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Abstract

Recently, Convolutional Neural Network (CNN) based

approaches have achieved impressive single image super-

resolution (SISR) performance in terms of accuracy and vi-

sual effects. It is noted that most SISR methods assume that

the low-resolution (LR) images are obtained through bicu-

bic interpolation down-sampling, thus their performance

on real-world LR images is limited. In this paper, we

proposed a novel orientation-aware deep neural network

(OA-DNN) model, which incorporate a number of orien-

tation feature extraction and channel attention modules

(OAMs), to achieve good SR performance on real-world

LR images captured by a single-lens reflex (DSLR) cam-

era. Orientation-aware features extracted in different di-

rections are adaptively combined through a channel-wise

attention mechanism to generate more distinctive features

for high-fidelity recovery of image details. Moreover, we re-

shape the input image into smaller spatial size but deeper

depth via an inverse pixel-shuffle operation to accelerate the

training/testing speed without sacrificing restoration accu-

racy. Extensive experimental results indicate that our OA-

DNN model achieves a good balance between accuracy and

speed. The extended OA-DNN∗+ model further increases

PSNR index by 0.18 dB compared with our previously sub-

mitted version. Codes will be made public after publication.

1. Introduction

Single image super-Resolution (SISR) aims to recover

corresponding high-resolution (HR) image from a single

low-resolution (LR) image. SISR has attracted considerable
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attention from both the academic and industrial communi-

ties in recent years, resulting in extensive applications such

as security surveillance, autonomous driving, and medical

analysis. Recently, Convolutional Neural Network (CNN)

based SISR methods have achieved impressive performance

by learning the mapping between low-frequency signals

(object semantics) and high-frequency signals (object de-

tails) from substantial pairs of HR and LR training images.

In most CNN-based SISR approaches [14, 20, 21, 36],

the LR training images are typically generated by down-

sampling the HR ones via bicubic interpolation. Their per-

formance on real-world captured LR images is not satis-

factory. The challenge is two-folder. First, the down-

sampling process of HR images remains unknown and

device-dependent. Moreover, undesired artifacts (e.g., sen-

sor noise, motion blur, and pixel shifts) are typically pre-

sented in real-world captured LR images. Second, the cap-

tured LR images sometimes are automatically up-sampled

by the image acquisition device (e.g., DSLR camera)1. Di-

rectly applying previous deep CNN models (e.g., EDSR

[24], RDN [44] and RCAN [43]) on the up-scaled LR im-

ages demands Graphics processing units (GPUs) with ex-

tremely large memories.

To tackle the problems mentioned above, we pro-

posed a novel orientation-aware deep neural network (OA-

DNN) model to super-resolve real-world captured LR im-

ages. The proposed OA-DNN model contains a number

of orientation-aware feature extraction and channel atten-

tion modules (OAMs), in which three well-designed con-

volutional layers (i.e., 5 × 1 horizontal conv. layer, 1 × 5
vertical conv. layer and 3 × 3 diagonal conv. layer) are

deployed to extract orientation-aware features in different

directions. OAM also contains a channel attention mech-

1In the NTIRE 2019 Real Super-Resolution challenge dataset, the cap-

tured LR and HR images have the same resolution.
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anism, which is initially proposed by Hu et al. [12], to

compute channel-wise weights for adaptive fusion of the ex-

tracted orientation-aware features, generating more distinc-

tive feature maps for high-fidelity recovery of image details.

To efficiently process up-sampled LR image in the NTIRE

2019 Real Super-Resolution challenge dataset, we reshape

the input image via an inverse pixel-shuffle operation (de-

pixel-shuffle [27, 37]) into smaller spatial size but deeper

depth. Spatial features are rearranged into multiple chan-

nels to accelerate the training/testing speed and alleviate the

burden on GPU memory, while image pixel values are well

preserved for inferences in the following convolutional lay-

ers. Such operation significantly reduces the memory re-

quirement of GPUs, speeds up the training/testing processes

and surprisingly boosts the SR accuracy. The main contri-

butions of this paper are as follows.

• We present a novel feature extraction technique using

three well-designed convolutional layers (5 × 1 hori-

zontal conv., 1 × 5 vertical conv., and 3 × 3 diagonal

conv.) to extract orientation-aware features in different

directions. This is the first work that employs direc-

tional features for super-resolution task.

