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Abstract

Single image super-resolution (SR) is extremely difficult

if the upscaling factors of image pairs are unknown and

different from each other, which is common in real image

SR. To tackle the difficulty, we develop two multi-scale deep

neural networks (MsDNN) in this work. Firstly, due to the

high computation complexity in high-resolution spaces, we

process an input image mainly in two different downscal-

ing spaces, which could greatly lower the usage of GPU

memory. Then, to reconstruct the details of an image, we

design a multi-scale residual network (MsRN) in the down-

scaling spaces based on the residual blocks. Besides, we

propose a multi-scale dense network based on the dense

blocks to compare with MsRN. Finally, our empirical exper-

iments show the robustness of MsDNN for image SR when

the upscaling factor is unknown. According to the prelimi-

nary results of NTIRE 2019 image SR challenge, our team

(ZXHresearch@fudan) ranks 21-st among all participants.

The implementation of MsDNN is released at: https:

//github.com/shangqigao/gsq-image-SR

1. Introduction

Single image super-resolution (SR) aims at estimating

the mapping from low-resolution (LR) to high-resolution

(LR) spaces[4, 1, 5]. Interpolation is one of the most

common methods in super-resolving an image without re-

ferring the priors of its ground truth. However, several

works showed that it would decimate the details of an im-

age [27, 6, 26]. Recently, the learning-based methods have

been widely applied in image SR thanks to its robust ability

of recovering details. The learning-based methods aim at

estimating the end-to-end mapping from LR to HR image

pairs by adopting some well-known deep neural networks

(DNN). The methods could be classified into two categories

according to the manners of processing LR images, i.e., the

methods in LR and HR spaces.

The learning-based methods in LR space are generally

proposed to reconstruct the SR image of an input under the

given upscaling factor [17, 20, 7, 14, 15, 28, 3]. For a given

upscaling factor, the results of NTIRE 2017 image SR chal-

lenge showed that the learning-based methods perform ro-

bust when the input images are noise free [22]. In reality,

natural images are inevitably accompanied with unknown

noise, i.e., the downscaling operators from HR to LR im-

ages are different. Therefore, the noisy image SR is ex-

tremely challenging, which was verified in the NTIRE 2018

image SR challenge [23].

The learning-based methods in HR space are also devel-

oped to approximate the mapping from LR to HR image

pairs using networks [6, 13, 12], but their inputs have the

same size with the corresponding outputs. If the upscal-

ing factor is given, the input will be the interpolation of an

LR image. In reality, both close-shot and long-shot could

be existed in an image dataset. The upscaling factors of

close-shot and long-shot should be different if we want to

obtain the images with high quality. Therefore, we expect

to develop a method which has generalization capability to

different upscaling factors.

The NTIRE 2019 image SR challenge1 provided a

dataset in which the sizes of each LR and HR image pair

are the same, i.e., the upscaling factors of LR images are un-

known and possibly different. The training dataset is small

due to the fact that there are only 60 image pairs provided.

Besides, the dataset is composed of the images obtained by

two different cameras. Overall, the downscaling operators

from HR to LR images are different. Therefore, one diffi-

culty of this challenge is to develop a method which per-

forms robust in super-resolving the LR images obtained by

different downscaling operators. Another challenge is to ex-

plore an approach with low computation complexity since

the LR images are very large in the testing phase. To tackle

the former, we devote to designing a deep neural network

(DNN) thanks to its robust ability in reconstructing the de-

tails of an image. To solve the latter, we propose a multi-

scale model to downscale the input images.

In this work, we develop two multi-scale deep neural

networks to solve the problems from NTIRE 2019 image

1http://www.vision.ee.ethz.ch/ntire19/
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SR challenge. For the learning-based methods developed in

HR space, the number of filters in each convolutional layer

should be small due to the large sizes of testing images. To

increase the features maps of each layer, we downscale an

input to obtain its downscaling, and process the input and

two downscaling images in HR space (DS0), downscaling

×2 (DS2) and downscaling ×4 (DS4) spaces, respectively.

Overall, we develop two networks in downscaling spaces to

recover the details of input images, i.e., multi-scale residual

networks (MsRN) and multi-scale dense network (MsDN).

MsRN is mainly developed in DS2 and DS4 while MsDN

is exploited in each space. Our experiments show that the

training and testing efficiency in downscaling spaces are

much higher due to the fact that the size of a downscaling

image is greatly decreased.

