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Abstract

Nowadays, due to the ubiquitous visual media there are

vast amounts of already available high-resolution (HR) face

images. Therefore, for super-resolving a given very low-

resolution (LR) face image of a person it is very likely to

find another HR face image of the same person which can be

used to guide the process. In this paper, we propose a con-

volutional neural network (CNN)-based solution, namely

GWAInet, which applies super-resolution (SR) by a factor

8× on face images guided by another unconstrained HR

face image of the same person with possible differences in

age, expression, pose or size. GWAInet is trained in an

adversarial generative manner to produce the desired high

quality perceptual image results. The utilization of the HR

guiding image is realized via the use of a warper subnet-

work that aligns its contents to the input image and the use

of a feature fusion chain for the extracted features from the

warped guiding image and the input image. In training,

the identity loss further helps in preserving the identity re-

lated features by minimizing the distance between the em-

bedding vectors of SR and HR ground truth images. Con-

trary to the current state-of-the-art in face super-resolution,

our method does not require facial landmark points for its

training, which helps its robustness and allows it to produce

fine details also for the surrounding face region in a uniform

manner. Our method GWAInet produces photo-realistic im-

ages in upscaling factor 8× and outperforms state-of-the-

art in quantitative terms and perceptual quality.

1. Introduction

Face image super-resolution or face hallucination aims at

reconstructing details / high-frequencies in low-resolution

(LR) face images. This is an important problem due to the

increasing need for high-resolution (HR) face images for

different applications such as security, surveillance or other

application that involves face recognition.

Due to the increasing interest in visual media and the de-

velopment of the social media, it is very likely that given

a LR face image of a person, we can find another HR face

guiding face input our result ground truth

Figure 1: Exemplar guided face image super-resolution re-

sult (8×) of our proposed GWAInet approach.

image of the same person possibly taken at a different time

in different conditions. This guiding face could be used in

the super-resolution (SR) process to guide the hallucination

of high frequencies/details, which might increase the qual-

ity of the HR result and help to preserve the identity related

features. Fig. 1 shows such a case and our result.

The current state-of-the-art face image super-resolution

approach [27] proposed the use of a guiding image together

with a facial landmark detector, where an additional loss

term is optimized such that the facial landmarks of the

warped guiding image and those of the ground truth im-

age are close to each other. However, this approach seems

to produce fine details for the face region in a non-uniform

and unpredictable manner, resulting in SR images that look

only partially sharp.

Although the recently proposed CNN-based SR solu-

tions [37, 40] provide state-of-the-art quantitative results in

terms of peak signal-to-noise ratio (PSNR) when they opti-

mize for reconstruction losses such as L1 or L2 in image

space, the results are smooth without the fine details re-

quired for a good perceptual quality. This problem is more

visible with the increase of the upscaling factor [22, 5]. On

top of that, the PSNR measure is unable to capture percep-

tually important differences between two images as it relies

on the differences between pixel-level values at the same

position [41, 42, 15]. One way to introduce perceptually

important features into the SR image is to use generative

adversarial networks (GANs) [13, 26, 5]. These networks

help to create realistic SR images that look like HR images,

which are naturally sharper and contain fine details.
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In this paper, we introduce a novel CNN architecture ca-

pable of generating high quality HR face images with an

upscaling factor 8×. During the SR process, the network

utilizes the LR face image and the extra information pro-

vided by another HR face image of the same person while

making the necessary processing through a warping subnet-

work on this guiding HR image. By addressing the possible

differences in contents (e.g. expression, pose, size) between

two images the warper facilitates the extraction and integra-

tion of information from the guiding image. Contrary to the

current state-of-the-art approach [27], our method does not

require facial landmarks during training. This makes the

network to learn and process the whole face region in a uni-

form manner and adds robustness. We add also an identity

loss to further help in preserving the identity related features

by minimizing the distance between the embedding vectors

of HR result and ground truth images. Utilization of the

guiding image expresses itself qualitatively as an improve-

ment in visual content quality by correcting the inaccurate

facial details. Finally, the adversarial loss that is incorpo-

rated via a GAN setting, will introduce fine details to the

SR image and produce face images that are hardly distin-

guishable from real HR face images.

