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Figure 1: Video object removal results. (a) The input video and its foreground bounding boxes to remove, marked in red. (b)

State-of-the-art image-based inpainting model by Yu et al. [50]. (c) Our results. Applying image-based algorithms on the

video inpainting task often leads to temporal inconsistency, where the content is different in each frame, e.g., the windows are

missing in the last frame of (b). Our deep learning based architecture could improve both the spatial and temporal consistency

of image-based inpainting models. Best viewed with color and zoom-in. See http://bit.ly/2GkW9Kr for the video.

Abstract

Video object removal is a challenging task in video pro-

cessing that often requires massive human efforts. Given the

mask of the foreground object in each frame, the goal is to

complete (inpaint) the object region and generate a video

without the target object. While recently deep learning based

methods have achieved great success on the image inpainting

task, they often lead to inconsistent results between frames

when applied to videos. In this work, we propose a novel

learning-based Video Object Removal Network (VORNet) to

solve the video object removal task in a spatio-temporally

consistent manner, by combining the optical flow warping

and image-based inpainting model. Experiments are done

on our Synthesized Video Object Removal (SVOR) dataset

based on the YouTube-VOS video segmentation dataset, and

both the objective and subjective evaluation demonstrate

that our VORNet generates more spatially and temporally

consistent videos compared with existing methods.

1. Introduction

Removing undesired objects in videos is crucial to many

applications, such as movie post-production and video edit-

ing. While manually removing objects in a video requires
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substantial human efforts, automatic video object removal

could save a great amount of time. Given the region of the

foreground object in each frame, the goal of automatic video

object removal is to fill in, or inpaint, the foreground re-

gion with background content and generate a video without

the target object. Automatic video object removal is a very

challenging task since it requires both spatial and temporal

consistency; the inpainted region must fit in the background

seamlessly in diverse scenes, and it should remain consistent

appearance in the following frames where its surroundings

may change significantly. Some examples of inconsistent

frames include flickering and distortion (see Fig. 1(b) and

Fig. 5(b)(c)).

Video object removal could be viewed as an extension of

the image/video inpainting task. Early patch-based inpaint-

ing methods [10, 11, 39] divide images into small patches

and recover the masked region by pasting the most simi-

lar patch somewhere in the image/video. These methods

could generate authentic results but they are usually very

time-consuming due to the complexity of neighbor-finding

algorithms [26]. In addition, patch-based methods assume

there is a reference for the missing part and often fail to

recover non-repetitive and complex region (e.g, they cannot

recover a missing face well [28]).

On the other hand, deep learning based image inpainting

models could estimate the missing parts based on the training

data and generate novel results with impressive quality [29,

44, 45, 48, 50]. One naive idea is to solve the video object

removal problem by applying these image inpainting models

to each frame to recover the foreground region. Nonetheless,

when applied to videos, these image-based methods would

generate temporally inconsistent results that cause flickering

or distorted videos, since they do not consider the temporal

relation between frames and treat them independently.

We propose a novel learning-based architecture for video

object removal that could take advantage of existing state-of-

the-art image-based inpainting models and generate visually

plausible frames in a temporally consistent manner. The core

idea is to combine the information from previous frames and

generated result in current frame. For previous information,

we use the optical flow to capture background motion and

recover removed foreground part by warping the previous

background accordingly. For the constantly occluded re-

gion, existing image-based inpainting models could generate

plausible results. Based on these candidates, we design a

refinement network to select and refine them to derive a

spatially and temporally consistent result.

Since there is no existing dataset for video object removal,

we build a large-scale Synthesized Video Object Removal

(SVOR) dataset based on the YouTube-VOS [43] video seg-

mentation dataset. A variety of foreground segmentation

and background videos are selected from YouTube-VOS

videos and synthesized to 1958 video-with-target and video-

without-target pairs. We train our VORNet on the SVOR

dataset with reconstruction loss, perceptual loss and two de-

signed GAN losses and evaluate the quality of videos with

mean square error, SSIM [37], a learned perceptual metric

[51] and visual results. We show that the proposed method

could improve the perceptual quality and temporal stability.

Our VORNet processes frames online, sequentially, does

not require post-processing and could deal with videos in

various lengths.

Our contributions could be summarized with the follow-

ing points:

• We propose a novel Video Object Removal Network

(VORNet) to remove undesired objects in videos. To

our knowledge, VORNet is the first learning based

model for video object removal. It could generate vi-

sually plausible and temporally coherent result online,

without post-processing.

• We design a combination of spatial content losses and

temporal coherent loss based on GAN structure to train

our model, which could improve the spatio-temporal

quality of generated videos.

• We create the first large-scale Synthesized Video Object

Removal (SVOR) dataset based on the YouTube-VOS

dataset. The SVOR dataset contains a huge variety of

motions and scenes that could be used for training and

evaluation in further research. The dataset is publicly

available here: http://bit.ly/2P3n2oH.

2. Related Work

Image Inpainting Image inpainting was first introduced

in [3] as a general image processing problem that aims to

recover the damaged or missing region of an image. Sub-

sequently, a great amount of research is done for image

inpainting [16] with diffusion-based [2, 3] and patch-based

[5, 10, 12, 38] algorithms. These traditional methods per-

form well on simple structure but are very limited to complex

objects, large missing area and non-repetitive texture where

similar reference may not exist.

In recent years, learning-based models demonstrate

promising results with the help of deep convolutional neural

network (CNNs). These models learn image features in the

training data and are thus capable of generating realistic con-

tent that may not exist in the unmasked area, such as faces

[28, 50], complex objects [31] and natural scenes [19, 50].

Xie et al. [40] is the first to train convolutional neural net-

works for image denoising and inpainting on small regions.

Pathak et al. [33] further extend the work to a larger region

by an encoder-decoder structure. Also, to improve blurry

effect caused by the l2 loss, Pathak et al. [33] introduce

the idea of adversarial loss from the generative adversarial

network (GAN) [14] where a generator that aims to create



real images to fool the discriminator and a discriminator

that strikes to tell the fidelity of generated images are jointly

trained.

More recently, Yu et al. [50] add a contextual attention

layer to and several improvements on network design to

produce higher-quality images. It is trained on the diverse

Places2 [53] dataset and achieve state-of-the-art result, so

we shall take it as our inpainting network and a baseline.

Yan et al. [44], Yu et al. [49] and Lui et al. [29] also man-

age to solve the problem of inpainting irregular holes. How-

ever, since precise segmentation of an object in a video may

not be derived easily, we focus only on inpainting bound-

ing box region of the object in this work. We assume the

foreground bounding boxes are given as they could be easily

derived by object tracking methods or human annotations.

Video Inpainting Video inpainting is generally viewed as

an extension of the image inpainting task with larger search

space and temporally consistent constraints. Early works

[15, 38, 32] are mainly extensions of patch-based methods

from image inpainting, where images are split into small

patches and the masked region is recovered by pasting the

most similar patch somewhere in the image/video. Wexler

et al. [38] consider the video inpainting task as a global

optimization problem that all missing portion could be filled

in with patches from the available parts of the video with en-

forced global spatio-temporal consistency. Wexler et al. [38]

propose an iterative approach to solve the global optimiza-

tion problem and yield magnificent results in an automatic

way. However, due to the large search space and the complex-

ity of the nearest neighbor search algorithm, their method is

extremely slow that processing a few seconds of video may

take days to compute. Also, the assumption that there exists

a similar patch that could fill in the missing region may not

hold under circumstances like a long-lasting occlusion, a

moving camera or masked regions with semantic ambiguity.

[20].

The following works try to solve these issues. Newson et

al. [32] extend the work of Wexler et al. [38] by accelerat-

ing the algorithm, adding texture features and initialization

scheme. Ebdelli et al. [13] also limit the search space in

an aligned group of frames to reduce computational time.

Huang et al. [17] address the moving camera problem by

estimating the optical flow and color in the missing regions

jointly. However, the computation time of these methods

is still longer than per-frame processing after acceleration.

In addition, patch based models still lack modeling distribu-

tion of real images, so they fail to recover unseen parts in

the video. Our data-driven method could solve both issues

by learning the distribution of frames and generate realistic

videos by forward inference, without searching.

Video Temporal Consistency Video temporal consis-

tency aims to solve the flickering problem when applying

different kinds of image-based models like photo enhance-

ment [8] colorization [52], style transfer [18, 30] and general

image-to-image translations [22, 54] to videos. Generally,

it could be divided into task-independent and task-specific

methods.

Task-independent approaches [4, 25, 46] aim to use a

single model to handle multiple applications with the video

temporal consistency problem. Among them, the recent

work by Lai et al. [25] propose an efficient method using a

deep network that could generate impressive temporally co-

herent videos in real time, given various types of temporally

inconsistent inputs and their original unprocessed videos as

reference. They use the FlowNet2 [21, 34] to estimate their

temporal loss to train the model. However, for the video

object removal task, the method of Lai et al. [25] does not

work because the inpainted region in the unprocessed video

is occupied by the foreground object, which not be used as a

reference for temporal loss. Instead, our refinement network

utilizes the warping network and temporal discriminator to

generate temporal consistent results.

Task-specific approaches like [7, 27, 47] develop different

strategies according to each domain. Some attempt to design

specific temporal filters [1] or embed optical flow estimation

to capture information of motion [7]. Recently, Xie et al.

[41] design a temporal discriminator aside from a normal

spatial one for the fluid flow super-resolution task. It utilizes

motion from low-resolution video to generate temporally

consistent high-resolution fluid flow video, but there is no

such reference in the video inpainting task. Alternatively,

we extend this work to design our temporal discriminator

without reference for video inpainting.

Wang et al. [36], concurrent with our work, propose a

deep learning architecture to address the inconsistent prob-

lem in video inpainting. The method uses a 3D convolutional

network to learn the temporal relation and generate coarse

temporally consistent images for the masked area, and refine

them with a 2D convolutional network. Although results of

Wang et al. [36] are temporally consistent, their model could

not generate clear videos for a diverse dataset as only the L1

loss is used for training. Our VORNet could utilize exist-

ing image-based inpainting models and improve the video

quality by the combinations of different loss functions .

3. Video Object Removal

Our VORNet takes as input the video-with-target frames

{It | t = 1 . . . n} and the target bounding box mask in

each frame {Mt | t = 1 . . . n} in sequence and generate

the output video-without-target frames {Ot | t = 1 . . . n}.

The model is composed of three parts: the warping network,

the inpainting network, and the refinement network (see Fig.

2). The core concept is to use the information from other

frame (warping network) and generated frame (inpainting

network), combine and refine them in a spatio-temporally
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Figure 2: Our VORNet architecture and notations. (a) The warping network aims to collect information from other frames (see

details in Fig. 3). (b) The inpainting network intends to estimate the missing parts, by using the generative model to create a

possible image according to its surroundings. (c) The refinement network is designed to combine the information from other

frames and the estimated frame, by selecting and refining candidates (see details and losses in Fig. 4). The model runs in a

recurrent way; the output frame is used to create warping candidates of the next frame, and the current state in refinement

network would propagate to the next frame. Best viewed with color.

coherent way (refinement network).

3.1. The Warping Network

The warping network aims to collect information from

other frames. For example, if the target object to be removed

is static in two consecutive frames and the background is

moving rightward, we could know that the foreground region

of the second frame should be filled in with the background

in its left side in the first frame (see Fig. 3).

To estimate these relative motions between two input

frames It−k and It, we use FlowNet2 [21, 34] pre-trained

on the MPI-Sintel Dataset [6] to calculate the raw optical

flow Frawt−k→t
between them.

However, for Frawt−k→t
, the foreground region is derived

from the pasted foreground object, which could not represent

the background motion between the last frame and this frame.

To address this issue, we remove the foreground region in

the raw optical flow and apply simple bilinear interpolation

to fill in the removed region and recover the background

optical flow Fbgt−k→t
. We do not adopt the learning based

method in this component because the performance is not as

expected considering its cost.

Finally, we warp Ot−k to the Mt region with inpainted

flow Fbgt−k→t
using the warping operation as [35] and send

it to the refinement network as a candidate. We have candi-

dates with different k so that we could get information from

temporally closer and further neighbors.

3.2. The Inpainting Network

The inpainting network intends to estimate the missing

background. It could be any model that recover the masked

part of input videos, including learning based and patch

based ones. To estimate occluded regions that patch-based

models could not handle, we adopt the generative inpainting

network from Yu et al. [50] pre-trained on the Places2

dataset [53] and fine-tune on our SVOR dataset. It consists

of a coarse network that generates a coarse result from the

masked input image and a refinement network that turns the

coarse result to the final output with contextual attention.

Details for the model could be found in the supplementary

material.

3.3. The Refinement Network

The refinement network is designed to combine the candi-

dates from warping network and inpainting network. Given

candidates from warped frames and the inpainted frame,

the refinement network will select the top 1 candidate St

to generate the final output frame Ot with the mask Mt.

To maintain temporal consistency, the selection is done by

choosing the candidate that is closest to the previous result in

the feature level (LPIPS [51] distance, see Sec 4.3). Finally,

losses are computed using the output Ot and the background

frame Bt.

As shown in Fig. 4, the refinement network includes

three convolutional layers that encode the candidate frames

and mask, a convolutional LSTM [42] layer that propagates

temporal features, and three transposed convolutional lay-

ers to reconstruct the image. Skip connections are added

between convolutional layers and corresponding transposed

convolutional layers.
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the previous frame It−k. Based on this idea, the warping

network estimates the motion (optical flow) between the It
and its kth previous frame It−k, and generate the warped

frame Wt−k→t by warping the corresponding foreground

area in the previous output Ot−k (marked in blue) to It. Note

that we use Ot−k to warp the region instead of It−k because

It−k may include the foreground. Best viewed with color

and zoom-in.

3.4. Loss Functions

Our aim is to recover the background region which is

masked by the foreground object. This is a challenging task

because we need to consider both the spatial and temporal

consistency. Accordingly We propose to train our VORNet

with spatial content loss from low-level to high-level and

temporally coherent loss.

Spatially discounted reconstruction loss. l1 loss focuses

on the lowest level of pixel difference. We embrace the

spatially discounted reconstruction loss in [50]

Ll1 = Et,x,y[|Otx,y
−Btx,y

|(γtx,y
)d] (1)

where x and y denote the pixel indexes of a frame, and the

loss in each pixel is weighted by γd according its distance

d to the nearest boundary. It is more suitable for image

inpainting task compared to naive l1 loss since pixels closer

to the boundary should match the background, while the

middle part could have more diversity.

VGG perceptual loss. One problem about l1 loss in a

generative task is that it usually produces blurry results,

because it is hard for the model to minimize the l1 loss when

generating a sharp and vivid image.

Therefore, we adopt a VGG-net pre-trained on a classifi-

cation task [23] to compute the perceptual distance between

generated and ground truth images as one of our spatial loss

Lφ,j
perc = Et[‖φj(O

′

t)− φj(B
′

t)‖
2

2
] (2)

where φ and j denote the VGG network and its layer index

respectively. The O′

t and B′

t are the output and background

image cropped to the masked area. The perceptual loss

emphasizes on the higher level of difference like style or

textures instead of pixels.

PatchGAN loss. To motivate our model to generate realis-

tic images, we use the PatchGAN discriminator [22] as our

spatial discriminator Ds, while the refinement model could

be viewed as a generator G. The Patch GAN loss is defined

as
LGANs

(G,Ds) = Et[log(Ds(B
′

t))]

+ Et[log(1−Ds(G(S′

t)))]
(3)

where S′

t and B′

t denote the selected and background image

cropped to the masked area. While the l1 loss focus on low-

frequency structure, PatchGAN discriminator penalizes local

patches only for the high-frequency structure [22].

Temporal GAN loss. The above losses are for the image

quality only, while we need a temporal constraint to generate

content coherent videos. To solve this problem, we design

a temporal discriminator to train our model. A similar idea

could be seen in a recent fluid flow super-resolution work

[41], which propose the TempoGAN to generate temporally

coherent high-resolution fluid flow video utilizing flow mo-

tion in low-resolution one. While for video inpainting there

is no low-resolution reference, our temporal discriminator

estimates the consistency score by the differences of consec-

utive frames in the feature level. It takes the features from

output frames and the foreground masks as inputs, calculates

siamese features [9] differences, further extract features and

estimate the final consistent score (see Fig. 4b1). With the

proposed temporal discriminator Dt, the temporal GAN loss

is defined as:

LGANt
(G,Dt) = Et[log(Dt(Bt))]

+ Et[log(1−Dt(G(St)))]
(4)

Overall loss. The overall loss function to train our VOR-

Net is defined as:

L = λl1 × Ll1 + λperc × Lφ,j
perc

+ λGs
× LGs

+ λGt
× LGt

(5)

where λl1 , λperc, λGs
and λGt

are the weights for reconstruc-

tion loss, perceptual loss, spatial GAN loss and temporal

GAN loss, respectively.

4. Experimental Results

4.1. Dataset

We build our Synthesized Videos for Object Removal

(SVOR) dataset based on the YouTube-VOS dataset [43],
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which is a large-scale dataset for video segmentation in-

cluding a huge variety of moving objects, camera view and

motion types. The YouTube-VOS dataset consists of 4,453

videos and 7,822 unique objects including humans with di-

verse activities, animals, vehicles, accessories and some

common objects. Each video is about 3 to 5 seconds, and

up to five human annotated object segmentation masks are

given every five frames in a 30 FPS frame rate.

Since it is not likely to get the real ground truth for the

video object removal task , we utilize segmentation in the

YouTube-VOS training set to synthesize training video-with-

target/video-without-target pairs. After manually filter out

videos where the annotated object is only partially in the

screen, occupied more than one-half of the screen or smaller

than 30× 30 pixels, 1,958 videos are used to synthesize our

input videos.

We split these videos into 1,858 training and 100 testing

videos, and create 1,858 and 100 pairs among them (there

could be significantly more pairs if existing duplicated fore-

ground/background videos). Each synthesized video pair

is composed of one foreground video and one background

video from the YouTube-VOS dataset. We take the first

object segmentation mask in the foreground video as the

target objects and paste it to the background video. Conse-

quently, it becomes the input synthesized video-with-target,

and the background video is viewed as the ground truth

video-without-target.

In the SVOR dataset, the foreground object may be static

or moving, and its size could vary in a single video. Also, the

background may be shaky, following an object or changing

the brightness. Some background objects could also be

originally in the foreground region or moving toward the

region, so the SVOR dataset is very diverse and challenging.

4.2. Implementation Details

Our model is implemented with Pytorch 0.4.1 and trained

on our SVOR dataset in 320 × 180, at most 15 frames for

each video. Warping temporal distance ks are set to be {1,

3, 5}. The relu33 layer is used for the VGG loss. γ for Ll1

is set to be 0.99. The patch size for PatchGAN is 15 × 15.

Loss weights λl1 , λperc and λGs
are set to be 1. λGt

is 0.01.

Other details could be found in the supplementary material.

4.3. Quantitative and Qualitative Comparisons

We compare the proposed method with the well-known

patch-based video inpainting methods [32, 17] with patch

size 3× 3× 3, the state-of-the-art image-based inpainting

model [50] pre-trained on the Places2 dataset and fine-tuned

on our SVOR dataset and the two-stage learning based video

inpainting model [36]. In general, our VORNet performs

better than the four benchmarks quantitatively and qualita-

tively.

We report the evaluation in terms of mean square er-

ror (MSE) and structural similarity (SSIM) [37], which are

commonly used in inpainting tasks [29, 44, 50]. However,

these traditional evaluation metrics may not represent the

perceptual distance well (i.e., they prefer blurry images than

partially shifted, distorted images). As a result, we also use

the recently proposed Learned Perceptual Image Patch Simi-

larity (LPIPS) [51] to estimate perceptual distance. LPIPS

calibrates features of ImageNet classification networks and

corresponds more to human perception. We take the model

calibrated on the AlextNet [24] as suggested [51]. The quan-
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Figure 5: Visual results compared with (b) state-of-the-art patch-based video inpainting by Huang et al. [17] and (c) state-of-

the-art image-based inpainting by Yu et al. [50]. Video 1: the first frame is spatially consistent for all methods. However, for

(b) and (c), the bird lose its eye, while ours keeps it intact by the warping network. Video 2: the man’s shoulder is filled with

grass for the patch-based method (b) as it could not tell the surroundings. For image-based method (c), we can see that the

second and third frame is very different, while our results remain temporally consistent. Best viewed in color and zoom-in.



titative result of 100 synthesized video in the testing set

could be seen in Table. 1. We could see that our model

outperforms the four benchmarks.

Since the quantitative result of frames may not represent

the temporal consistency, we also evaluate qualitatively on

100 testing videos. The visual comparison could be seen

in Fig. 5. Our results remain spatio-temporally stable as

surroundings change, while results of other methods become

distorted or inconsistent. More visual comparisons with

all baselines [32, 17, 50, 36] could be found in https://

bit.ly/2I7WbID (synthesized), https://bit.ly/

2GdnbUX (real) and the supplementary material.

4.4. Ablation Study

To evaluate the contribution of each component in the

proposed model, we conduct ablation study on main compo-

nents including the warping network, VGG loss, spatial dis-

criminator and temporal discriminator. The result is shown

in Table. 2. We could see that the warping network play

an important role in our VORNet, while each loss has some

effects on the result. Specifically, if VGG loss is removed,

the model would generate sharp images disregarding the

surrounding content; if the spatial GAN loss is removed,

there would be some unnatural repetitive patterns that could

reduce MSE; if the temporal GAN loss is removed, the result

would be slightly temporally inconsistent. Corresponding

visual comparisons could be found in the supplementary

material.

4.5. Execution Time

The execution time is evaluated on a machine with a

Intel Xeon E5-2650 v3 CPU (128G RAM) and two Nvidia

Tesla K80 GPUs. The speed of VORNet is 2.5 frame per

second (FPS), slower than the Yu et al. [50] (11 FPS) due to

FlowNet2 [21, 34] full-model optical flow estimation (ours

is 7 FPS with FlowNet2-S [21, 34]), while faster than the

video inpainting method [32] (0.15 FPS) with patch size

3× 3× 3 since it runs on the CPU. Note that our VORNet

does not require post-processing and can run online, without

peeking the future frames.

4.6. Limitations and Discussion

Our model relies on the optical flow to get information

from the previous frames, which results in extra execution

time and parameters. In addition, the state-of-the-art net-

works for optical flow inference still could not capture object

motions in detail and there is unavoidable occlusion problem,

which make the warped frames blurry. A possible solution

is to design a temporal attention and warping network that

could replace the optical flow warping. The model could be

trained in an end-to-end way and the performance may be im-

proved. Still, the proposed method is the first learning-based

Method MSE ↓ SSIM ↑ LPIPS ↓
Huang et al. [17] 0.01665 0.6967 0.2385

Newson et al. [32] 0.02152 0.6577 0.2409

Yu et al. [50] 0.02009 0.6896 0.2249

Wang et al. [36] 0.01566 0.6749 0.3915

VORNet (Ours) 0.01560 0.7260 0.1889

Table 1: Quantitative results of the proposed network, state-

of-the-art patch-based video inpainting [17, 32], image in-

painting [50] and learning-based video inpainting [36] meth-

ods. We could use original background videos as ground

truth to calculates these metrics since we evaluate on our

synthesized dataset.

Warping

network

VGG

loss

Spat.

Disc.

Temp.

Disc.
MSE ↓ LPIPS↓

X X X 0.01807 0.2576

X X X 0.01846 0.2460

X X X 0.01314 0.2291

X X X 0.01669 0.2039

X X X X 0.01560 0.1889

Table 2: Ablation study of the components including warp-

ing network, VGG loss, spatial discriminator and temporal

discriminator. MSE and LPIPS [51] distance with the ground

truth is calculated for the 100 testing pairs.

architecture for the video object removal task and produces

state-of-the art results.

5. Conclusion

In this work, we propose a novel Video Object Removal

Network (VORNet) for the video object removal task, uti-

lizing existing image-based inpainting model and enhance

the spatial and temporal consistency. To our knowledge, our

VORNet is the first to introduce learning-based method to the

video object removal task. We design spatial and temporal

GAN losses and train the proposed model on our Synthe-

sized Video Object Removal Dataset (SVOR) based on the

YouTube-VOS video segmentation dataset. Our model is

learning based, runs online, faster than patch-based video in-

painting method and does not require post-processing. Eval-

uation on perceptual distance, visual result and user studies

show that our model achieves state-of-the-art results com-

pared to existing methods.
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