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Abstract

In this work we propose HR-Dehazer, a novel and accu-

rate method for image dehazing. An encoder-decoder neu-

ral network is trained to learn a direct mapping between a

hazy image and its respective clear version. We designed

a special loss that forces the network to keep into account

the semantics of the input image and to promote consistency

among local structures. In addition, this loss makes the sys-

tem more invariant to scale changes. Quantitative results

on the recently released Dense-Haze dataset introduced for

the NTIRE2019-Dehazing Challenge demonstrates the ef-

fectiveness of the proposed method. Furthermore, qualita-

tive results on real data show that the described solution

generalizes well to different never-seen scenarios.

1. Introduction

Outdoor images are often affected by visibility degrada-

tion due to bad weather conditions. In particular, hazy and

foggy weather generates tiny water droplets or ice crystals

suspended in the air. This aerosol filters the sunlight caus-

ing color shifting, contrast loss, saturation attenuation and

loss in sharpness. This phenomenon is heavily connected to

the distance of the subjects in the scene [6] and is spatially

varying in such a way that is not predictable. In extreme

cases, parts of the image are totally lost. The process of

removal of those effects in favor of a clearer version of the

input image is called dehazing and it is a very challenging

and important task. It finds many applications in computer

vision such as video surveillance [9], smartphone cameras

[37], remote sensing and visual navigation [22] and nowa-

days, with the development of autonomous driving vehicles,

dehazing has gained even more attention [31, 34]. In fact,

haze heavily affects the performance of a classification or

a semantic segmentation system, and thus a pre-processing

that recovers back the depicted subjects is highly desirable.

The model that best describes haze has been proposed

by Mc Cartney et al. [24]. It is called atmospheric scatter-

ing model and combines the scene radiance of the haze-free

input with the global atmospheric illumination, blended to-

gether with a transmission coefficient that models the haze

effects. Specifically, it is:

I(x) = J(x)t(x) +A(x)(1− t(x)) (1)

where x is the 2D pixel spatial location, I(x) is the observed

haze image, J(x) is the haze-free scene radiance to be re-

covered, while A(x) and t(x) are two critical parameters.

The first, A(x), denotes the global atmospheric illumina-
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tion, and t(x) is the transmission matrix defined as:

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere, and

d(x) is the distance between the object in the scene pro-

jected at the spatial location x and the camera. In Equa-

tions 1 and 2 the bold variables represent full color three-

channel images, while transmission t(x) is a single-channel

image that is replicated along channel dimension; with

abuse of notation the multiplications are intended channel-

by-channel and pixel by pixel. From Equations 1 and 2, it is

possible to observe that dehazing is an ill-posed problem, in

fact multiple solutions can be found for a single input hazy

image. The state of the art is studied by several methods that

tackle the problem under different points of view. Depend-

ing on the adopted features and the hypothesis at the basis

of the dehazing methods, there are two different types of

restoration: multi-image and single-image. Algorithms us-

ing several images exploit different inter-image differences

in order to remove the haze. For example Schechner et al.

[32] use two images of the same target acquired with dif-

ferent polarization. Nayar et al. [27] and Narasimhan et

al. [25, 26] exploit the dynamics of the hazing phenomenon

and acquire the target in different moments. Although this

can lead to very good results, in practice it is not applicable

in time-constrained scenarios. Kopf et al. [18] use multi-

ple images in combination with 3D registered models. De-

spite their ability in removing haze, multi-image algorithms

are in practices not very useful because they require special

equipment or take too much time.

The first group of single-image methods follows a phys-

ical model. Fattal et al. [11] try to model the transmission

(see Eq. 2). This method is quite slow and thus not suitable

in real time applications. In Cheng et al. [8], semantic in-

formation is used to infer color priors. Semantic context is

used also to estimate the ambient illumination. Cai et al. [7]

and Ren et al. [29] estimate the medium transmission map

through the use of a convolutional neural network (CNN).

The former recovers the image using an atmospheric scat-

tering model, while the latter employs a linear combination

of the estimated transmission map together with the esti-

mated global atmospheric light. Among the physical meth-

ods there is a subgroup of methods that exploit the fading

of haze in function of the distance. Different techniques are

used to estimate the fading. Hautiere et al. [14] use depth

for road scenes. Berman et al. [6] estimate haze lines to

define the evolution direction of the haze.