• A channel attention mechanism is utilized to adap-

tively fuse the extracted orientation-aware features,

generating more distinctive feature maps for accurate

SISR of real-world LR images. Different from previ-

ous methods [43, 16], we place the channel attention

before ReLU to allow more information pass through

activation for better performance.

• The de-pixel-shuffle operation, which was previously

used for object detection, is successfully adopted for

the SISR task and lead to higher SR accuracy and faster

execution speed.

The remainder of this paper is organized as follows.

We first review a number of CNN-based SISR methods in

Sec. 2. Then Sec. 3 provides details and important com-

ponents of our OA-DNN. Qualitative and quantitative com-

parisons are conducted in Sec. 4 to show the effectiveness

of our OA-DNN and Sec. 5 concludes this paper.

2. Related Work

Single image super-resolution (SISR) refers to the task

of recovering corresponding HR image from only one LR

observation of the same scene. Over the past decades, sub-

stantial approaches [9, 2, 23, 30, 1, 40, 40, 31, 34, 35, 13]

have been proposed to solve this problem.

Currently, deep-learning-based/CNN-based methods [6,

8, 17, 18, 32, 33, 36, 44, 11, 4] have demonstrated remark-

able results by learning the LR-to-HR mapping function via

numerous representative example pairs. In this paper, we

focus on CNN-based SISR methods.

Dong et al.[6, 7] proposed the super-resolution convo-

lutional neural network (SRCNN), which is the first CNN-

based method with a light-weight structure (three layers).

By following this pioneering work, Kim et al. [17] ex-

tended SRCNN to 20 layers and employed residual learn-

ing/adjustable clip gradients to ease the training process.

The same authors also proposed DRCN [18] which estab-

lishes recursive units to share parameters and utilizes skip-

connections to ease the difficulty of training the model. Lai

et al. [20] proposed LapSRN to progressively reconstruct

the sub-band residuals of high-resolution images and gen-

erate multi-scale predictions just through one feed-forward

pass, thereby facilitated resource-aware applications.

To achieve faster speed, FSRCNN [8] introduced the

deconvolution layer into SRCNN model, so the mapping

function is learned directly from the original low-resolution

image (without interpolation) to the high-resolution one.

ESPCN [29] introduced an efficient sub-pixel convolution

layer which can learn an array of up-scaling filters to up-

scale the final LR feature maps into the HR output. These

two methods upscale the resolution at the end of models,

therefore time-consuming operations are performed on LR

spaces.

To achieve higher reconstruction accuracy, recent meth-

ods further increase the depth or utilize complicated archi-

tecture. DRRN [32] proposed a very deep CNN model and

adopted residual learning both in global and local manners

to mitigate the difficulty of training. In MemNet, Tai et

al. [33] introduced a memory block which could control

how much of the previous states should be reserved, and

decide how much of the current state should be stored. SR-

DenseNet [36] introduced dense skip connections into CNN

model so the feature maps of each layer are propagated into

all subsequent layers, providing an effective way to com-

bine the low-level features and high-level features to boost

the reconstruction performance. In DBPN, Muhammad et

al. [10] constructed mutually connected up- and down-

sampling stages, each of which represents different types of

image degradation and high resolution components. WDSR

[41] utilized a slim identity mapping pathway with wider

channels before activation in each residual block and led

to a better accuracy. Wang et al. [38] established DBDN

which extended previous intra-block dense connection ap-

proaches by including novel inter-block dense connections.

MSRN [22] adopted a multi-scale residual structure to fully

extract the features and introduced different size of convolu-

tion kernels to adaptively detect the image features in differ-

ent scales and then interact with each other to get the most

efficacious image information. TSCN [14] proposed a two-

stage convolutional network to estimate the desired high-

resolution image from the corresponding low-resolution im-
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Figure 1. The architecture of our proposed OA-DNN. Let ILR denote the LR input, the pixels of ILR are rearranged by the de-pixel-shuffle

operator into I
LR

′

, which has smaller size but deeper channels. 16 OAMs are used to extract directional features for inferring LR-to-HR

mapping function. Then, global residual learning is added to ease the training process. Finally, we use one convolution layer and the

pixel-shuffle operation to reconstruct final output ISR.
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Figure 2. The architecture of our backbone OAM. The input Fi−1 is firstly fed to three different directional convolutional layers. Then

the extracted orientation-aware features Fhor , F ver and F
dia are fused and then passed through a channel attention unit [12] which could

adaptively compute the channel-wise weights and assign the weights to corresponding channels. At last, local residual learning is also

added to ease the training process.

age.