2. Related Work

Convolutional Neural Networks (CNNs) and Image

Super-Resolution (SR). CNNs have emerged as a success-

ful method in many computer vision applications [4, 25,

36]. Deep learning with CNNs has also become very widely

used in image SR [23, 11, 26, 29]. CNNs have outper-

formed previous works [44, 49, 38, 39, 1] both quantita-

tively and qualitatively. These networks, on the other hand,

are mainly used for SR of single or multiple LR images and

do not utilize a guiding HR image for the given LR image.

In our work, we use the network given in [29] as the main

structural element of our subnetworks and specifically work

on face images while utilizing the additional information

provided by another HR face image of the same person.

Spatial Transformer Networks. Spatial transformer

networks are modules that can be incorporated into an ex-

isting network and trained in an end-to-end fashion without

any modification to the learning scheme or the loss function

[21]. They increase the spatial invariance of the network

and provide invariance for large transformations [21]. They

are used to spatially transform input feature maps and con-

sist of a localisation network and a sampler. In our work, we

use the ideas from spatial transformer networks to create a

flow field, which is then used in combination with a bilinear

sampler to warp the guiding image, thus making the guiding

image aligned with the contents of the input image.

Face Hallucination. CNNs have also shown great suc-

cess in the field of face hallucination, where we apply super-

resolution on face images [47, 46, 51, 27, 52, 43, 7, 50, 48].

[47] applies face hallucination on tiny 16 × 16 faces. In

[46, 48], the authors again work on tiny 16 × 16 images

but use spatial transformer networks [21] in their genera-

tor architecture to alleviate the effects of misalignment of

input images. Zhou et al. [51] fuse two channels of in-

formation, namely extracted facial features and the LR in-

put image, in order to overcome problems related with ap-

pearance variations and misalignment. However, they use

resource intensive fully-connected layers in upscaling pro-

cess and follow a simple fusion operation by just summing

the upscaled LR input image via bicubic interpolation with

the HR image created from the facial features. In our ap-

proach, on the other hand, we cope with the effects of ap-

pearance variations through the use of spatial transformer

networks. However, contrary to [46, 48], we introduce the

spatial transformer network as a subnetwork that is only

applied to the input image rather than intermediate feature

maps and contrary to [51], we use resource efficient convo-

lutional layers in upscaling process and follow a complex

feature fusion for the information coming from two chan-

nels. Most importantly, these works do not incorporate the

use of an additional HR image of the same person. In a

very recent work [27], Li et al. use a guiding image and a

warper subnetwork to cope with appearance variations be-

tween the LR input and the HR guiding image. However,

they apply direct concatenation of warped guiding image

and upscaled LR image at the input of the generator, which

is different than our feature extraction and fusion based ap-

proach through the use of secondary feature extractor sub-

network, which is called GFEnet, for the warped guiding

image. They also use landmark loss and total variation loss

for their warping subnetwork in the joint training phase,

whereas we do not incorporate these losses in our overall

objective, thus our network does not require facial land-

marks during training. Another difference is that they use

conditional adversarial networks [20] for generating the ad-

versarial loss, whereas we use a Wasserstein generative ad-

versarial network with gradient penalty (WGAN-GP) [14].

[27] is the only recent paper known to us that uses an ad-

ditional guiding image in face hallucination. As in our ap-

proach, Zhang et al. [50] also use an identity loss in face

hallucination problem, which is calculated between the SR

image and the ground truth image.