A second approach to dehazing is given by methods that

try to maximize the contrast. Tan et al. [34] propose a tech-

nique based on Markov random fields optimized through a

cost function that quantitatively measures the image con-

trast in association with the number of edges. He et al.

[15] use the dark channel prior to improve the contrast.

Dark channel prior is based on statistics of haze-free out-

door images. The hypothesis held in this paper states that

in local regions which do not cover the sky, it is very of-

ten that some pixels (the dark pixels) have very low inten-

sity in at least one RGB component. The value of the dark

pixel is directly affected by the airlight, therefore it directly

provides an accurate estimation of the haze’s transmission.

This strong assumption however, fails when the scene ob-

ject has a color similar to the airlight over a large local re-

gion and no shadow is cast on the object. Similarly, Golts

et al. [13] exploit the dark channel prior to train a convo-

lutional neural network in an unsupervised manner. Differ-

ently from He et al. [15], the dark channel prior used in their

work is an image statistical property indicating that in small

patches belonging to clear images, the darkest pixel across

all color channels is very dark and thus, close to zero. The

concept of dark channel prior is used in the loss module,

which is composed also by a matting term and a data term.

Another way to approach dehazing consists in learning a

direct mapping between the hazy image and its correspond-

ing clear, haze-free, image. In this case, the distance be-

tween local or global statistics among the pair images is

used as a training loss. In Galgran et al. [12], Retinex [19]

is used as a guidance training loss. This module however is

very slow and leads to poor results. Zhang et al. [39] use

perceptual loss over the luminance channel of the YCbCr

color space. A deeper analysis done by Wang et al. [35]

in fact, shows that haze affects more the luminance than the

chrominance. Yang et al. [38] extend this concept and adapt

the perceptual loss to the domain under analysis by learning

the weights of the neural network composing the perceptual

loss through adversarial learning.

To assess the quality of the dehazing methods, in the re-

cent years many benchmarks of increasing difficulty have

been released to push researches improving their methods.

In particular, in 2018 two datasets for image dehazing have

been made available. Ancuti et al., in fact, proposed an in-

door [2] and an outdoor [5] dataset composed by real RGB

images to which is applied a synthetic fog. This bench-

marks have been used for the two tracks of the NTIRE18

Image Dehazing Challenge [1].

We strongly believe that a dehazing system based on

neural networks trained with low- and high-level feature

matching can dramatically improve the performance of a

dehazing system and therefore we used this approach. Re-

sults scored over several datasets show that our method out-

performs the state of the art. In short, our contribution is:

- an end-to-end trainable model for single-image dehaz-

ing that learns a direct mapping among hazy and haze-

free images;

- a training loss that forces the neural network in charge

of restoring the input image to learn the semantic of the



Channel MSE (×10−2)

R 9.15

G 11.17

B 15.52

Y 8.01

Cb 0.23

Cr 0.11

Table 1. Mean square error (MSE) of every channel for RGB and

YCbCr color spaces on the training set images of Dense-Haze

dataset [4].

input image and to promote local consistency among

nearby structures as well as visual consistency;

- a method able to generalize well on synthetic as well

as on real-world hazy images.

2. Proposed method

In this section the proposed solution for single image de-

hazing, called HR-Dehazer, is described. First of all an

analysis of the influence of haze on different color spaces

is conducted. Then, the proposed encoder-decoder archi-

tecture is described and finally the loss functions and the

training procedure are presented.

2.1. Color space

Atmospheric illumination in hazy images has a different

impact on each channel in RGB and YCbCr color spaces.

The hazy effect is mainly concentrated on the luminance

(Y) channel of the YCbCr color space. This hypothesis

is here quantitatively demonstrated by estimating the mean

square error (MSE) between the hazy image and its cor-

responding haze-free image for each channel both in the

RGB and the YCbCr color space. Table 1 reports MSE

of each channel on the training set images of the Dense-

Haze dataset. From the results reported we can observe that

among RGB channels is approximately the same, while the

one for the luminance channel is much higher than the one

for blue and red chroma components. Therefore, to allow

the model to independently improve luminance and chroma

channels thus preserving the color balance, the proposed

model will process a YCbCr version of the input image.