The rest of this work is organized as follows. Section 2

shows the related works about the residual and dense net-

works for image SR. We develop two multi-scale networks

in Section 3. Section 4 gives the details of training strate-

gies. The description of our experiments is presented in

Section 5. We discuss the proposed method in Section 6

and conclude this work in Section 7.

2. Related works

The aim of single image SR is to estimate the mapping

from LR to HR image pairs. Recently, DNN has been

widely applied in image SR due to its ability of simulat-

ing complex mappings. Dong et al. [6] first proposed to

approximate the mapping from LR to HR image pairs us-

ing a three layers convolutional neural network. Since then,

other architectures, such as RNN [21, 8, 16], ResNet [10],

and GAN [9], have been applied in image SR.

ResNet was first proposed by He et al. [10] for the task

of classification. Ledig et al. [15] successfully introduce

it to image SR and developed an approach referred as SR-

ResNet. SRResNet preserved the batch normalization from

original residual blocks, which was showed to consume

amounts of memory in computation and restrict the range

flexibility from networks for image deblurring [18] and SR

[17]. Therefore, Lim et al. [17] proposed a new residual

block by removing the batch normalization and developed

an enhanced deep residual network referred as EDSR. The

comparison of ResNet, SRResNet and EDSR is showed in

Figure 1.

The skip connections in ResNet are critical since they

constraint a residual block to learn the residual between its

input and output [10]. To explore the advantages of skip

connection, DenseNet proposed to link all layers in the net-

works to efficiently train a very deep networks [11]. To

adopt the idea of DenseNet for image SR, Tong et al. [25]

developed a method, referred as SRDenseNet, to estimate

the mapping from LR to HR image pairs. Motivated by the

idea of EDSR and SRDenseNet, we will design two multi-

(a) ResNet (b) SRResNet (c) EDSR

Figure 1. The comparison of residual blocks in ResNet [10], SR-

ResNet [15], and EDSR [17].

scale deep neural networks for single image SR with un-

known upscaling factors and downscaling operators in Sec-

tion 3.

3. Multi-scale deep neural networks

In reality, images are often obtained by different kinds

of cameras. Besides, to reconstruct the SR image with high

quality, the upscaling factors of close-shot and long-shot

could be different. Overall, the challenge of realistic image

SR is that we need to develop a method which has general-

ization capacity to both the upscaling factors and downscal-

ing operators.

3.1. Multi­scale residual networks

Deep residual networks show a big potentiality in ap-

proximating the end-to-end mapping from LR to HR spaces.

The results of NTIRE 2018 image SR challenge [23]

showed that the ResNet-based methods perform robust

when LR images are obtained by unknown downscaling op-

erators. However, for NTIRE 2019 image SR challenge, it

is extremely expensive to develop a deep residual networks

in LR space since the sizes of LR and HR image pair are the

same. To be specific, the HR image from this challenge is

firstly downscaled by an unknown operator, then the down-

scaling image is interpolated to obtain a LR image with the

same size as the HR image. Therefore, the number of filters

in each layer will be limited by the single GPU memory due

to the high computation complexity in LR space.

The previous works have verified that a wide convolu-

tional layer could improve the performance of deep resid-

ual networks [17, 28]. Inspired by this, we propose a multi-

scale residual network (MsRN) to get rid of the limitation

of GPU memory and widen the convolutional layers of this

network, as shown in Figure 2. The architecture of MsRN

in DS2 or DS4 space is a deep residual network, and in

DS0 space is composed of a convolutional layer. Moreover,

the Downscale in Figure 2 denotes a convolutional layer



Figure 2. The architecture of the proposed multi-scale residual net-

works.

with the strides equal to 2. There are several advantages

about this architecture. First, the training and testing of

MsRN are cheap due to the fact that the main computation

is implemented in the two downscaling spaces. Besides, the

maximal number of filters in DS2 could be four times of it

in DS0, which is important to improve the performance of

MsRN. Finally, the connection in DS0 could reduce the loss

of information from an LR image in the process of down-

scaling.

3.2. Multi­scale dense networks

As shown in ResNet, the output of an residual block is

the sum of its main and identity connections. Although the

structure performs robust in learning the residual between

its input and output, it may leads to the loss of useful in-

formation from the input. To solve the problem, we have

designed a skip connection in DS0 space for MsRN, but

it can not prevent the loss of information in DS2 and DS4

spaces which is induced by the depth of networks.

The DenseNet is proposed to sufficiently take the advan-

tages of skip connections. Motivated by this, we develop a

multi-scale dense network (MsDN) for image SR, as shown

in Figure 3. The networks in DS0, DS2, and DS4 are mainly

composed of the DenBody, of which the detailed architec-

ture is presented in Figure 4. As shown in Figure 4, the first

three blocks are concatenated with the final three blocks to

reduce the loss of information. Compared with MsRN, the

depth of MsDN could be much smaller due to the amount

of skip connections. Therefore, the training and testing of

MsDN are cheaper than MsRN although there is a dense

network in DS0.

4. Training and testing strategies

As well as we known, the training of DNN on a small

dataset is very difficult due to the overfitting. One method to

Figure 3. The architecture of the proposed multi-scale dense net-

works.

Figure 4. The detailed structure of DenBody in the multi-scale

dense networks.

tackle the difficulty is to use regularization, such as weight

decay, but it would increase the computation complexity.

Another approach to solve the problem is to augment a

small dataset by flipping and rotations, which is widely uti-

lized in computer vision.

The NTIRE 2019 image SR challenge provided a train-

ing dataset with only 60 image pairs, which is not enough

for the training of deep networks. Therefore, in the training

stage. we use the strategy of augmentation to prevent our

models from overfitting. To be specific, let flr and fud de-

note the left-right and up-down flipping, respectively, and r

denotes the 90 degree rotations. Then every training image

would be mapped by the three mappings one by one with

a possibility of one in two. This strategy has showed to be

useful in increasing the diversity of a training dataset.

For image SR, the SR image of an input could be en-

hanced by averaging the SR images derived from the trans-

formations of the input [24]. Therefore, in the testing phase,

we utilize the strategy to enhance the performance of image

SR. Concretely, Let us denote an input LR image as ILR,



Table 1. The settings of multi-scale deep neural networks.

Options Baseline-R MsRN Baseline-D MsDN

#Total blocks (32,−,−) (0, 32, 32) (12,−,−) (12, 12, 12)
#Filters (16,−,−) (3, 96, 96) (16,−,−) (12, 48, 96)

#Downscale – {96, (48, 96)} – {48, (48, 96)}
#Additions 32 64 0 0

#Concatenations 0 1 15 46

#Parameters 9.4K 113.3K 5.8K 91.9K

and MsDNN as F , then the SR image of ILR will be ob-

tained by averaging the elements in the following set,

{F (I0), F (I1), F (I2), F (I3)}

∪ {F (r(I0)), F (r(I1)), F (r(I2)), F (r(I3))} (1)

, where I0 = ILR, I1 = flr(ILR), I2 = fud(ILR), and

I3 = fud(flr(ILR)).

5. Experiments

5.1. Details of implementation

The dataset from NTIRE 2019 image SR challenge is

composed of 60 training images, 20 validation images, and

20 testing images. The LR images of this dataset have the

same size with the corresponding HR images, i.e., a LR im-

age is the interpolation of an unknown downscaling HR im-

age. We will test the performance of our method on the

validation dataset since the ground truth of testing dataset is

not public.

There is a data pre-processing before training. To be

specific, we randomly crop 64 × 64 pixels patches from

LR images and augment them via the training strategies in

Section 4. Then these patches are shuffled and utilized to

assemble the batches of size 16. Finally, the batches are

used to train all models. Unless otherwise stated, the kernel

size of convolutions in MsDNN is 3 × 3. To demonstrate

the advantages of MsDNN, we set two baselines for MsRN

and MsDN. Concretely, we design a deep residual network

in DS0 space as the baseline of MsRN, which is referred

as Baseline-R. In the same way, a deep dense network is

developed in DS0 to be the baseline of MsDN, which is

referred as Baseline-D. The detailed settings of baselines,

MsRN and MsDN are showed in Table 1. Here, #Total

blocks denotes the number of blocks in DS0, DS2, and DS4

spaces, respectively. #Filters denotes the number of fil-

ters of a convolutional layer in DS0, DS2, and DS4 spaces,

respectively. Downscale in MsDNN is composed of a con-

volutional layer with the strides equal to 2. Therefore, the

first element of #Downscale in Table 1 denotes the num-

ber of filters of Downscale in DS2 space, and the second

element denotes the number of filters of two Downscale in

DS4 space. #Additions and #Concatenations denote the

number of addition and concatenation existed in MsDNN,

i.e., the amount of +© and c©, respectively.

For training, each model is trained by optimizing the L2

or L1 norm. All methods are trained by the ADAM opti-

mizer, and settings of parameters are β1 = 0.9, β2 = 0.999,

and ǫ = 1× 10−8. The training of each model is up to 100

million updates. The initial learning rate is 1 × 10−4, it

decreases to 20 percent every 10 million updates when the

updates are greater than 60 million. Finally, We implement

our networks with TensorFlow and train our models on a

device with 40 Intel Xeon 2.20 Ghz CPUs and 4 DTX 1080

Ti GPUs. The training of MsRN and MsDN cost about 30

and 20 hours on a single GPU, respectively.

During testing, we utilize the testing strategy of enhance-

ment in Section 4 to improve the performance of models on

testing dataset. To evaluate the performance of our method,

the standard Peak Signal To Noise Ratio (PSNR) and the

Structural Similarity (SSIM) index are used. We could di-

rectly compute the PSNR and SSIM of a LR- and SR im-

age pair since their sizes are the same. Finally, we show

the quantitative comparisons of our models via the standard

criteria.

5.2. Comparisons of L1 and L2 losses

The loss functions is critical to the training of net-

works due to the fact that each parameter of the networks

is updated by optimizing the given losses. To compare

the performance of MsDNN under different loss functions,

we have trained MsDNN by optimizing L1 and L2 norm.

Concretely, we first obtain two models, i.e., MsRN-1 and

MsRN-2, by training MsRN with L1 and L2. Then compute

the PSNR and SSIM of two models in the training phase, to

plot the convergent curves of MsRN-1 and MsRN-2 on a

cropped validation dataset. We repeat the above process for

MsDN to obtain two models, i.e., MsDN-1 and MsDN-2,

and plot the convergent curves of these two models.

Figure 6 shows the convergent curves of MsRN-1 and

MsRN-2, from which we can see that the convergent speed

of MsRN-1 is faster, and the average PSNR and SSIM is

higher. Figure 7 shows the convergent curves of MsDN-1

and MsDN-2. The performance of MsDN-1 is more robust

since its average PSNR and SSIM are higher. Therefore,

according to the convergent curves of MsRN and MsDN,

we conclude that L1 norm minimization could be better in

the training of MsDNN.
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Figure 5. The visualization of SR images which are reconstructed by MsRN and MsDN on the three images from validation dataset. The

blue value denotes the maximum among the values obtained by L2 norm based models. The red value denotes the maximum among the

values obtained by L1 norm based models.

5.3. Comparisons of MsRN and MsDN

To solve the image SR challenge from NTIRE 2019, we

have developed two multi-scale networks, i.e., MsRN and

MsDN. The architecture of MsRN is composed of the resid-

ual blocks while the development of MsDN is based on

the dense blocks. To compare MsRN with MsDN quanti-



0 50 100 150 200 250 300
updates (k)

25

26

27

28

29

30

Av
er

ag
e 

PS
NR

 (d
B)

MsRN-2
MsRN-1

(a) PSNR of MsRN

0 50 100 150 200 250 300
updates (k)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Av
er

ag
e 

SS
IM

MsRN-2
MsRN-1

(b) SSIM of MsRN

Figure 6. The convergent curves of average PNSR and SSIM of MsRN on a cropped validation dataset in the training phase.
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Figure 7. The convergent curves of average PNSR and SSIM of MsDN on a cropped validation dataset in the training phase.

tatively, we evaluate the performance of them on the valida-

tion dataset. As stated in Section 5.2, we obtain four models

by optimizing L1 and L2 losses, i.e., MsRN-2, MsDN-2,

MsRN-1, and MsDN-1. Besides, the baselines of MsRN

and MsDN are trained by L1 norm to obtain two models,

i.e., Baseline-R and Baseline-D. Finally, we compute the

average PSNR and SSIM of each model on the validation

dataset via the strategy in Section 4.

The quantitative evaluation of the models is showed in

Table 2, which shows that both PSNR and SSIM of MsDN

are higher than them of MsRN. