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Abstract

Existing approaches towards single image dehazing in-
cluding both model-based and learning-based heavily rely
on the estimation of so-called transmission maps. Despite
its conceptual simplicity, using transmission maps as an in-
termediate step often makes it more difficult to optimize the
perceptual quality of reconstructed images. To overcome
this weakness, we propose a direct deep learning approach
toward image dehazing bypassing the step of transmission
map estimation and facilitating end-to-end perceptual opti-
mization. Our technical contributions are mainly three-fold.
First, based on the analogy between dehazing and denois-
ing, we propose to directly learn a nonlinear mapping from
the space of degraded images to that of haze-free ones via
recursive deep residual learning; Second, inspired by the
success of generative adversarial networks (GAN), we pro-
pose to optimize the perceptual quality of dehazed images
by introducing a discriminator and a loss function adaptive
to hazy conditions; Third, we propose to remove notorious
halo-like artifacts at large scene depth discontinuities by a
novel application of guided filtering. Extensive experimen-
tal results have shown that the subjective qualities of de-
hazed images by the proposed perceptually optimized GAN
(POGAN) are often more favorable than those by existing
state-of-the-art approaches especially when hazy condition
varies.

1. Introduction

Single image dehazing refers to the restoration of an
image from its degraded observation under hazy condi-
tions. To combat adversary conditions such as haze, physi-
cal modeling of the image degradation process has been ex-
tensively studied in the literature (e.g. [22], [32], [23]). Itis
known that the process of light passing through a scattering
medium such as atmosphere is characterized by the attenu-
ation along the path of transportation. To make mathemat-

ical modeling tractable, it is often assumed that the frac-
tion of light deflected and the distance traveled observe a
linear relation. Such simplified assumption has led to the
popular image formation model connecting observed hazy
image with scene radiance (unknown target) and transmis-
sion map [9]. Based on such formation model, the prob-
lem of single image dehazing boils down to estimating the
transmission map; and for this reason, many previous works
on single image dehazing have focused on a model-based
(e.g., uncorrelation principle [9], dark channel prior [14]) or
learning-based (e.g., dehazenet [4], multi-scale CNN [28])
approach toward transmission map estimation.

We challenge this conventional wisdom by highlighting
a few weaknesses of transmission-map-first approach. First,
since the image formation model is based on simplified as-
sumptions, it only represents an approximation of the true
in-scattering term in a full radiative transport equation [9].
The validity of this approximation becomes questionable in
more realistic acquisition scenarios such as heavy haze and
night environment. Therefore, the effectiveness of using a
transmission map to recover scene radiance might deteri-
orate as hazy condition varies. Second, the transmission-
map-first approach suffers from the potential error propa-
gation - i.e., any error in the estimated transmission map
could have catastrophic impact on the recovered scene ra-
diance. Surprisingly, this issue of error propagation has
not been addressed in the open literature to the best of our
knowledge. In previous works (e.g., [14],[28]), only a small
positive constant is added to the denominator for improving
numeral stabilities of solution algorithms. Third, with the
estimation of transmission map involved as an intermediate
step, it becomes difficult to conduct end-to-end optimiza-
tion especially from the perceptual point of view.

In this paper we advocate a direct deep learning-based
approach toward single image dehazing without estimating
transmission map at all and capable of end-to-end percep-
tual optimization. Our direct approach is motivated by a
flurry of most recent advances in the field of deep learning
including deep residual networks [15], [36],[3 1] and gener-



ative adversarial networks (GAN) [12],[6],[17]. The main
contributions of this work are summarized by the three com-
ponents as shown in Figure 1.

e Generative network. Inspired by the analogy between
denoising and dehazing, we propose to directly learn a non-
linear mapping from the space of degraded images to that
of haze-free ones via deep residual network [15]. Since our
approach does not rely on estimating transmission maps as
an intermediate step, it can work with a variety of hazy con-
ditions (both heavy and light) no matter whether the im-
age formation model holds or not. Moreover, by feeding
the output of the network as the input, we can obtain a re-
cursive extension of deep residual learning; in other words,
haze-free images can be viewed as the fixed-point [11] of
our generative network.

e Discriminative network. As mentioned above, it is
often difficult to address the issue of perceptual quality
in transmission-map-first approaches. In this work, we
propose to leverage the success of generative adversar-
ial networks (GAN) from image synthesis [0] and super-
resolution [17] to single image dehazing. Based on our dis-
criminative network, we propose to optimize the perceptual
quality of dehazed images by introducing an adaptive loss
function. Adaptive weights in our loss function are con-
ceived to facilitate perceptual optimization of GAN-based
dehazing when hazy condition varies.

e Post-processing module (optional). In view of the
tendency of producing various artifacts in dehazed images
(e.g., color shifting [5] and halo-like [10]), we propose to
remove the unpleasant artifacts by a novel application of
guided filtering [ 13]. More specifically, the hazy image will
serve as a guidance for correcting the recursively-learned
residual image. The effectiveness of such guided filtering
based post-processing on suppressing various artifacts has
been verified especially around large scene depth disconti-
nuities.