More recently, channel attention [12] are utilized in

super-resolution methods. SESR [16] introduced chan-

nel attention unit into their networks to model the inter-

dependencies and relationships between channels. RCAN

[43] proposed a residual in residual structure and in-

troduced the channel attention mechanism to adaptively

rescale channel-wise features by considering interdepen-

dencies among channels. It is noted that although deeper

and more complex networks could achieve state-of-the-art

reconstruction results, they will also lead to computational

complexity and cost lots of time during training or testing.

Different from previous methods which aim to recover

accurate PSNR, some novel works contribute to obtain

photo-realistic reconstructions. SRGAN [21] introduced

a perceptual loss function which consists of an adversar-

ial loss and a content loss into their network to reconstruct

photo-realistic results. In EnhanceNet, Mehdi et al. [28]

proposed a novel application of automated texture synthe-

sis in combination with a perceptual loss focusing on creat-

ing realistic textures rather than optimizing for a pixel ac-

curate reproduction of ground truth images during training

and achieved good reconstructions. However, the generated

high-frequency details may be fake texture patterns, which

are not suitable for some applications demanding accurate

information.

3. Approach

Fig. 1 shows the workflow of our proposed OA-DNN.

We firstly provide details of OAM which is used as the

backbone in the proposed OA-DNN model. The overall ar-

chitecture of OA-DNN are then presented and some tech-

niques used to improve the performance of OA-DNN are

also discussed.

3.1. Orientationaware Feature Extraction and
Channel Attention Module

Fig. 2 illustrates the basic module OAM in our OA-

DNN. In most CNN based SISR algorithms, 3 × 3 con-

volutional kernels are utilized for feature extraction (e.g.,

VDSR [17], DRCN [18], DRRN [32], SRDenseNet [36],

EDSR [24], TSCN [14]). Our OAM creatively embeds a

3 × 3 convolutional layer and two 1-D convolutional lay-

ers (i.e., 5 × 1 and 1 × 5), which are seldomly used in the

SISR task, to extract features in the diagonal, horizontal

and vertical directions, respectively. let Fi−1 denotes the



input features of a single OAM, the orientation-aware fea-

tures {Fhor, F ver, F dia} are computed as:

Fhor = Conv5×1(Fi−1), (1)

F ver = Conv1×5(Fi−1), (2)

F dia = Conv3×3(Fi−1), (3)

where Conv5×1, Conv1×5 and Conv3×3 represent the con-

volutional layers with horizontal kernel, vertical kernel and

diagonal kernel, respectively. With this design, our OAM is

capable of extracting features in different directions. Then,

the extracted orientation-aware features are fused through a

channel-wise concatenation operation as:

F fuse = [Fhor, F ver, F dia], (4)

where F fuse is the fused orientation-aware feature and the

[·] indicates the channel-wise concatenation operation.

Channel attention [12] provides an effective technique

to recalibrate channel-wise features adaptively by explicitly

modeling interdependencies between channels. Previous

studies have proven the effectiveness of channel attention

block [25, 5, 43, 16] in the task of super-resolution. In the

proposed OAM, we adopt the channel attention mechanism

described in [16] to adaptively combine orientation-aware

features to generate more distinctive features as:

FCA = CA(F fuse) ∗ F fuse (5)

where FCA denotes the enhanced features using the chan-

nel attention mechanism and CA(·) are the calculated

channel-wise weights. The computed FCA is then activated

by a rectified linear unit (ReLU) and fed to another 3 × 3
convolutional layer. In addition, residual learning is also

deployed to ease the training process. The output Fi of the

ith OAM block is computed as:

Fi = Fi−1 + Conv3×3(max(0, FCA)), (6)

where max(·) indicates the ReLU activation operation. As

pointed out in [41], the features FCA before ReLU activa-

tion is wider than subsequent convolutional layers, which

allows more information pass through ReLU while still

keeps highly non-linearity of CNN. The effectiveness of

the proposed orientation-aware feature extraction and chan-

nel attention based fusion are systematically evaluated in

Sec. 4.3.