Generative Adversarial Networks (GANs). Although

the SR methods using CNN architectures provide state-of-

the-art quantitative results in PSNR terms when optimized

for reconstruction losses such as L1 or L2 in image space,

they produce overly-smooth visuals and lack the ability to

produce images with fine details. The PSNR metric does

not correlate well with the human perception of image qual-

ity [16]. This is due to the fact that the reconstruction loss

is calculated in image space and the optimum solution is

the average of all possible solutions [12, 26, 6]. GANs [13]



Figure 2: Proposed GWAInet and its Warper (Wnet), Generator (Gnet), Critic (Cnet) and Identity Encoder (Inet) subnetworks.

have become successful in creating realistically looking im-

ages thanks to their adversarial loss. As a result of this,

many methods make use of GANs. [12] uses both a loss

in feature space and an adversarial loss, in addition to the

reconstruction loss in image space to generate sharp and

natural looking images. Besides adversarial loss and recon-

struction loss in image space, [31] uses an additional image

gradient difference loss between the input and the output

that sharpens the image prediction to predict future images

from a video sequence. In [47, 46], they use adversarial

loss and pixel loss to super-resolve tiny face images such

that the resulting SR images have high frequency compo-

nents. In [26], they use adversarial loss and feature loss for

VGG-19 [34] network to produce sharp and photo-realistic

SR images. In [27], they also include adversarial loss in

their total loss to improve the output visual quality of face

restoration tasks from degraded observations. In our work,

we use adversarial loss together with the L1 reconstruction

loss in image space. Reconstruction loss drives the net-

works to match the contents of the output SR image with

the contents of the input LR image. The adversarial loss,

on the other hand, tries to ensure that the SR image con-

tains high frequency features that make it photo-realistic.

As a result of this loss combination, we get an SR image

that agrees with the input LR image in terms of facial fea-

ture location and the coarse specifications for these facial

features but also agrees with the specifications imposed by

the distribution of the HR face images. We specifically use

WGAN-GP, which optimizes for a different metric than the

traditional GANs and is found to be more stable and easier

to train [14].

3. Proposed Method

Our proposed GWAInet solution (Guidance, Warper,

Adversarial loss, Identity loss network) produces a SR im-

age ISR from a LR input image ILR and a HR guiding

image IGI . ILR is obtained from a ground truth high-

resolution image IGT by downscaling with bicubic inter-

polation in scale 8×. IGI is another HR face image of the

person, to whom the tuple (ILR, IGT ) belongs to. We also

denote the image that is obtained by warping IGI as IGW .

In the following, we provide detailed information about

our GWAInet method. First, we briefly describe the

WGAN-GP and then we present the network architecture

of our model. Finally, we describe the loss functions used

in guiding the optimization process.

3.1. WGAN­GP [14]

We use a generative adversarial network (GAN) ap-

proach [13] to generate perceptually good and sharp im-

ages. Specifically, we use a Wasserstein GAN with gradient

penalty (WGAN-GP) [14]. With the help of this new ar-

chitecture, we are aiming to make the SR images from our

proposed network GWAInet as indistinguishable as possi-

ble from the HR images in our dataset. This is possible due

to the structure of WGAN-GP and its training objective.

GANs consist of a generator subnetwork G and a dis-

criminator subnetwork D, where the aim of G is to create

samples that are as close as possible to the real data samples

and the aim of the D is to classify these fake samples from

the real ones. If we denote the real data distribution by p(x)
and generated data distribution by q(y), then objective can

be formulated as [13]:

minG maxDEx′∼p(x) [logD(x′)] +

Ey′∼q(y) [1− logD(y′)]
(1)



In the traditional GAN setting, for an optimal discrimi-

nator, we are trying to minimize the JS-divergence between

the real and generated data distributions [13]. With this ap-

proach, training the model is a difficult process. This is

due to the fact that in many practical problems, the real

and the generated data distribution are disjoint in some

low dimensional manifold in a high dimensional space,

which makes it easier to find a perfect discriminator [2].

When the discriminator becomes perfect, the gradient com-

ing from the JS-divergence vanishes [13]. There is an alter-

native method to avoid vanishing gradients by maximizing

Ey′∼q(y) [−logD(y′)] for G, however it is shown that this

method causes unstable updates [2].