When compared with previous approaches, our Percep-
tually Optimized GAN (POGAN) can be trained in an end-
to-end fashion because it bypasses the unnecessary step of
transmission map estimation. By explicitly addressing the
issue of perceptual quality, our POGAN can be optimized
for both indoor and outdoor scenes and under a variety of
haze conditions (heavy vs. light). We have conducted ex-
tensive experimental studies with respect to both synthetic
and real-world images. In our study, we have compared
both subjective and objective visual quality of dehazed im-
ages and found that our POGAN often performs favorably
against other state-of-the-art approaches especially in terms
of subjective evaluation. Restored images by this work are
often the most faithful reproduction of original images with
respect to color vividness and fine structural details.

2. Proposed Approach

Physical characterization of hazy image formation in the
real world leads to the following approximation model [22]:

I(z) = J(2)t(z) + A(1 — t(x)), (1)

where I(z) stands for observed hazy image, J(z) is the
scene radiance (i.e., unknown clean image to be recov-
ered), A is the atmospheric light which varies depending on
weather conditions, t(x) is the so-called transmission map.
In literature, the first term J(x)t(x) is called direct attenu-

ation, and A (1 — t(x)) is called air light [22, 32, 14]. The
transmission map ¢(x) is computed by:
t(zx) = e P& 2

where (3 is the scattering coefficient of atmosphere and d(x)
is the scene depth. The larger the scene depth, the stronger
the attenuation. As shown in the above equations, both
the transmission map t(x) and the global atmospheric light
A interfere with the process of image degradation, which
makes image dehazing challenging to solve.

2.1. Generative Network via Recursive Deep Resid-
ual Learning

In this work, we propose to take a direct approach of
learning a nonlinear mapping [rom I(x) to J(x) based on
the analogy between dehazing and denoising. In denoising,
anoisy image can be represented as

I(z) = J(z) + w(x) )

where I(x),J(z) denotes noisy and clean images respec-
tively, the additive noise term w(z) ~ N(0,02) is often
assumed to be white Gaussian in the denoising literature.
We propose to reformulate Eq. (1) as follows:

I(z) = I(z) + (A = J(2))(1 — t(x)) @
= J(z) + r(x)

where r(z) = (A — J(z))(1 — t(x)) can be interpreted as
a structured error term characterizing the nonlinear signal-
dependent degradation associated with the hazy effect. By
comparing Eq. (3) and Eq. (4), we observe the apparent
analogy between two error terms - conceptually speaking,
if a residual network [15] can learn white Gaussian noise

from degraded images, it can also learn a structured one.
Inspired by the analogy between dehazing and denois-
ing, we also explore a nonlinear optimization of resid-
ual learning-based dehazing via iterative regularization
[25]. Suppose a regularized estimate of clean image from
noisy observation I(x) is given by a nonlinear mapping
®~1(I(x)) and the error is denoted by e(z) = I(z) —
®~1(I(x)) in image denoising. If e(z) is already white
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Figure 1: Perceptual optimization achieved by the proposed GAN including a generative network G, a discriminative network

D, and a post-processing module H.

Gaussian, then the optimization is finished; otherwise (i.e.,
e(z) still contains some leftover image structures), a sim-
ple strategy of further improvement is to feed the denoised
image ® ' (I(x)) back to the denoising algorithm and see
if the new error is closer to zero (when a clean image is the
fixed point, the residue goes to zero). Similarly, we can re-
cursively feed a dehazed image back to the input of the sub-
residual block - if the haze-free image is the fixed-point, the
learned residual should asymptotically goes to zero.

