-free image) as X, The team

assume the ground-truth Z follows a Gaussian distribu-

tion with mean X and a small variance—that is, zij ∼

m�
KL Loss

Figure 24: A block diagram of the network proposed by IID

Research team.

N (xij , ǫ
2
0). The goal is to learn this distribution from large

amounts of observed noisy images Y under the KL diver-

gence measurement through neural network. The Gaussian

distribution’s variance is set to 10−1 in all of the experi-

ments since the almost noise-free image X is very close to

the real ground-truth Z.

The team participated in the sRGB denoising track. In-

stead of directly predicting the denoised image as most of

other methods, they regard the real ground-truth image as

an stochastic variable with Gaussian distribution, and learn

its mean and variance parameters employing a deep neural

network. Thus, for one noisy image, instead of outputting

the mean value of a Gaussian distribution as the final de-

noised result, the neural network also outputs a predicted

variance (noise level) pixel-wisely. The proposed network

is shown in Figure 24. The team adopted the KL divergence

as a loss function

argmin
µ,Σ

∑

i,j

DKL(N (µij , σ
2
ij) || N (xij , ǫ

2
0)), (3)

which is equal to

argmin
θ

(µij(θ)− xij)

2ǫ20
+
1

2

(

m2
ij(θ)

ǫ20
− 1− log

m2
ij(θ)

ǫ20

)

,

(4)

where θ is the network parameters, µij(θ) and m2
ij(θ) are

the outputs of the network.

4.13. Orange Cat Team

The Orange Cat team proposed a Pyramid Image De-

noising Network (PIDNet) for track 1, raw-RGB Denois-

ing. The whole network is comprised of three modules,

including Noise Estimation Module, Pyramid Pooling De-

noising Module and Channel Attention Module. In the

Noise Estimation Module, the noise level map of the input

image can be estimated with a fully convolutional network,

which is learned with the constraint of the smoothness of

noise level map. Based on the noise level map and the in-

put image, a 5-level pyramid module is utilized to get global

and local contextual information, then five different U-Nets,



Figure 25: Orange Cat team’s PIDNet architecture.

in parallel, process noisy image blocks, then the results are

upsampled to the same size as the original input image and

concatenated together. After that, the last stage uses channel

attention mechanism to adaptively recalibrate the weight of

each channel for better fusion, and finally outputs the clean

image blocks. The specific structure of the PIDNet is shown

in Figure 25.

To constrain the smoothness of the estimated noise level

map, the team adopted a total variation (TV) regularizer:

LTV = ‖∇hφ(x)‖
2
+ ‖∇vφ(x)‖

2
, (5)

where ∇h and ∇v represent the gradient operator along the

horizontal and vertical directions, respectively, x denotes

the input noisy image, φ is the weight of the Noise Estima-

tion Module. For the image denoising loss, the team used

L1 loss to supervise the restoration of degraded image con-

tent, for the output ŷ of the whole network:

Ldenoise = ‖y − ŷ‖ . (6)

The overall cost function for training the Pyramid Image

Denoising Network is given by

L = Ldenoise + λTVLTV, (7)

where λTV is the tradeoff parameter for the TV regularizer.

4.14. IVL Team

The IVL team proposed a Deep Residual Autoencoder

for Image Denoising. The proposed model for the image

denoising is based on [47]. The proposed method works on

YCbCr noisy images and gives as output restored YCbCr

images, so the pre-processing step converts the input RGB

images into YCbCr color space, and the post-processing

step converts the result back into the RGB color space. The

entire solution is made of two autoencoder neural networks:

the first one is used for the restoration of the luma chan-

nel (Y channel), while the second one restores the chroma

components (Cb and Cr channels) of the images, using the

restored luma channel as a “structure map” to guide the re-

construction. Differently from the original method that was

designed for JPEG restoration [47], for the denoising task

both the first and second networks consist of B = 5 Residual-

in-Residual Dense Blocks (RRDBs), the input mini-batches

size equal to 8, made of 100 × 100 pixel crops taken from

LumaNet

ChromaNet

Y

Cb'

Cr'

Y'

Cb

Cr 

Concat Concat
RGB 

to 
YCbCr

YCbCr
to

RGB

IN OUT

Step 1: Y channel restoration

Step 2: Cb Cr channels restoration

Structure Map

Figure 26: IVL team’s Deep Residual Autoencoder.

Figure 27: offire team’s residual dense network (RDN).

Figure 28: offire team’ residual dense block (RDB).

the training dataset. To increase the number of structures

and textures seen by the network, online data augmentation

(random flipping and rotation) has been applied to the input

training crops, during training phase. The model architec-

ture is shown in Figure 26.

4.15. offire Team

The offire team proposed a Residual Dense Network for

sRGB Denoising. The team utilizes the similar network

structure as residual dense networks (RDN) [44], which

takes advantage of local and global feature fusion to ob-

tain noise-free images. The implemented network consists

of 16 residual dense blocks (RDB), where 8 convolutional

layers are densely connected to extract abundant local fea-

tures. Further more, global residual fusion strategy is in-

volved to jointly and adaptively learn global hierarchical

features. The whole network is optimized with L1 loss

function, which has been demonstrated to be more power-

ful for performance and convergence in image restoration

tasks. The network architecture is shown in Figure 27 and

the RDB structure is shown in Figure 28. The team partici-

pated in the sRGB track.
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