2.2. Architecture

Figure 1 shows the proposed encoder-decoder architec-

ture used for mapping the hazy image into a reconstructed

haze-free image, which is inspired by the U-Net architec-

ture [30]. This model has a symmetric shape, i.e. the

encoder and the decoder contract and expand in a similar

way, thus allowing the preservation of boundary informa-

tion (spatial information). The proposed architecture con-

tains concatenated skip connections between feature maps

of the downsampling path and feature maps of the up-

sampling path. Skip connections allow features reuse and

implicit deep supervision which guarantees better gradient

propagation across the network. In order to reduce the gen-

eration of artifacts and gain sample independence, we re-

spectively replace Convolution Transpose layers with Pixel

Shuffle layers [33] and remove all Batch Normalization lay-

ers.

2.3. Loss function

We optimize the proposed model by minimizing the lin-

ear combination of mean square error (MSE) loss, LE , and

perceptual loss, LP , as shown below:

L = LE + LP . (3)

LE measures the error between pixel values of the target

haze-free image, IY CbCr
t , and the corresponding recon-

structed hazy image, G(IY CbCr,Θ), in the YCbCr color

space and is defined as follows:

LE =
∥

∥G(IY CbCr,Θ), IY CbCr
t

∥

∥

2
, (4)

where G is the proposed encoder-decoder network and Θ
the corresponding parameters.

The perceptual loss LP [17] computes the error between

features extracted from both haze-free and hazy images

with a pre-trained CNN. Formally, given a pair of images,

IRGB and IRGB
t , where the first is the hazy image and the

second is the corresponding haze-free image, the perceptual

loss is defined as:

LP =
∑

l∈L

wl

∥

∥Fl(I
RGB ,Θ)− Fl(I

RGB
t ,Θ)

∥

∥

2
, (5)

where Fl is the output feature map of a specific layer l, and

wl is the weight used for combining losses for several lay-

ers. In our work, we use features at layers L = {RELU11,

RELU21, RELU31} of a VGG-19 model trained on Ima-

geNet dataset.

2.4. Multi­scale training

To allow the network to take into account the seman-

tics of the entire input image and also to impose coherence

among local structures, we propose a new multi-scale train-

ing procedure. During training, a batch consists of a pair of

images: hazy and corresponding haze-free images. Multi-

scale training is carried out by resizing batch images while

preserving their aspect ratio. For each batch, images are re-

sized by randomly sampling the dimension of the short side

from the following sizes: 512, 1024, or 2048 pixels. Ap-

plied data augmentation includes horizontal flipping, ran-

dom rotation in the range ±45◦, perspective transform, and

affine transform.
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Figure 1. The HR-Dehazer architecture is an encoder-decoder network inspired by U-Net [30]. It consists of Convolution and LeakyReLU

layers in the downsampling part, while upsampling part includes PixelShuffle, Convolution and ReLU layers.

As described in the previous section, we optimize the

proposed model by minimizing the linear combination of

mean square error (MSE) and perceptual loss [17] as illus-

trated in Figure 2. The MSE is computed on data at the

randomly sampled scale in YCbCr color space, while the

perceptual loss is estimated on RGB data at two different

scales: the randomly sampled one, and 224 × 224 pixels

(the same used for training the feature extraction model on

the ImageNet data).

2.5. Inference phase

At inference time, given an input RGB hazy image of any

size, the proposed solution: (1) pre-processes the image by

converting it from the RGB to the YCbCR color space; (2)

performs a forward pass through the encoder-decoder ar-

chitecture using the pre-processed image as input; (3) trans-

forms the reconstructed image from the YCbCr color space

to the RGB color space.

3. Experiments and results

In this section, we describe the datasets along with the

settings used for experiments. Then, quantitative and qual-

itative results achieved by the HR-Dehazer are compared

with state-of-the-art methods.

3.1. Training data

To allow the proposed model to be able to reconstruct

in a meaningful way a vast range of semantic concepts,

we have considered the use of two datasets for training.

The first dataset is created by the authors for training from

scratch the proposed model and is obtained by synthesiz-

ing a pair of haze-free/hazy images. While the second is

the Dense-Haze dataset, which is the dataset used for the

NTIRE2019-Dehazing Challenge [3] and is used for fine-

tuning the model.