Wasserstein generative adversarial network (WGAN) in-

troduces a new loss function for GAN training, which de-

pends on the Earth-Mover distance [3] formulated as:

W (p, q) = infγ∈
∏

(p,q)E(x′,y′)∼γ(x,y) [‖x
′ − y′‖] (2)

In equation 2,
∏

denotes the set of all joint distributions

γ(x, y), where
∑

y γ(x, y) = p(x) and
∑

x γ(x, y) = q(y).
γ(x, y) can be seen as the amount of earth that should be

transported from x to y to transform p into q. WGAN-GP is

the improved version of WGAN, with an addition of gradi-

ent penalty term in the cost function instead of weight clip-

ping procedure [14].

3.2. Network Architecture

The complete network architecture of the proposed solu-

tion is illustrated in Figure 2. The complete model, called

GWAInet, consists of four network components, namely

Gnet, Wnet, Cnet and Inet.

Warper (Wnet). Wnet’s aim is to produce the flow

field required to warp the guiding image such that it is well

aligned with the contents of the input LR image, removing

any difference in pose or size of the faces in both images.

This warping procedure allows the extra information pro-

vided by IGI to be better utilized. Wnet is essentially the

localisation network for a spatial transformer network [21].

It produces the transformation parameters that is fed into

the bilinear sampler along with IGI . Before the first layer

of Wnet, upscaling via bicubic interpolation is applied to

ILR, which scales the spatial dimensions by 8, producing

the image ILRU . After that, IGI and ILRU are concatenated

along the depth axis. The resulting tensor forms the input of

Wnet. Wnet outputs a 3D flow field with 2 depth channels.

At each pixel location, the first value determines the sam-

pling motion horizontally and the second value determines

the sampling motion vertically. It should be noted that flow

field values are not scaled into a specific range, meaning that

no constraints are applied at the output. The flow field and

IGI are used in the bilinear sampling module to produce the

warped guiding image IGW . Let us denote the flow field as

Ω ∈ R
hHR×wHR×2 and denote the pixel location grid for

IGW as δ ∈ R
hHR×wHR×2, where δ(i, j, 0) = 2×i

hHR−1 − 1

and δ(i, j, 1) = 2×j
wHR−1 − 1 ∀i ∈ {0, 1, ..., hHR − 1} and

∀j ∈ {0, 1, ..., wHR − 1}. Note that the grid values are

in the range [−1,+1] instead of [0, hHR − 1] for δ(i, j, 0)
and [0, wHR − 1] for δ(i, j, 1). In other words, in our set-

ting, we assume that the top left corner of the image has

coordinates (-1,-1) and the bottom right corner of the image

has coordinates (+1,+1). Using Ω and δ, the sampling grid

ρ ∈ R
hHR×wHR×2 can be calculated as [21]:

ρ = Ω+ δ (3)

This sampling grid dictates where to sample from the orig-

inal input image, IGI , for an output pixel in the output

image, IGW , which is the warped guiding image. Af-

ter the calculation of ρ, the values are scaled back to

[0, hHR − 1] for δ(i, j, 0) and [0, wHR − 1] for δ(i, j, 1)
using the inverses of the previously given transforms. If

we let I(i, j, c) represents the pixel intensity value at the

(height = i, width = j, channel = c) location of the

some image I , then the pixel intensity values at the output

of the bilinear sampling module can be calculated using the

following formula [21]:

IGW (i, j, c) =
∑

(a,b)∈H

IGI(a, b, c)

max {0, 1− |ρ(i, j, 0)− a|}

max {0, 1− |ρ(i, j, 1)− b|}

(4)

In equation 4, H refers to the 4 closest pixel indices with

respect to the coordinate given by height = ρ(i, j, 0) and

width = ρ(i, j, 1). Wnet can be trained end-to-end with a

loss function using gradient based methods due to the fact

that IGW is sub-differentiable with respect to the parame-

ters of the Wnet [21].

Generator (Gnet). Gnet is the network that applies

SR on the ILR while using the additional information pro-

vided by the warped guiding image IGW . It consists of two

smaller subnetworks, which are called SRnet and GFEnet.

These two subnetworks represent two channels of informa-

tion. SRnet takes only ILR as input, whereas GFEnet takes

only IGW as input.

SRnet is the same baseline architecture used in [29]. The

architecture is given in Figure 2. It consists of 16 residual

blocks [17], whose architecture can be found in the sup-

plementary material. In our setting, scale parameter is set

to αres = 1, which is recommended in [29]. Through-

out SRnet, spatial dimensions of ILR is preserved via zero

padding. After the merging point of the global skip con-

nection, upscaling blocks come, whose main responsibility

is to gradually upscale the feature maps such that their spa-

tial dimensions match with the spatial dimensions of IGT .

The upscaling is done via efficient sub-pixel convolutional



layers [33], that is in each upscaling block, 2× upscaling

is performed by cascading a convolutional layer and a pixel

shuffler layer. These convolutional layers apply a 3×3 filter

with stride 1 and they have 256 feature maps.

GFEnet, which is used as a feature extractor for the IGW ,

consists of 3 downscaling blocks and 12 residual blocks. As

can be seen in Figure 2, each downscaling block is used to

downscale the spatial dimensions of its input by 2. In each

downscaling block, first, a convolutional layer with 3 × 3
kernel, 64 feature maps and stride 1 is applied, which is fol-

lowed by a ReLU. Then another convolutional layer with

3× 3 kernel, 64 feature maps and stride 2 is applied, which

is again followed by ReLU. Downscaling of the IGW is

done through series of stride 2 convolutions instead of max-

pooling operation. The motivation is to let the model learn

the downscaling procedure instead of fixing it [35]. After

every 4th residual block, the current features that come from

GFEnet and features that come from SRnet are fused. This

feature fusion is done via concatenation along the depth

axis. Since only convolutions with 64 output feature maps

are used in both subnetworks, after the concatenation, a fea-

ture map of depth 128 is obtained. A convolution operation

follows this concatenation before the signal resulting from

the fusion operation enters to the next residual block of SR-

net. After 12th residual block, which also means that after

the 3rd feature fusion, GFEnet reaches to an end.

Critic (Cnet). The critic network is the same discrim-

inator network that is used in DCGAN architecture [32]

except we do not use batch normalization layers [19]. The

exact specifications of the architecture is given in the sup-

plementary material.

Outputs of Gnet, ISR, form the generated samples,

which should be criticized as fake images by the critic. The

real images, which are samples from the real data distribu-

tion, are the same images that are used as the ground truth

HR images for the LR input images. These should be criti-

cized as real images by the critic.

Identity Encoder (Inet). We use a Siamese network [9]

for generating embedding vectors related with the identity

of the person. We have selected VGG-16 network [34] as

the architecture of our siamese Inet, whose details can be

found in the supplementary material. Given a SR face im-

age ISR and its corresponding HR ground truth image IGT ,

Inet is used to evaluate their similarity. This similarity infor-

mation is then used to penalize ISR that has characteristics

that differ from the characteristics of its corresponding IGT .

To learn the parameters θInet, we cast the problem as a bi-

nary classification problem, in which Inet tries to predict

whether the two input images belong to the same person.

This procedure can be guided by cross-entropy loss func-

tion, where the output is equal to

y = sigmoid(wT |Inet(x1; θInet)−

Inet(x2; θInet)|+ b)
(5)

where Inet(x; θInet), w ∈ R
4096 and b ∈ R. Note that the

parameters w and b are only used during pretraining of Inet.

Moreover, during the optimization of Wnet, Gnet and Cnet,

θInet is frozen.

