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Abstract

We propose ViDeNN: a CNN for Video Denoising with-

out prior knowledge on the noise distribution (blind denois-

ing). The CNN architecture uses a combination of spa-

tial and temporal filtering, learning to spatially denoise

the frames first and at the same time how to combine their

temporal information, handling objects motion, brightness

changes, low-light conditions and temporal inconsistencies.

We demonstrate the importance of the data used for CNNs

training, creating for this purpose a specific dataset for low-

light conditions. We test ViDeNN on common benchmarks

and on self-collected data, achieving good results compa-

rable with the state-of-the-art.

1. Introduction

Image and video denoising aims to obtain the original

signal X from available noisy observations Y . Noise influ-

ences the perceived visual quality, but also segmentation [1]

and compression [2] making denoising an important step.

With X as the original signal, N as the noise and Y as the

available noisy observation, the noise degradation model

can be described as Y = X + N , for an additive type of

noise. In low-light conditions, noise is signal dependent and

more sensitive in dark regions, modeled as Y = H(X)+N ,

with H as the degradation function.

Imaging noise is due to thermal effects, sensor imperfec-

tions or low-light. Hand tuning multiple filter parameters

is fundamental to optimize quality and bandwidth of new

cameras for each gain level, taking much time and effort.

Here, we automate the denoising procedure with a CNN

for flexible and efficient video denoising, capable to blindly

remove noise. Having a noise removal algorithm working

in “blind” conditions is essential in a real-world scenario

where color and light conditions can change suddenly, pro-

ducing a different noise distribution for each frame.

Solutions based on statistical models include Markov

Random Field models [3], gradient models [4], sparse mod-

els [5] and Nonlocal Self-Similarity (NSS) currently used

Figure 1: ViDeNN approach to Video Denoising: combin-

ing two networks performing first Single Frame Spatial De-

noising and subsequently Temporal Denoising over a win-

dow of three frames, all in a single feed-forward process.

in state-of-the-art techniques such as BM3D [6], LSSC [7],

NCSR [8] and WNNM [9]. Even though they achieve re-

spectable denoising performance, most of those algorithms

have some drawbacks. Firstly, they are generally designed

to tackle specific noise models and levels, limiting their

usage in blind denoising. Secondly, they involve time-

consuming hand-tuned optimization procedures.

Much work has been done on image denoising while few

algorithms have been specifically designed for videos. The

key assumption for video denoising is that video frames are

strongly correlated. The most basic video denoising tech-

nique consists of the temporal average over various sub-

sequent frames. While giving excellent results for steady

scenes, it blurs motion, causing artifacts. The VBM4D

method [10] is the state-of-the-art in video denoising. It

extends BM3D [6] single image denoising by the search of

similar patches, not only in spatial but also in temporal do-

main. Searching for similar patches in more frames drasti-

cally increases the processing time.

In this paper we propose ViDeNN, illustrated in Fig 1:

a convolutional neural network for blind video denoising,

capable to denoise videos without prior knowledge over the

noise model and the video content. For comparison, ex-

periments have been run on publicly available and on self

captured videos. The videos, the low-light dataset and the

code will be published on the project’s GitHub page.
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The main contributions of our work are: (i) a novel CNN ar-

chitecture capable to blind denoise videos, combining spa-

tial and temporal information of multiple frames with one

single feed-forward process; (ii) Flexibility tests on Addi-

tive White Gaussian Noise and real data in low-light con-

dition; (iii) Robustness to motion in challenging situations;

(iv) A new low-light dataset for a specific Bosch security

camera, with sample pairs of noise-free and noisy images.

2. Related Work

CNNs for Image Denoising. From the 2008 CNN image

denoising work of Jain and Seung [11] there have been huge

improvements thanks to more computational power and

high quality datasets. In 2012, Burger et al. [12] showed

how even a simple Multi Layer Perceptron can obtain com-

parable results with BM3D [6], even though a huge dataset

was required for training [13]. Recently, in 2016, Zhang et

al. [14] used residual learning and Batch Normalization [15]