3.2. Depixelshuffle

Real-world captured LR images sometimes are automat-

ically up-sampled by the image acquisition device (e.g., In

the NTIRE 2019 Real Super-Resolution challenge dataset,

LR and HR images captured by a DSLR camera have the

same resolution). Consequently, directly applying previous

state-of-the-art methods (e.g., EDSR [24], RDN [44] and

RCAN [43]) demands GPUs with extremely large memo-

ries 2. A feasible way for solving this problem is to add

a down-sampling process to reduce the spatial size of in-

put image. The subsequent convolutional operations can be

conducted on LR space, which will largely save the GPU

memory and running time. However, early stage down-

sampling operation will lose important image information

and lead to poor performance of SR.

Shi et al. [29] introduced an efficient pixel-shuffle oper-

ation, which upscales the spatial size via the rearrangement

of the features in multiple channels. An inverse operation

(de-pixel-shuffle) can be further used to reduce the spatial

size of feature maps at the cost of adding multiple channels.

Therefore, image information is well preserved for infer-

ences in the following convolutional layers. As illustrated

in Fig. 3, de-pixel-shuffle rearranges the input features of

size H × W × C into size H
r
× W

r
× r2C (r denotes the

scaling-factor). In our implementation, we set r to 2 and the

evaluation experiments are provided in Sec. 4.3.

3.3. Basic Network Architecture

As illustrated in Fig. 1, our OA-DNN aims to learn the

end-to-end mapping function f from LR input ILR to HR

ground truth IGT , which consists of 16 OAMs, three convo-

lutional layers, a global residual learning, a de-pixel-shuffle

operation, and a pixel-shuffle operation. Given a LR input

ILR, an inverse pixel-shuffle operation is firstly utilized to

systematically rearrange the pixels into channels to reduce

the spatial size. Specifically, an input of size W ×H ×C is

converted to H
r
× W

r
× r2C. See more details in Sec. 3.2.

The formulation of de-pixel-shuffle can be expressed as

ILR′

= DPS(ILR), (7)

where DPS(·) denotes the de-pixel-shuffle operation and

ILR′

denotes the shuffled LR image vector. Then, a

3 × 3 convolutional layer is embedded to extract high-

dimensional features from ILR′

as:

F0 = Conv3×3(I
LR′

), (8)

where F0 denotes the extracted high-dimensional feature

vectors. After feature extraction, F0 is fed into stacked

OAMs and output of the ith OAM Fi can be expressed as:

Fi = OAMi(Fi−1), i ∈ {1, 2, · · · , 16}, (9)

where OAM(·) denotes the operations of a single OAM.

We also employ the global residual learning to ease the

training process. Before that a 3 × 3 convolutional layer

is embedded. The formulation is as follows:

Fre = F0 + Conv3×3(F16), (10)

2The upsampling parts in these methods should be removed for apply-

ing on NTIRE2019 Real Super-Resolution Challenge.
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Figure 3. The principles of pixel-shuffle and de-pixel-shuffle. The pixels of a feature map can be rearranged into larger spatial size but

fewer channels through the pixel-shuffle operation [29]. On the contrary, pixels of an image can also be rearranged into smaller spatial size

but deeper channels through the de-pixel-shuffle operation. r denotes the scale factor.

where Fre denotes the high-dimensional vector for recon-

structing the super-resolved HR image ISR. In the recon-

struction phase, the high-dimensional vector Fre is channel-

wisely shrunk to the size of H
r
× W

r
× r2C before the pixel-

shuffle operation PS(·). The shrink can be realized via a

3 × 3 convolutional layer by setting the output channel to

the desired value. Finally, pixel-shuffle rearranges the pix-

els to form the final super-resolved image ISR as:

ISR = PS(Conv3×3(Fre)). (11)

3.4. Deep Supervision

Our basic OA-DNN architecture contains 16 OAMs,

which consist of many convolutional layers and will unfa-

vorably cause the gradient vanishing problem. To solve this

problem and further enhance feature maps extracted in dif-

ferent layers, we send the output of selected OAMs (i.e.,

4th, 8th, 12th and 16th in our implementation) to the re-

construction part during training phase to generate 4 pre-

dictions, as shown in Fig. 4. Different from the deep su-

pervision strategy adopted in [18, 33], the generated predic-

tions are not further fused to form the final output. We only

make use of the prediction based on features of 16th OAM

as our final SISR output. It is worth mentioning that this

deep supervision strategy only takes a little more time dur-

ing training but cost no extra time/computational increase

during the testing phase.