PASCAL VOC2012: The PASCAL VOC2012 dataset

[10] consists of 17125 haze-free images containing both

outdoor and indoor scenes depicting an instance of 20 dif-

ferent categories. We select this dataset for training from

scratch the proposed model. Hazy images are synthesized

starting from haze-free images by using the image augmen-

tation toolbox.1 This toolbox generates synthetic samples

exploiting an approximation of the atmospheric scattering

model (Eq. 1). Figure 3 illustrates samples obtained by us-

ing the aforementioned augmentation. We randomly split

the dataset into 17000 training images, and 125 validation

images.

Dense-Haze: The Dense-Haze dataset [4] is the most re-

cent dataset introduced in the NTIRE2019-Dehazing Chal-

lenge [3] for validating single-image dehazing algorithms.

It contains images collected using a setup that included pro-

fessional fog generators and a professional camera setup.

It consists of 55 both indoor and outdoor high resolution

(1600×1200 pixels) pairs of images affected by dense haze

and their corresponding ground truth divided as follows: 45

training images, 5 validation images, and 5 test images.

3.2. Parameter settings

We implement the proposed method in Python 3.6 using

the PyTorch package [28]. The proposed model is trained

on a workstation equipped with an Intel I7-7700 CPU @

3.60GHz, 16GB DDR4 RAM 2400MHz, NVIDIA Titan X

Pascal GPU with 3840 CUDA cores. All the convolutional

weights are initialized with the method proposed in [16],

while all the biases are set equal to zero.

We train the model from scratch by using Adam opti-

mizer with a fixed learning rate of 0.0001, a batch-size equal

to 1, and a momentum term of 0.5 for a total of 30 epochs.

Hyper-parameters for the fine-tuning of the model are the

same as the training ones apart from the learning rate which

corresponds to 1e-5 and the number of epochs equal to 150.

3.3. Comparison with state­of­the­art methods

In this section, we demonstrate the effectiveness of the

proposed approach by estimating results on both paired syn-

thetic images and unpaired real-world images. We compare

1https://imgaug.readthedocs.io/en/latest/
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Figure 3. Examples of haze-free training and corresponding aug-

mented images.

our results with other four recent methods in the state-of-

the-art: DehazeNet by Cai et al. [7], Ren et al. [29], AOD-

Net by Li et al. [20], and Zhang et al. [39]. We used the

original code provided by the authors for comparing all the

methods.

Evaluation on paired synthetic images The evaluation

of dehazing algorithms on paired synthetic images is carried

out by comparing the restored hazy images with the ground-

truth which consists of a version of the image without haze.

Commonly employed metrics are the Peak Signal to Noise

Ratio (PSNR) and the Structural Similarity (SSIM) [36] in-

dex. Figure 4 and Table 2 show the results of the com-

parison on the Dense-Haze validation set. It can be ob-

served that the proposed method significantly outperforms

the other considered approaches. From our personal stand-

point, this is mainly justified by the nature of data used for

training these methods. In fact, Dense-Haze training images

present a very intense and high haze phenomenon, while

datasets used for training state-of-the-art contains images

with sparse haze. Table 3 reports the comparison on the test

set of the O-Haze dataset [5] used for the NTIRE2018 Im-

age Dehazing Challenge [1]. The proposed method trained

on Dense-Haze data achieves comparable performance re-

Method PSNR SSIM

DehazeNet [7] 10.87 0.3556

Ren et al. [29] 12.61 0.4196

AOD-Net [20] 12.79 0.4230

Zhang et al. [39] 12.04 0.4284

HR-Dehazer 16.47 0.5181

Table 2. Quantitative comparison with state-of-the-art methods on

the Dense-Haze dataset [4]. For both the measures higher is better.

Method PSNR SSIM

DehazeNet [7] 16.65 0.6397

Ren et al. [29] 17.53 0.6773

AOD-Net [20] 15.46 0.6076

Zhang et al. [39] 24.03 0.7750

HR-Dehazer 21.46 0.6912

Table 3. Quantitative comparison with state-of-the-art methods on

the test set of the O-Haze dataset [5] released for the NTIRE 2018

Image Dehazing Challenge - Track 2: Outdoor.

spect to Zhang et al. [39], which has been trained on O-

Haze data.