Figure 2 shows the architecture of our recursive deep
residual learning module with corresponding filter size (f)
and the number of feature channels (c). The recursive deep
residual learning module takes a hazy patch (50 x 50 x 3) as
input, followed by Convolution (Conv) and Rectified Linear
Unit (ReLU) layer with 64 feature channels and 3 x 3 fil-
ter size. The residual block includes 16 sub-blocks. Each
sub-block is composed of Conv, Batch Normalization (BN),
Relu, Conv, and a Elementwise (Elti) Subtraction layer. The
Elti layer takes the input from last sub-block, subtracts the
residual recovered in the current sub-block, and return a
less-hazy patch in a recursive manner. The last Elti layer
performs a pixel-wise subtraction of the input and output of
residual block followed by another Conv layer with a hy-
perbolic tangent activation function.

2.2. Discriminative Network with Adaptive Percep-
tual Loss Function

As mentioned above, it is usually difficult to address the
issue of visual quality assurance in previous transmission-
map-first approaches. Bypassing the estimation of trans-
mission map makes it possible to leverage the idea of gen-
erative adversarial networks (GAN) from image synthesis
[6] and super-resolution [17] to image dehazing. The basic
idea behind GAN is to introduce a discriminative network
as a judge telling whether the output of generative network
is real or fake. Under the context of dehazing, G produces
dehazed image patches and D classifies them as dehazed
(fake) and haze-free (real). The goal of adversarial learn-
ing is for G to produce dehazed patches that can fool D

(dehazed patches are visually indistinguishable from haze-
free ones). We have followed the discriminative architec-
ture guidelines proposed in [17, 27] which contains Conv
layers with 64, 128, 256, and 512 channels. The last Conv
layer is followed by two dense layers and a sigmoid activa-
tion function to classify the dehazed and haze-free patches.

We have adopted the perceptual loss function proposed
in [17] which is a weighted sum of MSE, VGG loss, and
adversarial loss respectively:

I =wilpyse +walvea + wsladw, ()

where w; (i=1,2,3) controls the weight of each term. The
pixel-wise MSE loss is given by:
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where J* denotes the ground truth (haze-free image) and
J& denotes the dehazed one by the G module. The VGG
loss computes the Euclidean distance between the feature
maps of J* and J¢:
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where W; ; and H; ; denotes the dimensions of extracted
feature maps. Finally, the adversarial loss can be written as:

N
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where J? is the probability that the reconstructed image is
haze-free.

To the best of our knowledge, previous GANs mostly
use loss functions with fixed weights for each module such
as[12,6,27, 16, 20]. Toward the objective of perceptual op-
timization, we propose an adaptive perceptual loss function
tailored to fit the severity of haze in an image. The ratio-
nale is that the process of dehazing has to deal with various
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Figure 2: Architecture of a deep residual network with cor-
responding filter size (f) and the number of feature channels

(©).

uncertainty factors such as direct attenuation and airlight in
the image degradation model. Since the attenuation term
J(z)t(x) dominates the thickness of haze during the degra-
dation, it is natural to adaptively choose the weights of loss
function based on the attenuation term. That is, we can ad-
just wy, we, and w3 based on the amount of attenuation con-
trolled by 3 (large 5 corresponding to heavy haze). More
specifically, we propose to use larger w; under heavy haze
situation (i.e., more emphasis on haze removal) and larger
ws under light haze condition (i.e., more emphasis on qual-
ity assurance).

2.3. Post-processing Module for Halo Removal

In challenging dehazing scenario (e.g., heavy haze with
large scene depth discontinuities), dehazed images have the
tendency of producing various halo-like artifacts (e.g., ring-
ing reduction [10], anti-halation enhancement [18], block
halo suppression [35]). We have also empirically observed
that the proposed GAN-based dehazing sometimes suffer
from noticeable halo-like artifacts especially around the ar-
eas of large depth discontinuities (i.e., rapid change of at-
tenuation). It is also known that using larger filters (e.g.,
5 x 5,7 x 7, or acombination of filters with different sizes)
tend to make the artifacts more serious (the so-called block
halo problem [35]).

To suppress the potential halo-like artifacts, we propose
to include a guided-filtering based post-processing module.
Guided filtering was first proposed in [ 13] and its effective-
ness on refining the estimated transmission map has been
well documented in the literature (e.g., [26]). Here we sug-
gest a novel application of this powerful tool into refining
the residual map as a post-processing strategy. Guided fil-
tering assumes the following linear relationship between the
guidance I and output g:

q; = ol 4 by, Vi € wy, 9

where (ag,by) are some constant lincar cocefficients. To
compute these coefficient, one needs to minimize a cost
function characterizing the difference between ¢ and the in-
put p in a window wy, [13]:

E(ak,by) = > ((anli + by —p;)® +eai)  (10)

1€Wg

As shown in Figure 3, our novel application of guided
filtering into halo removal consists of three steps. First,
We obtain raw residual r; via elemental-wise subtraction
Elti(I, Jy) where J; is recovered by applying G and D
module on the hazy image I. Second, the refined resid-
ual rs is obtained by applying a guided filter using I as the
guidance and r; as the input image. Finally, refined image
estimation J is recovered from Elti(I, ro).