for image denoising in their DnCNN architecture. With its

simple yet effective architecture, it has shown to be flexible

for tasks as blind Gaussian denoising, JPEG deblocking and

image inpainting. FFDNet [16] extends DnCNN by han-

dling an extended range of noise levels and has the ability to

remove spatially variant noise. Ulyanov et al. [17] showed

how, with their Deep Prior, they can enhance a given im-

age with no prior training data other than the image itself,

which can be seen as a ”blind” denoising. There have been

also some works on CNNs directly inspired by BM3D such

as [18, 19]. In [20], Ying et al. propose a deep persistent

memory network called MemNet that obtains valid results,

introducing a memory block, motivated by the fact that hu-

man thoughts are persistent. However, the network struc-

ture remains complex and not easily reproducible. A U-

Net variant has been successfully used for image denois-

ing in the work of Xiao-Jiao et al. [21] and in the most

recent work on image denoising of Guo et al. [22] called

CBDNet. With their novel approach, CBDNet reaches ex-

traordinarily results in real world blind image denoising.

The recently proposed Noise2Noise [23] model is based on

an encoder-decoder structure, obtains almost the same re-

sult using only noisy images for training, instead of clean-

noisy pairs, which is particularly useful for cases where the

ground truth is not available.

Video and Deep Neural Networks. Video denoising

using deep learning is still an under-explored research area.

The seminal work of Xinyuan et al. [24], is currently the

only one using neural networks (Recurrent Neural Net-

works) to address video denoising. We differ by address-

ing color video denoising, and offer comparable results to

the state-of-art. Other video-based tasks addressed using

CNNs include Video Frame Enhancement, Interpolation,

Deblurring and Super-Resolution, where the key compo-

nent is how to handle motion and temporal changes. For

frame interpolation, Niklaus et al. [25] use a pre-computed

optical flow to feed motion information to a frame inter-

polation CNN. Meyer et al. [26] use instead phase based

features to describe motion. Caballero et al. [27] developed

a network which estimate the motion by itself for video su-

per resolution. Similarly, in Multi Frame Quality Enhance-

ment (MFQE), Yang et al. [28] use a Motion Compensation

Network and a Quality Enhancement Network, considering

three non-consecutive frames for H265 compressed videos.

Specifically for video deblurring, Su et al. [29] developed a

network called DeBlurNet: a U-Net CNN which takes three

frames stacked together as input. Similarly, we also use

three stacked frames in our ViDeNN. Additionally, we have

also investigated variations in the number of input frames.

Real World Datasets. An image or video denoising al-

gorithm, has to be effective on real world data to be success-

ful. However, it is hard to obtain the ground truth for real

pictures, since perfect sensors and channels do not exist. In

2014, Anaya and Barbu, created a dataset for low-light con-

ditions called RENOIR [30]: they use different exposure

times and ISO levels to get noisy and clean images of the

same static scene. Similarly, in 2017, Plotz and Roth cre-

ated a dataset called DND [31]. In this case, only the noisy

samples have been released, whereas the noise free ones are

kept undisclosed for benchmarking purposes. Recently, two

other related papers have been published. The first, written

by Abdelhamed et al. [32] concerns the creation of a smart-

phone image dataset of noisy and clean images, which at

the time of writing is not yet publicly available. The sec-

ond, written by Chen et al. [33], presents a new CNN based

algorithm capable to enhance the quality of low-light raw

images. They created a dedicated dataset of two camera

types similarly to [30].

3. ViDeNN: Video DeNoising Net

ViDeNN has two subnetworks: Spatial and temporal de-

noising CNN, as illustrated in Fig 2.

3.1. Spatial Denoising CNN

For spatial denoising we build on [14], which showed

great flexibility tackling multiple degradation types at the

same time, and experimented with the same architecture

for blind spatial denoising. It is shown, that this architec-

ture can achieve state-of-art results for Gaussian denoising.

A first layer of depth 128 helps when the network has to

handle different noise models at the same time. The net-

work depth is set to 20 and Batch Normalization (BN) [15]

is used. The activation function is ReLU (Rectified Lin-

ear Unit). We also investigated the use of Leaky ReLU as

activation function, which can be more effective [34], with-

out improvement over ReLU. Comparison results are pro-

vided in the supplementary material. Our Spatial-CNN uses

Residual Learning, which has been firstly introduced in [14]



Figure 2: The architecture of the proposed ViDeNN net-

work. Every frame will go through a spatial denoising

CNN. The temporal CNN takes as input three spatially de-

noised frames and outputs the final estimate of the central

frame. Both CNNs estimate first the noise residual, i.e. the

unwanted values noise adds to an image, and then subtracts

them from the noisy input (⊕ means addition of the two

signals, and ”-” the negation). ViDeNN is composed only

by Convolutional Layers. The number of feature maps is

written at the bottom of each layer.

to tackle image denoising. Instead of forcing the network to

output directly the denoised frame, the residual architecture

predicts the residual image, which consist in the difference

between the original clean image and the noisy observation.