4/8/12/16th

OA Module
+

C
o

n
v

P
ix

e
ls

h
u

ff
le

C
o

n
v

L1 Loss

Figure 4. Deep supervision: we add supervisions after 4th, 8th,

12th and 16th OAMs.

3.5. Loss Function

Loss function computes the pixel-wise difference be-

tween the super-resolved image ISR and the ground truth

IGT , which drives the back-propagation to update the

weights and biases of CNN. Most deep learning based SR

methods [6, 17, 18, 32, 33] adopt L2 (i.e., mean square error

loss or Euclidean loss) as the training loss. The main rea-

son behind its popularity is that the calculation of L2 loss is

similar with a major SR evaluation indicator - PSNR. The

loss function LL2
is defined as:

LL2
(P ) =

∑

p∈P

||ISR(p)− IGT (p)||2
2
, (12)

where || · ||2 denotes the L2 norm. Nevertheless, Lim et al.

[24] experimentally reported that L1 is a better option than

L2. Similar with LL2
, the loss function LL1

is defined as:

LL1
(P ) =

∑

p∈P

||ISR(p)− IGT (p)||1, (13)



where ||·||1 denotes the L1 norm. In our method, we choose

the L1 loss which provides a large back-propagated deriva-

tive to speed up the training process at the beginning. With

the training going on, most of the residual values approach

zeros and we use L2 loss with smaller back-propagated

derivatives for the fine solution searching.

3.6. Geometric Selfensemble

In the testing phase, following EDSR [24, 35], the self-

ensemble strategy is adopted to further improve the SR per-

formance. Specifically, when testing, the input image is

rotated to generate three other augmented inputs. After

achieving corresponding super-resolved images, the inverse

transform is applied to get the original geometry. Finally,

we average the transformed outputs to obtain the final result.

Compared with previous methods [24, 35] which generate

seven augmented inputs via rotation and horizontal flipping,

our method only uses three augmented inputs and experi-

mentally achieves similar performance using less running

time.

4. Experiments

4.1. Dataset and Metrics

Dataset: For NTIRE2019 Real Super-Resolution Chal-

lenge, the organizers published a novel dataset of real low

and high resolution paired images, which are obtained in di-

verse indoor and outdoor environments by DSLR cameras.

The dataset consists of 100 pairs of LR images and their

corresponding ground truth HR ones. These pairs are di-

vided into 60 pairs for training, 20 pairs for validation and

another 20 pairs for testing. Each image has a pixel resolu-

tion no smaller than 1000×1000. As the test dataset ground

truth is not released, we report the performances and com-

pare with state-of-the-art methods on the validation dataset.

To expand our training dataset, two data augmentation tech-

niques are utilized including (1) Rotation: rotate image by

90◦, 180◦, or 270◦. (2) Flipping: flip images horizontally.

After data augmentation, we randomly crop these images

into 48× 48 patches for training our OA-DNN.

Metrics: Peak signal-to-noise-ratio (PSNR) and struc-

tural similarity index (SSIM) [39] are used for SR perfor-

mance evaluation. Both metrics are calculated on RGB

channels without crop pixels near image boundary accord-

ing to the scoring scripts provided by the NTIRE 2019 Real

Super-Resolution Challenge organizers.

4.2. Implementation Details

We implement our OA-DNN with Caffe[15] platform

and train this model by optimizing L1 loss function on a sin-

gle NVIDIA Quadro P6000 GPU with Cuda 9.0 and Cudnn

7.1 for 20 epochs. When training our model, we only con-

sider the luminance channel (Y channel of YCbCr color

space) in our experiments. Adam[19] solver is utilized to

optimize the weights by setting β1 = 0.9, β2 = 0.999 and

ε = 10−8. In each training batch, we randomly sample

64 patches with size of 48× 48× 1. By employing the de-

pixel-shuffle operation, discussed in section 3.2, the patches

are reshaped to 24 × 24 × 4. The initial learning rate is set

to 10−4 and halved after 15 epochs. After 20 epochs, we

fine-tune our model for one more epoch by optimizing L2

loss function. Training our final OA-DNN for real image

super-resolution approximately takes two days.