3. Experimental Results
3.1. Datasets and Implementation Details

Preparation of training data plays an important role in
deep learning-based approaches. Previous works such as
MSCNN [28] and AOD [18] have used the NYU-Depth
V2 [30] dataset where color and depth images are cap-
tured by Microsoft Kinect. In view of the limited im-
age quality of the NYU-Depth V2 dataset, we have taken
799 image from the DIV2K [1] dataset with high quality
images (originally constructed for image super-resolution).
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Figure 3: The proposed post-processing module for halo suppression. The initial dehazed image J; is the input. We first
obtain r; via elemental-wise subtraction Elti(I, J;). Then refined residual ry is obtained by applying guided filtering to rq

(L is the guidance). Finally, J5 is recovered from Elti(I, rs).

Figure 4: Creation of training dataset. From top to bot-
tom row: original image from DIV2k [ 1] dataset, depth map
computed using [ | 9], and the hazy images generated by Eq.
(1.

To obtain the corresponding depth images. we have bor-
rowed a deep CNN-based approach of learning depth im-
ages from single monocular images [19]. Figure 4 shows
some examples of the learned depth maps for the prepa-
ration of training dataset. To simulate synthetic hazy im-
ages, the following parameters are used in our experiments:
we have randomly selected attenuation parameter 3 €
{0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5} since any
value beyond this range could lead to unrealistic haze (too
thin or too heavy) and unwanted noise amplification [28].
For each of the RGB channel, atmospheric light A is cho-
sen uniformly within the range of [0.7,1.0].

The test dataset consists of both synthetic and real-world
hazy images. Similar to the previous work [18], the syn-
thetic test data contains 100 images from the DIV2K dataset
(none of these images are in the training set) and 21 images
from the Middlebury Stereo Datasets [29] ; additionally, we
pick another 31 real-world images . During the training pro-
cess, the weights of each convolution layers are randomly

initialized by Gaussian variables. The patch size is 50 x 50;
the number of epochs is set to 100; the learning rates for the
first 50 and the remaining 50 epochs are set to 0.001 and
0.0001 respectively. We have selected Adam optimizer with
Betal parameter being 0.9. The network is implemented us-
ing TensorFlow and trained on a PC with an Intel i7-4790k
processor and a Nvidia GeForce Titan X GPU.

3.2. Effectiveness of Each Module

We have used ablation studies to test each module in the
proposed approach. First, we demonstrate the effectiveness
of introducing a discriminative network on visual quality
improvement. Figure 5 shows the dehazing results on a pair
of real-world images without and with a discriminative net-
work. It can be observed that dehazing with a generative
network only tends to remove haze over aggressively espe-
cially when there is heavy haze in the background. The un-
desirable consequence is that some part of the foreground
(e.g., trees and mountains) becomes unnaturally dark. By
contrast, the inclusion of a discriminative network makes
the dehazed images visually more pleasant as shown in the
right column of Figure 5.

Second, we aim at illustrating the benefit of adaptive
perceptual loss function in GAN-based dehazing. In our
experiments, we increase w; from 0.95 to 1 and ws from
0.000001 to 0.000002 respectively; and decrease ws from
0.002 to 0.001 as the attenuation parameter varies within
its operational range. Such adaptive weight setting is com-
pared against a fixed setting (w; = 1; ws = 0.000001; ws
= 0.002). Figure 6 shows the comparison of images be-
tween fixed and adaptive weights under varying haze con-
ditions. It can be verified that the proposed strategy of adap-
tive weights are capable of more effectively removing heavy
haze while preserving the visual quality under light haze
conditions.

Thrid, we justify the effectiveness of the proposed post-
processing module. Even though with a discriminative net-
work, we have observed that noticeable halo artifacts could
occur around areas with large scene depth discontinuities



Figure 5: Discriminative network improves the visual qual-
ity of dehazed images. Left: input; middle: dehazing with
G module optimized using MSE only; right: dehazing with
both G and D module optimized for human perception.