Evaluation on unpaired real-world images The HR-

Dehazer is also evaluated on unpaired real-world images

without any adaptation to the new domain. We considered

images from two standard datasets, namely the IVC Water-

loo dataset [23] and the HSTS subset of RESIDE dataset

[21]. Figure 5 and Figure 6 show restoration results on

real-world images belonging to both the datasets. It can

be noticed that methods in the state of the art are generally

able to reduce the haze, but at the same time they compro-

mise image properties: for example, [7] and [20] darken

some regions, while [29] distorts colors also of haze-free

regions. The HR-Dehazer instead is able to recover almost



Input DehazeNet [7] Ren et al. [29] AOD-Net [20] Zhang et al. [39] Ours Ground-truth
Figure 4. Qualitative comparison of results on images from the Dense-Haze validation set [4].

completely the structure of images affected by dense haze

without introducing artifacts. For example, it can be ob-

served in the last row of Figure 6 that the color of the wa-

ter in the fountain is preserved and simultaneously that the

building with the arc in the upper part of the image is re-

covered using realistic colors. Finally, we want to highlight

the effectiveness of the proposed solution by focusing on

the clarity of the text in the image on the third row in Figure

6 and on the increased depth of view of the image of the

highway (fourth row in Figure 5): cars are visible after the

application of the proposed approach.

4. NTIRE2019-Dehazing Challenge

The HR-Dehazer was initially proposed in order to par-

ticipate in the NTIRE2019-Dehazing Challenge. The quan-

titative performance results in terms of PSNR and SSIM on

the test set of the Dense-Haze dataset, provided by the orga-

nizers [3], are reported in Table 4. As can be seen from the

table, the proposed method places in the second half of the

rank respect to the PSNR score, instead it obtains a SSIM

of 0.05 smaller than the best method.

5. Conclusion

In this paper we proposed HR-Dehazer, a method for sin-

gle image dehazing that learns a direct mapping between a

hazy input image and the corresponding haze-free version.

The proposed method treats differently the luminance infor-

Team User PSNR SSIM

iPAL-AtJ moonriverLucy 20.26 0.657

iPAL-COLOR DH-IRCNN 123 CEDH 19.92 0.653

MT.MaxClear venkat2 19.47 0.652

BMIPL-UNIST-DW-1 Sprite+Ours 18.84 0.633

xddqm Untitled Folder 18.52 0.640

ECNU emmm+dpn best 17.83 0.617

MOMOCV meshpop 17.18 0.564

BMIPL-UNIST-DW-2 BMIPL-PDW+Hazing 16.86 0.610

BOE-IOT-AIBD BOE DH Submission3 16.78 0.612

MAHA@IIT akshay.aad16 16.47 0.548

FastNet tzofi+submission 16.37 0.569

Our IVL+submission16 16.19 0.601

ecsuiplab1 san santra+up 4 16.15 0.564

IPCV IITM maitreya ipcv+final 16.13 0.595

shh sunhee+res 16.05 0.562

ecsuiplab2 ranjanisi+ranjan 15.97 0.539

Alex SDU wang cheng 15.94 0.557

hcilab hcilab+final 15.12 0.580

IMag dxllx+t88 14.93 0.555

XZSYS ChuanshengWang 14.34 0.491

Vintage jptarel+simple1 14.02 0.529

Table 4. Quantitative comparison in terms of PSNR and SSIM for

the NTIRE-2019 Dehazing Challenge.

mation and the chroma components given that it processes

a YCbCr version of the input hazy image. It consists of

a fully end-to-end trainable encoder-decoder architecture.

The training schema forces the dehazing network to con-

sider the semantics of the input images and it has been de-



Input DehazeNet [7] Ren et al. [29] AOD-Net [20] Zhang et al. [39] Ours
Figure 5. Qualitative comparison of results on real-world images from the IVC Waterloo dataset [23].

Input DehazeNet [7] Ren et al. [29] AOD-Net [20] Zhang et al. [39] Ours
Figure 6. Qualitative comparison of results on real-world images from the HSTS subset of the RESIDE dataset [21].

signed so that it is scale-invariant. Specifically, during train-

ing, input images are rescaled. It has been shown that the

proposed method outperforms current state-of-the-art meth-

ods over several datasets. Although it is a very successful

method, there are still other aspects that need to be inves-

tigated. For example, the metric used to evaluate the gen-

uineness of the results may promote more blurry results in

favor of sharper results. Finally, a subjective study should

be conducted to evaluate the perceptual quality of the ob-

tained results.
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[9] Serhan Coşar, Giuseppe Donatiello, Vania Bogorny, Car-

olina Garate, Luis Otavio Alvares, and François Brémond.
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