3.3. Loss Functions

Content loss Lcontent. Content loss is equal to L1 loss

in our setting and can be calculated as:

Lcontent =
1

3hHRwHR

hHR∑

j=1

wHR∑

k=1

3∑

c=1

|ISR(j, k, c)− IGT (j, k, c)|

(6)

Lcontent ensures that contents of super-resolved image ISR

match with those of IGT . Although this loss is vital in keep-

ing the connection between ISR and IGT , and optimizes for

high PSNR values, it results in ISR images that are formed

by smooth regions and that lack high-frequency details [26].

Adversarial loss Ladv . The aim of adversarial loss is

to to make SR images look perceptually good and photo-

realistic, making generated SR data distribution and real HR

data distribution as close as possible to each other. With the

help of the adversarial loss, the SR image will have fine

details and the network will combat the smoothing effect

caused by the content loss.

The adversarial loss incurred by the WGAN-GP for

the generator is equal to −Lfake. Note that Lfake =
D(ISR; θCnet), where θCnet represents the parameters of

the critic and D(ISR; θCnet) represents the output of the

critic for ISR image.

Identity loss Lid. Identity loss is calculated as the

squared Euclidean norm of the distance between the em-

bedding vectors of ISR and IGT . Thus,

Lid =
‖Inet(ISR; θInet)− Inet(IGT ; θInet)‖

2

4096
(7)

Lid is used to penalize ISR that has characteristics that

differ from the characteristics of its corresponding IGT ,

thus increasing the perceptual quality of the SR image.

Critic loss Lc. We can calculate the loss incurred by the

WGAN-GP for the critic as:

Lc = Lfake − Lreal + λgpLgp (8)

where Lreal = D(IGT ; θCnet) and D(IGT ; θCnet) repre-

sents the output of the critic for IGT image. λgp is the

coefficient for the gradient penalty and Lgp, which is the

gradient penalty term, is a function of ISR, IGT , θCnet and

ǫ ∼ Uniform [0, 1]. Exact details are given in [14].

Overall objective. The overall objective function for the

optimization of θWnet and θGnet can be written as:

Ltotal = Lcontent + λadvLadv + λidLid (9)



where λadv and λid are the weighting coefficients for Ladv

and Lid respectively. The overall objective function for the

optimization of θCnet is directly equal to Lc. Optimization

of these two objectives are done in an alternating fashion as

also described in [14]. Note that during this training proce-

dure θInet is frozen.

4. Experiments

4.1. Datasets

CelebA [30]. We used this dataset in developing our

network and we moved to the dataset of [27] for compar-

ing our method with the state-of-the-art. We use the aligned

and cropped version of the CelebA dataset. We select the

same train-validation-test partitioning used by the creators

of the dataset. We have removed all of the identities that has

a single image from the dataset, resulting in 162,734 train-

ing, 19,862 validation and 19,959 test images. It should be

noted that the identities in each set are disjoint. To remove

as much background as possible and to focus on the faces,

we further crop the images to dimensions 168 × 144. For

a given LR input image, the guiding image is sampled uni-

formly from the remaining HR images of the same person.

Dataset of [27]. This dataset is a subset of VggFace2

[8] and CASIA-WebFace [45] datasets. All of the im-

ages are collected from the wild and therefore include dif-

ferent expressions, pose and illumination conditions. For

each identity, pairs of HR guiding and ground truth im-

ages are available. All HR images have spatial dimensions

256 × 256. Different from [27], we randomly select 2,273

among 20,273 training images as validation images, which

means that we are working with a smaller training set of

size 18,000.

4.2. Experiment Settings

As a preprocessing step, we scale the input pixel inten-

sity values from [0, 255] to [0, 1] and then subtract the mean

of the training dataset. We also scale the range of the IGT

to [−1, 1].
We always use Adam optimizer [24]. During training,

whenever λadv = 0, we use the suggested parameters

β1 = 0.9, β2 = 0.999 and ǫ = 10−8 [24]. Whenever

λadv 6= 0, we use β1 = 0.5 and β2 = 0.9. During this ad-

versarial training, we always apply 5 critic updates per each

generator update and we set λgp = 10.

Training on CelebA. This dataset is used only during

the development of the proposed method. The identity loss

is not used during the training of GWAInet, thus λid in

Equation 9 is always set to 0. The training consists of

three steps. We first pretrain the Wnet using L1 reconstruc-

tion loss between the warped guiding image and the ground

truth image with learning rate 0.0001 for 1.25 epochs with

batch size 4. In the second step, we train the whole net-

guiding face input w/o guiding face w/ guiding face ground truth

BAnet result GWAnet result

Figure 3: CelebA results without (BAnet) and with

(GWAnet) the use of the guiding face. [8× upscaling, LR

input spatial dimensions 21× 18]

work by setting λadv = 0 in Equation 9 with learning rate

0.0001 and batch size 16 until the validation PSNR reaches

its peak. Then we set λadv = 0.001, and continue training

for 4 epochs using batch size 4 and then another 2 epochs

with learning rate 0.00005.

Training on the dataset of [27]. We train the full model

on this dataset. The training of GWAInet consists of two

steps. We first train the network by setting λadv, λid = 0
in Equation 9 with learning rate 0.0001 and batch size 48
until the validation PSNR reaches its peak. Then we set

λadv = 0.001 and λid = 0.05, and continue training

for 8 epochs using batch size 16. During the training of

GWAInet, parameters of Inet is fixed. The Inet is pretrained

on the same training set for 12 epochs with learning rate

0.0001 and batch size 8. 1

4.3. Results on CelebA

After training on the CelebA dataset, we obtain the

model GWAnet, which is the same model as the proposed

full model GWAInet except that it does not include the iden-

tity loss in its optimization objective. Note that the identity

loss is not related with the utilization of the guiding image

because it is calculated between the super-resolved image

and the ground truth image.

Model without guiding image. To evaluate the impor-

tance of the guiding image and the subnetworks related with

the guiding image, i.e. Wnet and GFEnet component of

Gnet, we create a new model called BAnet, which only in-

cludes Cnet and SRnet component of Gnet. It is trained

exactly in the same fashion as GWAnet. GWAnet, with

the help of the guiding image, almost always improves the

quality of the face image by adding some missing details

about the facial features of the person over BAnet. GWAnet

1Our codes, models and results are publicly available on the project

page: https://github.com/berkdogan2/GWAInet



IGI IGI ILR ISR ISR ground truth

same identity different identity input same identity different identity

Figure 4: Comparison of ISR face super resolved images for the cases when a guiding image with the same identity is used

(GWAnet) and when a guiding image with a different identity is used (GWAnet-R) for CelebA dataset. [8× upscaling, LR

input spatial dimensions 21× 18]

outperforms BAnet in generating perceptually good look-

ing face images due to the fact that GWAnet provides bet-

ter visual content quality by correcting the inaccurate facial

details through the use of IGI . In this context, visual con-

tent quality refers to the extent that the characteristics of

the facial contents of ISR image match with those of IGT

image. As can be seen in Figure 3, BAnet is fully capable

of generating photo-realistic images as well as GWAnet but

the point that sets GWAnet apart from BAnet is its ability to

complete the missing facial details in ISR image by utilizing

the guiding image IGI . The improvements express them-

selves as location and shape improvements of facial features

such as eyes, eyebrows, nose, mouth, hair and wrinkles.

Guiding image with a different identity In order to

evaluate the magnitude of the effect of the guiding image in

generating ISR, we have carried over an experiment, where

for a given identity, we feed a randomly selected guiding

image with a different identity. We denote the resulting

model as GWAnet-R. The comparison of ISR images for

GWAnet and GWAnet-R is shown in Figure 4. In general,

when the guiding image has a different identity, the result-

ing differences from the standard model are noticeable. For

some cases, as exemplified by the second row in Figure 4,

the complete facial structure of the person changes. The

mentioned differences mainly express themselves as loca-

tion and shape differences of eyes and eyebrows as shown in

the first row in Figure 4. There are also cases, where wrin-

kles appear or disappear according to the selected guiding

image. The qualitative differences between GWAnet and

GWAnet-R suggest that apart from being an additional in-

formation about high-resolution face images, the identity of

the guiding image also plays an important role in generating

high quality face images.

4.4. Comparison with state­of­the­art Methods

We compare our results quantitatively with the state-of-

the-art face hallucination methods CBN [52], WaveletSR

[18], TDAE [48], GFRNet [27] and super-resolution meth-

ods SRCNN [10], VDSR [23], SRGAN [26]. For all those

methods, we directly use the results reported in [27]. More-

over, we compare our results qualitatively with GFRNet

[27], which is the current state-of-the-art in face halluci-

nation. Note that all of our experiments are performed for

upscaling factor 8×.

Quantitative comparison. The quantitative results are

shown in Table 1. As can be seen from Table 1, GWAInet

outperforms the state-of-the-art in VggFace2 dataset by

1.47dB. It is the second best method in WebFace dataset and

lags behind GFRNet [27] by 0.1dB. However, we should

note that the training of GWAInet is not optimized for high-

est PSNR due to the adversarial loss and identity loss terms

in the overall objective, which conflict with the objective of

maximizing PSNR. PSNR is not well capable of capturing

perceptual quality in an image [26, 41, 42, 15]. Moreover, it

is possible to get highest PSNR values by training GWAInet

shorter or longer with very small decrease in perceptual

quality. We did not follow such a path because the focal

point of this paper is presenting the capability of GWAInet

in producing perceptually high quality SR images.

Qualitative comparison. As can be seen from Fig-

ure 5, our method GWAInet produces better looking and

sharper face images than the state-of-the-art. GFRNet [27]

only sharpens a small area in the face region, whereas our

method GWAInet introduces high frequency details for all

parts of the image, including the hair. Moreover, GFRNet

[27] generally completely hallucinates the face of the per-
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Figure 5: Comparison with state-of-the-art. Our full model GWAInet produces perceptually high quality images while

retaining the facial features related with the identity. To obtain the results for GFRNet, their publicly available model is used

[27, 28]. [8× upscaling, LR input spatial dimensions 32× 32]

Method VggFace2 [8] WebFace [45]

SRCNN [10] 22.30 23.50

VDSR [23] 22.50 23.65

SRGAN [26] 23.01 24.49

CBN [52] 21.84 23.10

WaveletSR [18] 20.87 21.63

TDAE [48] 20.19 20.24

GFRNet [27] 24.10 27.21

Ours (Full-GWAInet) 25.57 27.11

Table 1: PSNR (dB) values for all models on the dataset of

[27]. Upscaling factor is 8× for all experiments. All results

apart from the results of our models are taken from [27].

Red and blue markers indicate the first and second highest

value, respectively.

son such that the super-resolved face does not look like the

same identity. Our method, on the other hand, is completely

faithful to the identity of the person while super-resolving

the face image. Furthermore, GFRNet [27] most of the

time outputs a super-resolution image that is blurry and that

contains artifacts, whereas our method GWAInet produces

sharp, visually appealing and photo-realistic results.

5. Conclusion

We proposed a novel solution, namely GWAInet, for the

task of face image super-resolution. Our GWAInet utilizes

the additional information provided by a high-resolution

guiding image of the same person. Our network does not

use facial landmarks during training and is capable to pro-

duce fine details for the whole face region in a uniform man-

ner. Moreover, in the training, the employed identity loss

further helps in preserving the identity related features by

minimizing the distance between the embedding vectors of

the super-resolved and HR ground truth images. GWAInet

produces photo-realistic images in upscaling factor 8× and

outperforms state-of-the-art in PSNR terms and also for per-

ceptual quality of super-resolved images.
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