Figure 6: Benefit of adaptive perceptual loss function in
GAN-based dchazing. From left to right: input, dehazing
results of GAN with fixed weights, and dehazing results of
GAN with adaptive weights (top: heavy haze; bottom: light
haze).

(e.g., within 4-8 pixels away from the boundary between
foreground and background). Meantime, the larger the fil-
ter size, the more serious the halo artifacts become which
agrees with the observation made in [35]. Figure 7 shows
that the comparison of dehazed images before and after the
proposed post-processing module. It can be clearly seen
that undesirable halo artifacts in highlighted dashed areas
have been successfully suppressed after post-processing.

3.3. Comparison against State-of-the-Art on Syn-
thetic and Real-World Images

We have compared our POGAN-based image dehazing
with several state-of-the-art dehazing methods including:
Dark Channel Prior (DCP) [14], Non-Local Image Dehaz-

Figure 7: Post-processing module improves the visual qual-
ity of dehazed images. From left to right: input, dehazing
results without and with the post-processing module.

ing (NLD) [2], Boundary Constrained Context Regular-
ization (BCCR) [21], Multi-Scale CNN (MSCNN) [28],
DehazeNet [4], and AOD [18]. The first three meth-
ods, including DCP, BCCR and NLD, are state-of-the-
art model-based methods, and the last three are leading
learning-based methods. Two objective image quality met-
rics have been used in our comparison: Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM). We
have conducted experiments on synthetic dataset with 5 €
{0.75,1,1.25,1.5} and A € {0.7,0.8,0.9,1}. Table |
shows the average PSNR and SSIM comparison results on
synthetic testing set. Overall, it can be observed that DCP
and AOD outperform others on DIV2K and Middlebury re-
spectively; however, only ours can perform equally well on
both datasets. In fact, our PSNR/SSIM performance only
slightly falls behind the best method on both data sets.

We have also compared our method against six state-of-
the-art dehazing approaches on real-world hazy images [33]
(ImageSet C) as shown in Figure 8. This set of images con-
tains large variations of scene depths and haze thickness as
well as diverse scene structures such as portrait, landscape
and architecture. Most of the images in ImageSet C have
been included for evaluation purpose in previous studies of
single image dehazing. We summarize the superiority of
the proposed POGAN-based dehazing as follows: 1) it is
effective at removing heavy haze in the presence of large
scene depth variations such as the second row in Figure 8;
2) it significantly outperforms other competing methods in



Table 1: Comparison of PSNR and SSIM values. Bold denotes the best in it’s corresponding row.