The loss function L is the L2-norm, also known as least

squares error (LSE) and is the sum of the square of the dif-

ferences S between the target value Y and the estimated val-

ues Yest. In this case the difference S represents the noise

residual image estimated by the Spatial-CNN, and is given

by L =
∑

x

∑

y

(

Y (x, y)− Yest(x, y)
︸ ︷︷ ︸

Noise Residual

)2

.

3.1.1 A Realistic Noise Model

The denoising performance of a spatial denoising CNN de-

pends greatly on the training data. Real noise distribution

differs from Gaussian, since it is not purely additive but

it contains a signal dependent part. For this reason, CNN

models trained only on Additive White Gaussian Noise

(AWGN) fail to denoise real world images [22]. Our goal

is to achieve a good balance between performance and flex-

ibility, training a single network for multiple noise models.

As shown in Table 1, our Spatial-CNN can handle blind

Gaussian denoising: we will further investigate its gener-

alization capabilities, introducing a signal dependent noise

model. This specific noise model, in equation 1, is com-

posed by two main contributions, the Photon Shot Noise

(PSN) and the Read Noise. The PSN is the main noise

source in low-light condition, where Nsat accounts the satu-

ration number of electrons. The Read Noise is mainly due to

(a)

Noisy frame

(18.54/0.5225)

(b)

CBM3D[35]

(29.26/0.9194)

(c)

DnCNNB[14]

(28.72/0.9355)

(d)

Our result

(30.37/0.9361)

Figure 3: Comparison of spatial denoising of an image

from the CBSD68 dataset corrupted with 1, with Ag=64

and Dg=4. AWGN based method as CBM3D and DnCNN

does not achieve optimal result. The first blurs excessively

the image. Using the proper noise model for training leads

to a better result. (PSNR [dB]/SSIM)

the quantization process in the Analog to Digital Converter

(ADC), used to transform the analog light signal into a dig-

ital image. CT1n represents the normalized value of the

noise contribution due to the Analog Gain, whereas CT2n
represents the additive normalized part. The realistic noise

model is

M =

√
√
√
√
√

Ag ∗Dg

Nsat ∗ s
︸ ︷︷ ︸

PSN

+Dg2 ∗ (Ag ∗ CT1n + CT2n)
2

︸ ︷︷ ︸

Read Noise

, (1)

Noisy Image = s+N (0, 1) ∗M(s), (2)

where the relevant terms for the considered Sony sensor are:

Ag (Analog Gain), in range [0,64], Dg (Digital Gain), in

range [0,32] and s, the image that will be degraded. The

remaining values are CT1n=1.25−4, CT2n=1.11−4 and

Nsat=7489. The noisy image is generated by multiplying

observations of a normal distribution N (0, 1) with the same

shape of the reference image s, with the Noise Model M in

equation 2. In Figure 3 we illustrate that AWGN-based al-

gorithms such as CBM3D and DnCNN do not generalize

to realistic noise. CBM3D, in its blind version, i.e. with

the supposed AWGN standard deviation σ set to 50, over-

smooths the image, getting a low SSIM (Structural Similar-

ity, the higher the better) score, whereas DnCNN preserves

more structure. Our result shows that, to better denoise real

world images, a realistic noise model has to be used for the

training set.