4.3. Model Analysis

As illustrated in Tab. 1, we set up the following abla-

tion experiments to explore the advantages of our proposed

OAM and de-pixel-shuffle operation. Experiment A (Exp-

A): We utilize the residual module from EDSR [24] to re-

place our OAM, and remove the de-pixel-shuffle operation.

Experiment B (Exp-B): On the basis of Exp-A, the de-pixel-

shuffle operation is added. Experiment C (Exp-C): On the

basis of Exp-A, OAM is adopted as the backbone. Ex-

periment D (Exp-D): Take OAM as the backbone and add

the de-pixel-shuffle operation. All the experiments are per-

formed on our basic network architecture.

Compare Exp-B with Exp-A, we surprisingly observed

that the PSNR value increases from 29.11 dB to 29.18 dB

by utilizing de-pixel-shuffle operation. Another benefit is

the computational cost will be largely reduced by taking

convolutional operations on small spatial size. The running

time decreases from 1.2844s to 0.5352s. Compare Exp-C

with Exp-A, the PSNR value increases from 29.11 dB to

29.28 dB by adopting OAM instead of the residual mod-

ule from [24]. The proposed OAM can extract directional

features and fuse them for learning better mapping. More

parameters and complicated structure (i.e., channel atten-

tion mechanism) will unavoidably consume extra running

time (1.2844s → 4.0578s). By adding de-pixel-shuffle op-

eration to Exp-C, the PSNR value reaches 29.35 dB (0.24

dB higher than Exp-A, which is a significant improvement

in SISR). Meanwhile, the running time only increases from

1.2844s to 1.6636s.

Based on Exp-D, we also explore the effectiveness of our

tricks: (1) deep supervision, (2) Fine-tune with L2 loss, and

(3) geometric self-ensemble. Tab. 2 shows the quantitative

results of adding different tricks. Obviously, all the three

tricks can boost the performance (PSNR: 29.35 dB → 29.42

dB → 29.47 dB → 29.59 dB; SSIM: 0.8599 → 0.8614 →
0.8628 → 0.8652.). It is noted that deep supervision and

fine-tune with L2 loss improve performance without trig-

gering any computational cost during testing.

4.4. Comparisons with Stateofthearts

To prove the effectiveness of our proposed OA-DNN,

two CNN-based methods (VDSR [17] and DRRN [32])



Ground Truth LR VDSR [17] DRRN [32] OA-DNN OA-DNN+

PSNR/SSIM 29.41/0.8778 31.68/0.9171 31.91/0.9209 32.15/0.9226 32.61/0.9295
Figure 5. Qualitative comparisons of image “cam1-05” from validation dataset provided by the NTIRE 2019 organizers. We re-train VDSR

and DRRN on this real SR dataset to obtain their results. Please zoom in on screen for better visualization.

Ground Truth LR VDSR [17] DRRN [32] OA-DNN OA-DNN+

PSNR/SSIM 27.29/0.7873 30.25/0.8712 30.28/0.8741 30.92/0.8861 31.22/0.8936
Figure 6. Qualitative comparisons of image “cam1-07” from validation dataset provided by the NTIRE 2019 organizers. We re-train VDSR

and DRRN on this real SR dataset to obtain their results. Please zoom in on screen for better visualization.

Ground Truth LR VDSR [17] DRRN [32] OA-DNN OA-DNN+

PSNR/SSIM 25.54/0.7285 26.63/0.7958 26.62/0.7980 26.99/0.8141 27.38/0.8272
Figure 7. Qualitative comparisons of image “cam2-05” from validation dataset provided by the NTIRE 2019 organizers. We re-train VDSR

and DRRN on this real SR dataset to obtain their results. Please zoom in on screen for better visualization.

are retrained using the real SR dataset provided by the

NTIRE 2019 organizers. The quantitative results are shown

in Tab. 3 and the qualitative comparisons are illustrated in

Fig. 5, Fig. 6 and Fig. 7.

From Tab. 3, we can get the conclusion that our OA-

DNN achieves the best performance among state-of-the-art

SISR methods. In addition, Fig. 5, Fig. 6 and Fig. 7 indi-

cate that our proposed OA-DNN recovers relatively sharper

edges, while others only produce blurry results. By employ-

ing directional features from different orientations, OA-

DNN can better reconstruct the line pattern.