Parameters DCP [5] NLD [20] BCCR [19] MSCNN [7] DehazeNet [6] AOD [25] Ours
DIVZK
0.7 | 2173 0895 2024 0871 1801 0832 2021 0874 1751 0751 17.07 0.892 | 21.55 0.893
B s A= 08 | 2226 0892 1999 0865 1864 0829 2136 0872 1599 0711 1984 0923 21.79 0912
=4U49, A= g9 | 2235 0883 2019 0869 1894 0821 2106 0863 1442 0655 2311 0936 2163 0893
1 2204 0874 1918 0858 1895 0812 1957 0851 1305 0594 2291 0932 2096 0.879
Average 2209 088 1991 0865 1863 0823 2055 0865 1524 0677 2073 0921 2148 0.894
0.7 | 2147 0884 1996 0866 17.80 0817 2046 0856 1651 0701 17.11 0.865 20.61 0909
A=1, A= 08 | 2203 0878 2062 0871 1858 0815 2066 0851 1488 0653 198% 0891 2013 0911
= 0.9 | 2213 0871 1985 0868 1877 0806 1923 0836 1316 0582 2098 0893 2122 0891
1 21.28 0.861 18.76 0.846 18.52 0.791 17.03 0.813 11.62 0.513 18.31 0.877 20.96 0.886
Average 2172 0873 1979 0862 1844 0807 1934 0839 1404 0612 1907 0881 2073 0.899
0.7 | 21.35 0.873 19.67 0865 1774 0801 1991 0.825 1463 0639 1682 0.812  20.74 0812
=195 A— 08 [2193 0872 2016 0864 1843 0802 1902 0816 1405 061 1888 0832 2051 0834
2 0.9 | 21.84 0862 19.82 0861 1845 0792 1721 0798 1219 0524 1822 0827 1936 0856
1 2025 0852 1791 0829 1805 0776 1479 0769 1049 0447 1492 0804 2086 0.883
Average 2134 0864 1939 0854 1816 0792 1773 0802 1284 0561 1721 0818 2036 0846
(|47 21.13 0.863 19.34 0.853 17.67 0.786 18.64 (.788 14.92 0.621 16.35 0.748 19.44 0.822
B s 0.8 | 2178 0866 2009 0869 1824 0784 1744 0771 1345 0571 1755 0761 1836 0815
=4 A= 09 | 2118 0855 1902 0842 1811 0779 1541 0751 1144 0482 1593 0.751 | 1827 0.804
1 18.89 0.842 17.52 0.838 17.55 0.766 13.04 0.718 9.91 0.409 12.61 0.726 17.91 0.781
Average 2074 0.856 1899 0851 1789 0778 1613 0757 1243 0521 1561 0746 1849 0.805
0.7 | 1483 0.791 1539 0718 1347 0.724 16,61 0836 2239 0.887 1580 0925 2332 0.883
B—075 A— 0.8 15.82 0.807 16.58 0.738 14.29 0.744 18.11 (.858 2136 (0.873 18.23 0.949 22.18 0.922
! S o 0.9 16.99 0.841 17.01 0.771 15.16 0.769 19.59 0.881 20.05 0.856 21.53 0.963 21.65 0.898
1 17.84 0.864 17.81 (0.761 15.92 0779 20.58 0.891 18.54 0.831 25.03 0.967 20.16 0.884
Average 1637 0825 1669 0747 1471 0754 1872 0866 2058 0861 2014 0951 21.82 0.896
0.7 14.49 0.748 15.44 0.685 1317 0.681 16.82 0.807 2217 0.874 15.76 0.921 21.92 0.892
B s 08 | 1582 0785 1601 0673 1412 0705 1875 0835 2091 0863 1891 0948 20.02 0901
St 0.9 1725 0.844 16.58 0.703 15.26 0.754 20.39 0.867 19.19 (.836 2293 0961 18.99 0.865
1 1831 0864 17.52 0752 1616 0774 2061 0881 1691 0793 2319 0961 19.14 0873
Average 1646 0811 1638 0703 1467 0728 19.14 0847 1979 0841 2019 0947 2001 0882
0.7 | 1421 0702 1517 0608 1291 0631 1697 0766 2194 0859 1561 0899 19.06 0878
8125 A= 0.8 | 1591 0771 1675 0662 1398 0665 1917 0799 2054 0853 1901 0929 1744 0.845
e 09 | 1763 0842 1717 0667 1528 0731 2063 0843 1836 0814 2266 0941 1887 0816
1 1874 0862 1810 0767 1628 0768 1957 0859 1591 0755 20090 00935 1769 0833
Average 1662 0.794 16,79 0676 1461 0698 1908 0816 1018 0821 1934 0926 1826 0843
0.7 | 1404 0662 1501 0607 1272 0583 1698 0718 2161 0841 1541 0.366 20,04 0.822
B8, A= 08 | 1594 0747 1594 0618 1387 0619 1927 0753 2019 0838 1891 0.807 1819 0814
09 | 1804 0836 1691 0663 1536 0705 2019 0812 1775 0799 2127 0906 1695 0791
1 1891 0.853 18.35 0.745 16.43 0.771 18.13 0.837 14.73 0.714 17.61 0.897 17.71 0.805
Average 1673 0774 1655 0658 1459 0669 1864 078 1857 0798 1831 0.891 1822 0808

terms of restoring color fidelity and vividness such as the
second to the last row in Figure 8.

4. Conclusions

In this paper, we have presented a novel perceptually
optimized GAN-based approach toward single image de-
hazing. Our approach directly learns a nonlinear mapping
from the space of hazy images to that of haze-free ones us-
ing a deep residual network without estimating transmission
maps. By casting the haze-free image as the fixed-point, we
can recursively update the residue estimate until the conver-
gence. To ensure visual quality, a discriminative network
is introduced for adversarial learning and an adaptive per-
ceptual loss function is developed to handle varying hazy
conditions. Moreover, we proposed a novel application of
guided filtering into the suppression of halo-like artifacts in

dehazed images. Our extensive experimental results have
shown that the subjective qualities of dehazed images by
our perceptually optimized GAN (POGAN) are often more
favorable than those by existing state-of-the-art approaches.
The PSNR/SSIM performances of POGAN are also highly
competitive especially when the hazy condition varies.
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