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Abstract

The presence of the haze or fog particles in the atmo-

sphere causes visibility degradation in the captured scene.

Most of the initial approaches anticipate the transmission

map of the hazy scene, airlight component and make use

of an atmospheric scattering model to reduce the effect of

haze and to recover the haze-free scene. In spite of the

remarkable progress of these approaches, they propagate

cascaded error upstretched due to the employed priors. We

embrace this observation and designed an end-to-end gen-

erative adversarial network (GAN) for single image haze re-

moval. Proposed network bypasses the intermediate stages

and directly recovers the haze-free scene. Generator archi-

tecture of the proposed network is designed using a novel

residual inception (RI) module. Proposed RI module com-

prises of dense connections within the multi-scale convolu-

tion layers which allows it to learn the integrated flavors

of the haze-related features. Discriminator of the proposed

network is built using the dense residual module. Further, to

preserve the edge and the structural details in the recovered

haze-free scene, structural similarity index and edge loss

along with the L1 loss are incorporated in the GAN loss.

Experimental analysis has been carried out on NTIRE2019

dehazing challenge dataset, D-Hazy [1] and indoor SOTS

[22] databases. Experiments on the publically available

datasets show that the proposed method outperforms the ex-

isting methods for image de-hazing.

1. Introduction

Visibility in the outdoor scene drastically decreases due

to the presence of fog in the atmosphere. This degrades the

ability of humans or computer vision algorithms to perceive

the scene information. Thus, in the presence of the haze or

fog particles, a computer vision algorithm faces difficulty to

achieve the desired output as in general they expect an input

image without a quality degradation. Thus, the presence of

the haze or fog particles in the atmosphere degrades the per-

formance of computer vision algorithms such as object de-

Figure 1. Haze-free scene recovered using the proposed method.

The hazy scene is on the left side and recovered haze-free scene

using proposed RI-GAN is shown on the right side. Marked re-

gions show the color patch in hazy and haze-free scene.

tection [9], moving object segmentation [25] etc. Therefore,

to improve the performance of vision algorithms in the hazy

environment, image de-hazing is a required pre-processing

task.

Research in the field of image de-hazing is roughly di-

vided into prior based methods [12, 35, 16, 3, 36, 43, 18, 13]

and learning based methods [6, 26, 8]. Among these, prior

based methods rely on the haze relevant priors and extract

haze relevant features. These haze relevant features are

further used to estimate the scene transmission map and

atmospheric light followed by atmospheric scattering

model [16] to recover the haze-free scene. Learning-based

approaches anticipate these parameters using the trained

deep network. In spite of the remarkable progress of these

approaches, they propagate cascaded error upstretched due

to the employed priors. To resolve this issue, we propose

an end-to-end conditional generative adversarial network

(cGAN) for single image haze removal. Figure 1 shows

the outdoor hazy scene from NTIRE2019 validation set

[4, 2] and haze-free scene recovered by proposed network.

Proposed network is built using basic principles of residual

and inception (RI) modules. Thus, named as RI-GAN.

Proposed RI-GAN bypasses the estimation of interme-

diate feature maps and directly recovers the haze-free scene.
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The key contributions of this work are listed below:

1. End-to-end conditional generative adversarial network

named as RI-GAN is proposed for image de-hazing.

2. A novel generator network is proposed which is de-

signed using a combination of both residual and incep-

tion module.

3. A novel discriminator network is designed using dense

connections in the residual block.

4. A combination of structural similarity index (SSIM)

loss and edge loss is incorporated along with the L1

loss to optimize the network parameters.

Rest of the paper is organized as Section 1 and 2 illustrate

the introduction and literature survey on image de-hazing

respectively. Section 3 presents the proposed method for

image de-hazing. Section 4 depicts the training of the pro-

posed RI-GAN. Further, the experimental results are dis-

cussed in Section 5. Finally, Section 6 concludes the pro-

posed method for image de-hazing.

2. Literature Survey

Effect of the haze is directly proportional to the depth

of an object from the camera device. To understand this

non-linearity, various approaches have been proposed such

as polarized filters [28, 30], use of multiple images of same

scenery [7, 23], prior based hazy models [12, 35, 16, 3, 36,

43, 18, 13] etc. Initially, in the area of image de-hazing,

Schechner et al. [28, 30] proposed the polarized filters.

Their approach works with multiple images of the same

scene but differs in polarization angle. This approach fails

because of its multi-image dependancy. Nayer et al. [23]

overcame the hardware complexity by correlating dissimi-

larity between multiple images of the same scene but cap-

tured in different weather. With this approach, it is unable to

restore the haze-free scene immediately, if multiple images

of the same scene are not available for different weather

conditions. Cozman et al. [7] resolved multi-image depen-

dency by utilizing 3D geometrical model which is based

upon the depth information of the hazy scene.

In the last decade, image de-hazing has made remarkable

progress due to the convincing assumptions regarding the

haze spread or haze density. Tan et al. [35] proposed con-

trast enhancement of the hazy scene. They removed haze

by maximizing the local contrast of the hazy image. How-

ever, this method fails and create blocking artifacts when

there is a depth discontinuity in the hazy image. He et al.

[16] proposed dark channel prior (DChP) to restore the vis-

ibility in the hazy scene. It comprises of dark pixels i.e.

pixels which are having very low intensity among one of

the color channels for a given hazy-free scene. This simple

but effective assumption is used to estimate the haze den-

sity and atmospheric light to recover the haze-free scene.

DChP fails in complicated edgy structures and undergoes

the halo effect [6]. The efficiency of [16] depends upon

the accurate estimation of the scene transmission map. To

estimate the robust transmission map of the hazy scene, re-

searchers follow post-processing techniques such as guided

filtering [15], median filtering [18, 41] etc. Lai et al. [20]

proposed two priors to estimate the optimal transmission

map. They estimated locally consistent scene radiance and

context-aware scene transmission and utilized atmospheric

scattering model to recover the haze-free scene. Wang et al.

[38] utilized multi-scale retinex algorithm to estimate the

brightness components. Further, with the help of a physical

model, they recovered the haze-free image. Zhu et al. [43]

proposed a color attenuation prior (CAP) which considers a

HSV color space to extract the haze-relevant features.

To avail the advantages of multiple haze priors, Tang

et al. [36] proposed regression framework for image de-

hazing. They have proposed the extraction of different

haze relevant features using existing haze relevant priors

and learned the integrated features to estimate the robust

scene transmission map. This approach improved the accu-

racy in single image haze removal. However, it propagates

the errors upstretched due to the employed priors. Thus, to

minimize the cascading error, researchers make use of con-

volutional neural networks (CNN). Existing learning-based

approaches [6, 26, 8, 9] estimate the scene transmission

map using CNN. Further, a global airlight estimation fol-

lowed by atmospheric scattering model restores the haze-

free scene.

Methods discussed above share the same belief that in or-

der to recover a haze-free scene, estimation of an accurate

scene transmission map is essential. The atmospheric light

is calculated separately and the clean image is recovered

using the atmospheric scattering model. Although being

intuitive and physically grounded, such a procedure does

not directly measure or minimize the reconstruction dis-

tortions. As a result, it will undoubtedly give rise to the

sub-optimal image restoration quality. The errors in each

separate estimation step will accumulate and magnify the

overall error. In this context, Li et al. [21] designed an

end-to-end architecture known as AOD-Net for single im-

age haze removal. They analyzed the internal relationship

between the end-to-end de-hazing network and traditional

atmospheric model. Further, Swami et al. [33] proposed

an end-to-end network based on conditional GAN for im-

age dehazing. Recently, researchers [11, 10, 24] make use

of unpaired training approach for various computer vision

applications. [11, 10] utilized unpaired training approach

for image de-hazing whereas [24] found its use for moving

object segmentation. In the next Section, we discussed the

proposed method for single image haze removal.



Figure 2. Architecture of the proposed generative adversarial de-hazing network. (a) Encoder block (b) Decoder block (c) Proposed

Residual Inception module.
⊕

denotes the element-wise summation operation. Best viewed in color.

3. Proposed Method for Image Dehazing

As discussed in the previous Section, existing atmo-

spheric model-based approaches propagate cascaded error

upstretched due to the employed priors. Thus, in this pa-

per, we propose an end-to-end generative adversarial net-

work for single image haze removal. Proposed network in-

corporates advantages of both residual and inception mod-

ules. The motivation behind the use of residual and incep-

tion module is discussed in the next subsection.

3.1. Motivation

Training of deeper network is a crucial task as it un-

dergoes vanishing gradients. Thus, training accuracy of

such networks degrades with an increase in network depth

[14, 32]. Another aspect of training of deeper CNN is the

availability of training data. Learning millions of network

parameters over comparatively small training set turns into

network overfitting. In these contexts, He et al. [17] pro-

posed the residual learning approach (ResNet) to optimize

the deep networks irrespective of the network depth and a

number of network parameters. They introduced the con-

cept of identity mappings to overcome the vanishing gradi-

ent problem. The concept of identity mappings is coarsely

analogous to the connections in the visual cortex (as it com-

prises of feed-forward connections). Thus, it outperforms

in different popular vision benchmarks such as object de-

tection, image classification, and image reconstruction.

Another important aspect of the design of a deep network

involves the choice for filter size (i.e. 3 × 3 or 5 × 5 etc.). It

becomes more difficult as one has to do this for every layer.

There is no as such ground rule which could tell the best

combination of filter sizes. Szegedy et al. [34] resolved this

problem using Inception module. Inception module helps to

tackle the network design difficulties by letting the network

to decide the best route for itself. These aspects of convolu-



tion neural network motivate us to design a network using

principles of both residual and inception modules for single

image haze removal.

3.2. Proposed Generator Network

The proposed generator network architecture is di-

vided into three parts namely: (1) Encoder block

(2) Residual-Inception Module, and (3) Decoder block.

Encoder/Decoder block consists of simple convolu-

tion/deconvolution layer followed by nonlinear activation

function (ReLU). We use instance normalization [37] to

normalize the network feature maps. Figure 2 (a) shows the

encoder block. We design four encoder and two decoder

blocks with filters having a spatial size of 3× 3. Parameter

details are discussed in Section 3.2.1.

Proposed Residual-Inception module comprises of three

parallel convolution layers having a spatial size of 3×3,

5×5 and 7×7 similar to the concept of inception module

proposed in [34]. Further, to integrate features learned by

the respective convolution layer, we employed feature con-

catenation followed by convolution layer as shown in Figure

2 (c). We call this a dense concatenation, as feature maps

of every layer are integrated with every another layer. Pro-

posed feature integration approach differs from original in-

ception module [34] as it integrates the feature maps in two

stages i.e. dense concatenation followed by element-wise

summation. Finally, 1×1 convolution layer is designed to

match the feature dimension with the input of the RI mod-

ule. Here, we make use of identity mapping [14] shown by

the red line in Figure 2 (c) to add these learned features with

the input features. It helps to avoid vanishing gradient prob-

lem and keeps alive the error gradients across the network.

Olaf et al. [27] proposed U-Net architecture for medical

image segmentation. The major purpose behind skip con-

nections in U-Net architecture was to share the low-level

features learned at initial convolution layers to the decon-

volution layers. This concatenation of feature maps helped

them to generate the prominent edge information in the out-

put image. Inspired from this, we incorporated skip connec-

tions in the proposed RI-GAN as shown in Figure 2 gen-

erator architecture. These skip connections help to share

the learned features across the network which causes better

convergence.

3.2.1 Parameter Details of the Proposed Generator

Network

Let a 3×3 Convolution-InstanceNormalization-ReLu layer

with n filters and stride ’1’ denoted as conv3sd1-n.

Similarly, a 3×3 DeConvolution-InstanceNormalization-

ReLu layer with n filters and upsampling factor ’2’

denoted as deonv3up2-n. In Residual Inception (RI)

module, parallel convolution layers of filter-size 3×3,

5×5 and 7×7 having stride 1 and n/2 filters. Further,

convolution layer with stride 1 and filter-size 3×3 has

n filters. With these details, let us denote RI module by

ParConvSd1-n. Thus, proposed generator network is

represented as: conv3sd1-64, conv3sd2-256,

conv3sd2-256, (ParConvSd1-256)×9,
deonv3up2-64, deonv3up2-32, conv3sd1-3.

3.3. Proposed Discriminator Network

Isola et al. [19] proposed a patchGAN to discriminate

the generator’s fake output from the real one. We utilized

the approach of patchGAN in proposed discriminator net-

work. It comprises of combination of encoder block fol-

lowed by the proposed dense residual block (shown in Fig-

ure 2). Each encoder block down-samples the input feature

maps by a factor of 2 and feeds to the next layer. We went

up to the two down-samplings1.

3.3.1 Parameter Details of the Proposed Discriminator

Network

Let, a 3×3Convolution-InstanceNormalization-ReLu layer

with n filters and stride ’1’ denoted as conv3sd1-n.

The residual block having 3×3 Convolution layers fol-

lowed by ReLU Layer is denoted by Res-n (shown

in Figure 2). Sigmoid layer is represented by

Sigm. Thus, proposed discriminator network is

represented as: conv3sd2-64, conv3sd2-256,

(Res-256)×2, conv2sd1-1, sigm.

3.4. Network Loss Function

It is a prime requirement of any image restoration tech-

nique to recover the strructural details. Especially in single

image haze removal, retaing structural details in recovered

haze-free scene improves the scene visibility. Thus, it is re-

quired to aquaint the network learning about structural loss

along with the L1 loss. Thus, we utilized the structural sim-

ilarity index metrix (SSIM) as a loss function along with

traditional L1 loss. Also, to generate the true edge informa-

tion we considered the edge loss while training the proposed

RI-GAN.

3.4.1 SSIM Loss

Let, x and y are the observed and output image respectively.

Also, G (x) represents output of the proposed generator for

the input x. Thus, SSIM between G (x) and y is given as

follows:

SSIM = [l (G (x) , y)]
α
· [c (G (x) , y)]

β
· [s (G (x) , y)]

γ

(1)

1Number of encoding levels are experimentally finalized.



where, luminance (l), contrast (c), and structural terms (s)

are the characteristics of an image having α, β and γ as the

exponents respectively and given as,

l (G (x) , y) =
2µG(x)µy + C1

µ2
G(x) + µ2

y + C1

c (G (x) , y) =
2σG(x)σy + C2

σ2
G(x) + σ2

y + C2

s (G (x) , y) =
σG(x)y + C3

σG(x)σy + C3

If α = β = γ (the default exponents) and C3 =
C2

2
then

Eq. 1 reduces to,

SSIM =

(

2µG(x)µy

) (

2σG(x)y + C2

)

(

µ2
G(x) + µ2

y + C1

)(

σ2
G(x) + σ2

y + C2

) (2)

where, µG(x), µy, σG(x), σy and σG(x)y are the local

means, standard deviations, and cross-covariance for im-

ages G (x), y respectively. C1 and C2 are the small con-

stants added to avoid the undefined values.

Hence, SSIM loss can be defined as,

ℓSSIM (G) = 1− SSIM (G (x) , y) (3)

3.4.2 Edge Loss

To compute the edge map for a given image, we consider so-

bel edge detector. Let, EG(x) and Ey represents edge maps

of generated and reference (ground truth) scene, then edge

loss is given as,

ℓEdge (G) =‖ EG(x) − Ey ‖1 (4)

Therefore, overall loss function is,

(5)
L (G, D) = lcGAN (G, D) + λ · lSSIM (G)

+ lEdge (G) + λ · lL1 (G)

where, lcGAN (G, D) is a conditional GAN loss [19], lL1 is

traditional L1 loss, and λ is loss weightage2. Thus, overall

objective of the proposed GAN is given as,

G∗ = argm
G
inm

D
ax L (G, D) (6)

In order to generate haze-free scene G∗ is used during test-

ing phase.

2Experimentally λ=10 is considered for the proposed network.

Table 1. Quantitative evaluation of proposed and existing meth-

ods for image de-hazing on a NTIRE2019 [4] challenge database.

Note: SSIM and PSNR - higher is better.

Approach
Validation Test

SSIM PSNR SSIM PSNR

Baseline 0.39 10.79 - -

DChP [16] 0.28 12.90 - -

Pix2Pix [19] 0.35 13.72 - -

Proposed Method 0.47 16.31 0.54 16.47

4. Training of the Proposed RI-GAN

Training dataset comprises of synthetic and real-world

hazy images and their respective haze-free scenes. To

generate synthetic images, we consider NYU depth [31]

dataset. Indoor hazy images (100) are synthetically gen-

erated using procedure given in [8] with β = 0.8, 1.6
and airlight (A) = [1, 1, 1]. These synthetically gener-

ated hazy images are used only for training and there is no

overlap between these images and images used for testing.

Real-world hazy and haze-free scenes are collected from

the training set of outdoor NTIRE2018 dehazing challenge

(35) [5] and NTIRE2019 dehazing challenge (45) [4]. Com-

binely, 100 synthetic hazy images generated from NYU

depth database and 80 outdoor hazy scenes from NTIRE

database along with their respective haze-free scenes are

used to train the proposed RI-GAN. The remaining setting

of the model is similar to the [19]. Proposed network is

trained for 200 epochs on a computer having 4.20 GHz In-

tel Core i7 processor and NVIDIA GTX 1080 8GB GPU.

5. Experimental Results

In this Section, we carry both quantitative and qualita-

tive evaluation to validate the proposed RI-GAN for image

de-hazing. We consider structural similarity index (SSIM)

[39], peak signal to noise ratio (PSNR) and color differ-

ence measure (CIEDE 2000) [29] for quantitative evalua-

tion. We categorize the experiments into two parts: perfor-

mance of the proposed RI-GAN on synthetic and real-world

hazy scenes.

5.1. Performance on Synthetic Hazy Images

We utilized three databases (1) Validation and testing set

of NTIRE2019 [4] dehazing challenge, (2) D-Hazy [1], and

(3) SOTS [22] to validate the proposed RI-GAN for image

de-hazing.



Figure 3. Visual result of proposed RI-GAN and existing methods [16, 19] on NTIRE2019 dehazing challenge database. Marked region

denotes the color patch in hazy and haze-free scene. Note: Please magnify the figure to understand the minor details.

Table 2. Quantitative evaluation of the proposed and existing meth-

ods for image de-hazing on D-Hazy [1] database. Note: SSIM and

PSNR - higher is better and CIEDE2000 - lower is better.

Approach SSIM PSNR CIEDE2000

DehazeNet [6] 0.7270 13.4005 13.9048

C2MSNet [8] 0.7201 13.6017 12.4800

MSCNN [26] 0.7231 12.8203 15.8048

DChP [16] 0.7060 12.5876 15.2499

CAP [43] 0.7231 13.1945 16.6783

DDN [40] 0.7726 15.5456 11.8414

AODNet [21] 0.7177 12.4120 16.6565

Pix2Pix [19] 0.7519 16.4320 11.1876

CycleDehaze [11] 0.6490 15.4130 15.0263

Proposed Method 0.8179 18.8167 9.0730

5.1.1 Quantitative Analysis

NTIRE2019 [4] dehazing challenge database consists set of

five hazy scenes of spatial resolution 1200×1600 for both

validation and testing phase. These images are character-

ized by dense haze. The dense haze has been produced us-

ing a professional haze/fog generator that imitates the real

conditions of hazy scenes. Table 1 describes the result of

proposed RI-GAN and existing state-of-the-art methods on

the NTIRE2019 dehazing challenge database. From Table

1, we can clearly observe that the proposed RI-GAN out-

performs prior-based methods for SSIM by a large margin

(almost 20%). Also, we validate proposed RI-GAN against

the conditional GAN approach known as Pix2Pix network

[19]. To train the Pix2Pix, we follow the same training data

and the training procedure by which proposed RI-GAN is

trained. From Table 1, we can clearly observe that the pro-

posed RI-GAN outperforms the existing Pix2Pix approach

by a large margin. As ground truths of the testing set are not

available, we have not evaluated the existing approaches on

the testing set using SSIM and PSNR.



Figure 4. Comparison between proposed RI-GAN and existing methods [16, 6, 8, 21] on real-world hazy images for single image haze

removal. Please magnify the figure to understand the minor details in images.

D-Hazy [1] is a standard dataset used to evaluate the

performance of various algorithms for image de-hazing. It

comprises of pair of 1,449 indoor hazy and respective haze-

free scenes. We utilized the entire database i.e. 1,449 im-

ages for quantitative analysis of the proposed RI-GAN for

image de-hazing. The performance of RI-GAN is compared

with the existing state-of-the-art methods on D-Hazy [1]

database as shown in Table 2. It is evident from Table 2 that

the proposed RI-GAN outperforms the other existing meth-

ods by a large margin for single image de-hazing. Specif-

ically, proposed RI-GAN increases SSIM by almost 9%
as compared to the prior-based deep learning approaches

[8, 6, 26] and increases by 5% as compared to end-to-

end deep learning methods [40, 21, 42, 11] which shows

the robustness of RI-GAN to recover the haze-free scene.

Also, there is a significant improvement in the PSNR and

CIEDE2000 of the proposed RI-GAN as compared with the

existing state-of-the-art methods.

SOTS database [22] is generated from set of 50 images

and their respective depth maps from NYU-depth database

[31]. From each haze-free image and its depth map, 10

hazy images are generated with different values of β and

airlight using atmospheric scattering model. Thus, even

though there is an overlap of some scene in D-Hazy and

SOTS database, different airlight and density of haze make

a large difference between them. Thus, we evaluated the

performance of proposed RI-GAN on SOTS database. We

considered all 500 hazy images for the analysis. Table 3

depicts the result of the proposed and existing methods on

SOTS database. We can observe that proposed RI-GAN

outperforms state-of-the-art methods in terms of PSNR and

appears very close to AODNet [21].

5.1.2 Qualitative Analysis

Figure 3 shows the sample hazy images from validation and

test set of NTIRE2019 image dehazing challenge database

and corresponding de-hazed images using the proposed

method. From Figure 3, we can clearly observe that pro-

posed RI-GAN adequately reduces the effect of dense haze



Table 3. Quantitative evaluation of proposed and existing methods

for image de-hazing on SOTS [22] database. Note: SSIM and

PSNR - higher is better and CIEDE2000 - lower is better.

Approach SSIM PSNR CIEDE2000

DehazeNet [6] 0.8472 21.1412 6.2645

C2MSNet [8] 0.8152 20.1186 8.306

MSCNN [26] 0.8102 17.5731 10.7991

DChP [16] 0.8179 16.6215 9.9419

CAP [43] 0.8364 19.0524 8.3102

DDN [40] 0.8242 19.3767 9.5527

AODNet [21] 0.8599 19.0868 8.2716

Pix2Pix [19] 0.8200 16.8440 9.8386

CycleDehaze [11] 0.6923 15.8593 14.0566

Proposed Method 0.8500 19.8280 8.2993

and recovers the haze-free scene. Due to robust training,

proposed RI-GAN is able to generate the scene informa-

tion even in dense haze region. Simplest visual evaluation

for any method on NTIRE2019 challenge database is to ob-

serve the color patch in the recovered haze-free scene. The

marked region in Figure 3 witnessed the recovery of the

color patch in a haze-free scene without much color distor-

tion. Thus, it can be concluded that the proposed RI-GAN

preserves the color information irrespective of the dense

haze. Combination of the proposed losses serves as an im-

portant role in preserving the structural information. We can

clearly observe this from Figure 3 (a) as the minute net-like

structure is also recovered in the resultant haze-free scene.

We compared the results of proposed RI-GAN with ex-

isting methods [16, 19]. Figure 3 witnessed the failure of

prior-based method [16] to reduce the effect of dense haze

and to recover the haze-free scene without color distortion.

On the other hand, end-to-end approach [19] reduces the

haze at satifactory level but fails to retain the structural de-

tails in the recovered haze-free scene. From visual analysis,

we can conclude that, proposed RI-GAN recovers the haze-

free scene at the same time preserves the structural details

and color information.

5.2. Real World Hazy Images

Due to the unavailibility of pair of the real-world hazy

and haze-free scenes, it is difficult to carry quantitative

analysis of image de-hazing algorithms for real-world hazy

scenes. Therefore, we carry only qualitative analysis for

the real-world hazy scenes. Five frequently used real-world

hazy scenes are utilized here for analysis. Result compari-

son of proposed and existing approaches on these images is

shown in Figure 4. From Figure 4, we can clearly observe

that the proposed RI-GAN generates the appropriate scene

information at the same time preserves the structural details

in recovered haze-free scene. We compare the results of

existing prior-based hand-crafted and learning approaches

[16, 6, 8] and end-to-end dehazing approach [21]. Qualita-

tive analysis shows that proposed RI-GAN outperforms the

other existing approaches and generates a visually pleasant

haze-free scene.

6. Conclusion

In this work, we propose an end-to-end generative ad-

versarial de-hazing network for single image haze removal.

A novel generator network which is designed using residual

and inception principles named as Residual Inception GAN

(RI-GAN). Also, a novel discriminator network using dense

residual module is proposed to discriminate between fake

and real samples. To preserve the structural information in

the recovered haze-free scene, we propose a combination of

SSIM and edge loss while training the proposed RI-GAN.

Performance of the proposed RI-GAN has been evaluated

on four benchmark datasets namely: NTIRE2019 challenge

dataset [4], D-Hazy [1], SOTS [22] and real-world hazy

scenes. The qualitative analysis has been carried out by ana-

lyzing and comparing the results of proposed RI-GAN with

existing state-of-the-art methods for image de-hazing. Ex-

perimental analysis shows that the proposed RI-GAN out-

performs the other existing methods for image de-hazing. In

the future, this work can be extended to analyze the effect

of haze on the performance of different algorithms for high-

level computer vision task such as object detection, human

action recognition, and person re-identification. Also, the

architecture of the proposed residual inception module can

be extended for other computer vision applications such as

single image depth estimation, semantic segmentation.
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