Table 1. The quantitative SR results on validation dataset with dif-

ferent combinations of OAM and de-pixel-shuffle. The PSNR and

SSIM values are calculated according to the scoring scripts pro-

vided by the NTIRE 2019 organizers.

Different Combinations

Exp-A Exp-B Exp-C Exp-D

OAM × × X X

De-pixel-shuffle × X × X

PSNR(dB) 29.11 29.18 29.27 29.35

SSIM 0.8550 0.8560 0.8571 0.8599

Time (s) 1.2844 0.5352 4.0578 1.6636

Table 2. The quantitative SR results on validation dataset with dif-

ferent tricks. The PSNR and SSIM values are calculated according

to the scoring scripts provided by the NTIRE 2019 organizers.

Different tricks Settings

Baseline X X X X

Deep Supervision × X X X

L2 Fine-tune × × X X

Self-ensemble × × × X

PSNR(dB) 29.35 29.42 29.47 29.59

SSIM 0.8599 0.8614 0.8628 0.8652

Time (s) 1.6636 1.6636 1.6636 6.1097

Table 3. The quantitative results on validation dataset with VDSR

[17] and DRRN [32]. The PSNR and SSIM values are calculated

according to the scoring scripts provided by the NTIRE 2019 or-

ganizers.

Different Methods PSNR (dB) SSIM

VDSR [17] 29.10 0.8524

DRRN [32] 29.13 0.8538

OA-DNN 29.47 0.8628

OA-DNN+ 29.59 0.8652

4.5. Enhanced Performance of our OADNN

After the NTIRE 2019 Real Super-Resolution Challenge

submission deadline, we further modified the training set-

tings of our submitted OA-DNN to improve the perfor-

mance further. Three simple modifications are performed:

• We re-train our OA-DNN with RGB input patches and

pre-process all the training patches by subtracting the

mean RGB value of the training dataset.

• Larger patch size (128× 128) are adopted to learn the

end-to-end mapping function.

• More modules (20 OAMs) are utilized to constitute our

OA-DNN.

We denote the model using new training setting as OA-

DNN∗, which has improved performance than the submit-

ted version of our OA-DNN+. Tab. 4 shows the com-

parative results of OA-DNN, OA-DNN+, OA-DNN∗ and

OA-DNN∗+. It’s worth mentioning that PSNR value

of our OA-DNN∗ reaches 29.63 dB with faster testing

speed than our submitted OA-DNN+. Our ultimate OA-

DNN∗+ even achieves PSNR 0.18 dB improvement than

our submitted version. Our extended OA-DNN∗ has al-

ready achieved higher PSNR values (29.63 dB > 29.59 dB)

than our submitted OA-DNN+ with about 1

3
running time

(2.0251s < 6.1097s).

Table 4. Comparative results of our OA-DNN, OA-DNN+, OA-

DNN∗ and OA-DNN∗+.

Methods PSNR (dB) Running time (s)

OA-DNN 29.47 1.6636

OA-DNN+ 29.59 6.1097

OA-DNN∗ 29.63 2.0251

OA-DNN∗+ 29.77 8.1023

5. Conclusion

In this paper, we propose a CNN-based OA-DNN, which

aims to recover the high-frequency information of the real-

world LR images. Specifically, an orientation feature ex-

traction and channel attention module (OAM) is designed,

incorporating three directional convolutional layers (5 × 1
horizontal conv., 1 × 5 vertical conv., and 3 × 3 diagonal

conv.), to fully exploit image features extracted in differ-

ent directions. The directional features are concatenated

for learning the complicated nonlinear LR-to-HR mapping.

To further enhance the utilization of extracted orientation-

aware features, a channel attention mechanism is employed

to adaptively compute the channel-wise weights and as-

sign the weights to corresponding channels. Experimen-

tal results indicate that the enhanced features can better re-

construct the high-fidelity details. Then, to accelerate the

training/testing speed and alleviate memory burden, we re-

shape the input image via an inverse pixel-shuffle opera-

tion (de-pixel-shuffle) into smaller spatial size but deeper

depth without losing any information. Extensive experi-

ments demonstrate the priority of our OA-DNN.

In the future, we plan to test our OA-DNN on other

benchmarks (e.g., commonly used datasets in SISR - Set5

[3], Set14 [42], B100 [26], Urban100 [13]) to further vali-

date the effectiveness of our method.
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