3.2. Temp3­CNN: Temporal Denoising CNN

The temporal denoising part of ViDeNN is similar in

structure to the spatial one, having the same number of lay-

ers and feature maps. However, it stacks frames together as

input. Following other work [27, 28, 29] we stack 3 frames,

which is efficient, while our preliminary results show no

improvements for stacking more than 3 frames. Consider-



(a) Low-light Noisy

Image

(b) Reference Ground

Truth

Figure 4: Sample detail of noisy-clean image pairs of our

own low-light dataset, collected with a Bosch Autodome IP

5000 IR security camera. The ground truth is obtained aver-

aging 200 raw images collected in the same light conditions.

ing a frame with dimensions w×h×c, the new input will

have dimension of w×h×3c. Similar to the Spatial-CNN,

the temporal denoising also uses residual learning and will

estimate the noise residual image of the central input frame,

combining the information of other frames allowing it to

learn temporal inconsistencies.

4. Experiments

In this section we present the dataset creation and the

training/validation, performing insightful experiments.

4.1. Low­Light Dataset Creation

An image denoising dataset has pairs of clean and noisy

images. For realistic low-light conditions, creating pairs

of noisy and clean images is challenging and the publicly

available data is scarce. We used Renoir [30] and our self-

collected dataset. Renoir [30] proposes to use two differ-

ent ISO values and exposure times to get reference and dis-

torted images, demanding many camera settings and param-

eters. We use a simpler process: grabbing many noisy im-

ages of a static scene and then simply averaging to get an

estimated ground truth. We used a Bosch Autodome IP

5000 IR, a security camera capable to record raw images,

i.e. without any type of processing. The setting involved

a static scene and a light source with color temperature

3460K, which has variable intensity between 0 and 255.

We varied the light intensity in 12 steps, from the lowest

acceptable light condition of value 46, below of which the

camera showed noise only, up to the maximum with value

255. For every different light intensity, we recorded 200 raw

images in a row. Additionally, we recorded six test video

sequences with the stop-motion technique in different light

conditions, consisting in three or four frames with moving

objects or light changes: for each frame we recorded 200

images, which results in a total of 4200 images.

4.2. Spatial CNN Training

The training is divided in two parts: (i) we train the spa-

tial denoising CNN and (2) after convergence, we train the

temporal denoising CNN.

σ = 5 σ = 10 σ = 15 σ = 25 σ = 35 σ = 50

Spatial-CNN* 39.73 35.92 33.66 30.99 29.34 27.63

DnCNN-B* [14] 39.79 35.87 33.57 30.69 28.74 26.53

DnCNN-B [14] 40.62 36.14 33.88 31.22 29.57 27.91

Table 1: Comparison of blind Gaussian denoising on the
CBSD68 dataset. Our modified version of DnCNN for
spatial denoising has comparable results with the original
one. The values represent PSNR[dB], the higher the better.
DnCNN results obtained with the provided Matlab imple-
mentation [38]. CBSD68 available here [39].
*Noisy images clipped in range [0,255].

Our ideal model has to tackle multiple degradation types

at the same time, such as AWGN and real noise model 2

including low-light conditions. During the training phase,

our neural network will learn how to estimate the residual

noise content of the input noisy image, using the clean one

as reference. Therefore, we require couples of clean and

noisy images. which are easily created for AWGN and the

real noise model in equation 2.

We use the Waterloo Exploration Dataset [36], contain-

ing 4,744 clean images. The amount of available images

helps greatly to generalize and allows us to keep a good

part of it for testing. The dataset is randomly divided in

two parts, 70% for training and 30% for testing. Half of the

images are being added with AWGN with σ=[0,55]. The

second half are processed with equation 2 which is the real-

istic noise model, with Analog Gain Ag=[0,64] and Digital

Gain Dg=[0,32].

Following [14], the network is trained with 50× 50× 3
patches. We obtained 120,000 patches from the Waterloo

training set, containing AWGN and real noise type, using

data augmentation such as rotating, flipping and mirroring.

For low-light conditions, we used five noisy images for each

light level from our own training dataset, obtaining 60 pairs

of noisy-clean images for training. The patches extracted

are 80,000. From the Renoir dataset, we used the subset

T3 and randomly cropped 40,000 patches. For low-light

testing, we will use 5 images from our camera of a different

scene, not present in the training set, and part of the Renoir

T3 set. We trained for 100 epochs, using a batch of 128 and

Adam Optimizer [37] with a learning rate of 10−3 for the

first 20 epochs and 10−4 for the latest 80.

4.3. Validation of static Image Denoising

We compared blind Gaussian denoising with the original

implementation of DnCNN, on which ours is based. From

our test in Table 1 on the BSD68 test set, we notice how the

result of our blind model and the one proposed by the paper

[14] are comparable.

To further validate on real-world images, we evaluate the

sRGB DND dataset [31] and submitted for evaluation. The



PSNR [dB] SSIM

Spatial-CNN 37.0343 0.9324

CBDNet [22] 38.0564 0.9421

DnCNN+ [14] 37.9018 0.943

FFDNet+ [16] 37.6107 0.9415

BM3D [35] 34.51 0.8507

Table 2: Results of the DND benchmark [31] on real-world

noisy images. It shows that our dataset, containing differ-

ent noise models, is valid for real-world image denoising,

placing our Spatial-CNN in the top 10 for sRGB denoising.

result [40] are encouraging, since our trained model (called

128-DnCNN Tensorflow on the DND webpage) scored an

average of 37.0343dB for the PSNR and 0.9324 for the

SSIM, placing it in the first 10 positions. Interestingly, the

authors of DnCNN submitted their result of a fine-tuned

model, called DnCNN+, a week later, achieving the overall

highest score for SSIM, which further validates its flexibil-

ity, see Table 2.

4.4. Temp3­CNN: Temporal CNN Training

For video evaluation we need pairs of clean and noisy

videos. For artificially added noise as Additive White Gaus-

sian Noise (AWGN) or the real noise model in equation 2,

is easy to create such couples. However, for real-world and

low-light conditions videos it is almost impossible. For this

reason, this kind of video dataset, offering pairs of noisy

and noise-free sequences, are not available. Therefore, we

decided to proceed according to this sequence:

1. Select 31 publicly available videos from [41].

2. Divide videos in sequences of 3 frames.

3. Added either Gaussian noise with σ=[0,55] or real

noise 2 with Ag=[0,64] and Dg=[0,32].

4. Apply Spatial-CNN

5. Train on pairs of spatially-denoised and clean video.

We followed the same training procedure as the Spatial-

CNN, even though now the network will be trained with

patches of dimension 50× 50× 9, containing three patches

coming from three subsequent frames.

The 31 selected videos contain 8922 frames, which means

2974 sequences of three frames and a final number of

patches of 300032. We ran the training for 60 epochs with

a batch size of 128, Adam optimizer with learning rate of

10−4 and LeakyReLU as activation function. It is shown

LeakyReLU can outperform ReLU [34]. However, we did

not use Leaky Relu in the spatial CNN, because ReLU per-

formed better. We present the comparison result in the sup-

plementary material. In the final version of Temp3-CNN,

Figure 5: Evolution of the L2-Loss during the training of the

Temporal-CNN. Batch Normalization (BN) does not help,

adding a computation overhead without any improvement.

With Leaky ReLU as activation function and with no BN,

the loss starts immediately around 1 and decreases to 0.5
after 60 epochs. Denoising without BN takes around 5%
less time. First 1800 steps visualized.

Batch Normalization (BN) was not used: experiments show

it slows down the training and denoising process. BN did

not improve the final result in terms of PSNR. Moreover, de-

noising without BN requires around 5% less time. Figure 5

represents the evolution of the L2-loss for the Temp3-CNN:

avoiding the normalization step makes the loss starting im-

mediately at a low value. We trained also with Leaky ReLU,

Leaky ReLU+BN and ReLU+BN and present the results in

the supplementary material.

4.5. Exp 1: The Video Denoising CNN Architecture

The final proposed version of ViDeNN consists in two

CNNs in a pipeline, performing first spatial and then tem-

poral denoising. To get the final architecture, we trained Vi-

DeNN with different structures and tested it on two famous

benchmarking videos and on one we personally recorded

with a Blackmagic Design URSA Mini 4.6K, capable to

record raw videos. The videos have various levels of Ad-

ditive White Gaussian Noise (AWGN). We will answer to

three critical questions.

Q1: Is Temp3-CNN able to learn both temporal and

spatial denoising?

We compare the Spatial-CNN with the Temp3-CNN,

which in this case tries to perform spatial and temporal de-

noising at the same time.

Answer: No, Temp3 is not enough. Referring to Table 3,

we notice how using Temp3-CNN alone leads to a worse

result compared to the simpler Spatial-CNN.

Q2: Ordering of spatial and temporal denoising?

Knowing that using Temp3-CNN alone is not enough, we

now have to compare different combination of spatial and

temporal denoising.

Answer: looking at Table 4, we can confirm that using tem-

poral denoising improves the result over spatial denoising,

with the best performing combination as Spatial-CNN fol-

lowed by Temp3-CNN.



Foreman Tennis Strijp-S *

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73

Temp3-CNN 31.56 27.45 29.32 25.63 31.13

Table 3: Comparison of Spatial-CNN and Temp3-CNN
over videos with different levels of AWGN. The Temp3-
CNN alone can not outperform the Spatial-CNN. Results
expressed in terms of PSNR[dB]. *Self-recorded Raw video

converted to RGB.

Foreman Tennis Strijp-S

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73

Temp3-CNN &

Spatial-CNN
32.09 28.37 29.21 25.98 32.28

Spatial-CNN &

Temp3-CNN
33.12 29.56 30.36 27.18 34.07

Table 4: The combination of Spatial-CNN + Temp3-CNN

is the best performing, showing consistent improvements of

∼ 1dB over the spatial-only denoising. Results expressed

in terms of PSNR[dB].

Foreman Tennis Strijp-S

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73

Spatial-CNN &

Temp3-CNN
33.12 29.56 30.36 27.18 34.07

Spatial-CNN &

Temp5-CNN
33.03 29.87 30.72 27.70 33.97

Table 5: Comparison of architectures using 3 or 5 frames.

Using a bigger time window, i.e. five frames, may slightly

improve the final result or even worsen it. Hence, we de-

cided to proceed using a 3-frames architecture. Results ex-

pressed in terms of PSNR[dB].

Q3: How many frames to consider? We compare now the

introduced Temp3-CNN with Temp5-CNN, which consid-

ers a time window of 5 frames.

Answer: Results in Table 5 shows that considering more

frames could improve the result, but this is not guaran-

teed. Therefore, since using a bigger time window means

more memory and time needed, we decided to use the three

frames model for a better trade-off. For comparison, us-

ing the Temp5-CNN on the video Foreman took 6.5% more

time than using the Temp3-CNN, 21.17s vs 19.85s on GPU.

The difference does not seem much here, but will enhance

for realistic large videos.

4.6. Exp 2: Sensitivity to Temporal Inconsistency

We investigate temporal consistency with a simple ex-

periment where we remove an object from the first frame

and the last frame where we denoise on the middle frame,

see Figure 6. Specifically, (i) on the video Tennis from

[41], add Gaussian noise with standard deviation σ=40; (ii)

Manually remove the white ball on the first and last frame;

(iii) Denoise the middle frame. In Figure 6 we show the

modified input frames and ViDeNN output. In terms of

PSNR value, we got the same value for both normal and

experimental case: 27.28dB. This is an illustration that the

network does what we expected: it uses part of the sec-

ondary frames and combine them with the reference, but

only where the pixel content is similar enough: the ball is

not removed from frame 10.

(a) Noisy

Frame 9

(b) Noisy

Frame 10

(c) Noisy

Frame 11

(d) Denoised

Frame 10

Figure 6: ViDeNN achieves the same PSNR value of

27.28dB for frame 10 of the video Tennis with AWGN

σ=40, even if we manually cancel the white ball from the

secondary frames. The network understands which part has

to take into consideration and which not, i.e. the ball area.

Visualization of temporal filters To understand what

our model detects, we show in Figure 7 the output of two

of the 128 filters in the first layer of Temp3-CNN. In Figure

7a, we see in black the table-tennis ball of the current frame,

whereas the ones in the previous and subsequent frame are

in white. In Figure 7b instead, we see how this filter high-

lights flat areas with similar colors and shows mostly the

ball of the current frame in white. Therefore, Temp3-CNN

gives different importance to similar and different areas

among the three frames. This is a simple indication on how

the CNN handles motion and temporal inconsistencies.

(a) Filter 90 (b) Filter 59

Figure 7: Visualization of filters 59 and 90 output of Temp3-

CNN first convolutional layer. We used frames number 9,

10 and 11 from the video Tennis as input. Filter 59 high-

lights the reference ball and other areas with similar colors,

whereas filter 90 seems to highlight mostly contours and the

ball at the reference position in frame 10.



Tennis Old Town Cross Park Run Stefan

Res./Frames 240×352 / 150 720×1280 / 500 720×1280 / 504 656×1164 / 300

σ 5 25 40 15 25 40 15 25 40 15 25 55

ViDeNN 35.51 29.97 28.00 32.15 30.91 29.41 31.04 28.44 25.97 32.06 29.23 24.63

ViDeNN-G 37.81 30.36 28.44 32.39 31.29 29.97 31.25 28.72 26.36 32.37 29.59 25.06

VBM4D [10] 34.64 29.72 27.49 32.40 31.21 29.57 29.99 27.90 25.84 29.90 27.87 23.83

CBM3D [35] 27.04 26.37 25.62 28.19 27.95 27.35 24.75 24.46 23.71 26.19 25.89 24.18

DnCNN [14] 35.49 27.47 25.43 31.47 30.10 28.35 30.66 27.87 25.20 32.20 29.29 24.51

Table 6: Comparison of ViDeNN with a video denoising algorithm, VBM4D [10], and two image denoising algorithms,

DnCNN [14] and CBM3D [35]. ViDeNN-G is the model trained specifically for blind Gaussian denoising. Test videos have

different length, size and level of Additive White Gaussian Noise. ViDeNN performs better than blind denoising algorithms

CBM3D, DnCNN and VBM4D, which has been used with the low complexity setup due to our memory limitations. Best

results are highlighted in bold. Original videos are publicly available here [41]. Results expressed in terms of PSNR[dB].

(a) Noisy frame

148

(b) Noisy frame

149

(c) Noisy frame

150

(d) CBM3D[6]

(25.60/0.9482)

(e) VBM4D[10]

(24.51/0.9292)

(f) ViDeNN-G

(27.19/0.9605)

Figure 8: Blind video denoising comparison on Tennis [41] corrupted with AWGN σ=40 and values clipped between [0,255].

We show the result of two competitors, VBM4D and CBM3D, which scored respectively second and third (see Table 6) on

this test video. ViDeNN performs well in challenging situations, even if the previous frame is completely different 8a, thanks

to the temporal inconsistency detection. VBM4D suffers from the change of view, creating artifacts. Results in brackets are

referred to the single frame 149 (PSNR [dB]/SSIM).

4.7. Exp 3: Evaluating Gaussian Video Denoising

Currently, most of the video and image denoising al-

gorithms have been developed to tackle Additive White

Gaussian Noise (AWGN). We will compare ViDeNN with

the state-of-art algorithm for Gaussian video denoising

VBM4D [10] and additionally with CBM3D [35] and

DnCNN [14] for single frame denoising. We used the al-

gorithms in their blind version: for VBM4D we activated

the noise estimation, for CBM3D we set the sigma level

to 50 and for DnCNN we use the blind model provided by

the authors. We compare two versions of ViDeNN, where

ViDeNN-G is the model trained specifically for AWGN de-

noising and ViDeNN is the final model tackling multiple

noise models, including low-light conditions. The videos

have been stored as uncompressed png frames, added with

AWGN and saved again in loss-less png format. From the

results in Table 6 we notice that VBM4D achieves supe-

rior results compared to its spatial counterpart CBM3D,

which is probably due to the effectiveness of the noise es-

timator implemented in VBM4D. CBM3D suffers from the

wrong noise std. deviation (σ) level for low noise intensi-

ties, whereas for high levels achieves comparable results.

Overall, our implemented ViDeNN in its Gaussian specific

version performs better than the general blind model, even

though the difference is limited. ViDeNN-G scores the best

results, as highlighted in bold in Table 6, confirming our

blind video denoising network as a valid approach, which

achieves state-of-art results.

4.8. Exp 4: Evaluating Low­Light Video Denoising

Along with the low-light dataset creation, we also

recorded six sequences of three or four frames each:

• Two sequences of the same scene, with a moving toy

train, in two different light intensities.

• A sequence of an artificial mountain landscape with

increasing light intensity.

• Three sequences of the same scene, with a rotating

toy windmill and a moving toy truck, in three differ-

ent light conditions.

Those sequences are not part of the training set and have

been recorded separately, with the same Bosch Autodome

IP 5000 IR camera. In Table 7 we present the results of

ViDeNN highlighted in bold, in comparison with other

state-of-art denoising algorithms on the low-light test set.

We compare our method with VBM4D [10], CBM3D [35],

DnCNN [14] and CBDNet [22]. ViDeNN outperforms the

competitors, especially for the lowest light intensities. Sur-

prisingly, the single frame denoiser CBM3D performs bet-

ter than the video version VBM4D: the difference may be



Train Mountains Windmill

Res./Frames 212×1091 / 4 1080×1920 / 4 1080×1920 / 3

Light 50/255 55/255 [55,75]/255 44.6 lux 118 lux 212 lux

ViDeNN 34.05 36.96 40.84 32.96 35.42 36.69

VBM4D[10] 29.10 33.48 37.34 26.62 30.69 32.92

CBDNet[22] 30.89 34.56 39.91 29.56 34.31 36.22

CBM3D[35] 31.27 34.06 40.20 29.81 34.06 35.74

DnCNN[14] 24.33 29.87 32.39 21.73 25.55 27.87

Table 7: Comparison of state-of-art denoising algorithms over six low-light sequences recorded with a Bosch Autodome IP

5000 IR in raw mode, without any type of filtering activated. Every sequence is composed of 4 or 3 frames, with ground

truths obtained averaging over 200 images. The Windmill sequences has been recorded with a different light source, where

we were able to measure the light intensity. Highlighted in bold our ViDeNN results, which performs well. Results expressed

in terms of PSNR[dB].

(a) Noisy frame 2

(22.54/0.4402)

(b) DnCNN [14]

(24.30/0.5323)

(c) VBM4D [10]

(29.08/0.7684)

(d) CBDNet [22]

(30.75/0.8710)

(e) CBM3D[35]

(31.11/0.8982)

(f) ViDeNN

(34.14/0.9158)

Figure 9: Detailed comparison of denoising algorithms on the low-light video Train with light intensity at 50/255. Our

ViDeNN shows good performance in this light condition, preserving edges and correctly smoothing flat areas. Results

referred to frame 2, expressed in terms of (PSNR [dB]/SSIM).

because CBM3D in its blind version uses σ = 50, whereas

VBM4D has a built-in noise level estimator, which may per-

form worse with a completely different noise model from

the supposed Gaussian one.

5. Discussion

In this paper, we presented a novel CNN architecture for

Blind Video Denoising called ViDeNN. We use spatial and

temporal information in a feed-forward process, combin-

ing three consecutive frames to get a clean version of the

middle frame. We perform temporal denoising in simple

yet efficient manner, where our Temp3-CNN learns how

to handle objects motion, brightness changes, and tempo-

ral inconsistencies. We do not address camera motion in

videos, since the model was designed to reduce the band-

width usage of static security cameras keeping the network

as simple and efficient as possible. We define our model as

Blind, since it can tackle different noise models at the same

time, without any prior knowledge nor analysis of the input

signal. We created a dataset containing multiple noise mod-

els, showing how the right mix of training data can improve

image denoising on real world data, such as on the DND

Benchmarking Dataset [31]. We achieve state-of-art results

in blind Gaussian video denoising, comparing our outcome

with the competitors available in the literature. We show

how it is possible, with the proper hardware, to address low-

light video denoising with the use of a CNN, which would

ease the tuning of new sensors and camera models. Col-

lecting the proper training data would be the most time con-

suming part. However, defining an automatic framework

with predefined scenes and light conditions would simplify

the process, allowing to further reduce the needed time and

resources. Our technique for acquiring clean and noisy low-

light image pairs has proven to be effective and simple, re-

quiring no specific exposure tuning.

5.1. Limitations and Future Works

The largest real-world limitations of ViDeNN is the re-

quired computational power. Even with an high-end graphic

card as the Nvidia Titan X, we were able to reach a maxi-

mum speed of only ∼ 3fps on HD videos. However, most of

the current cameras work with Full HD or even UHD (4K)

resolutions with high frame rates. We did not try to imple-

ment ViDeNN on a mobile device supporting Tensorflow

Lite, which converts the model to a lighter version more

suitable for handled devices. This could be new develop-

ment and challenging question to investigate on, since every

week the available hardware in the market improves.
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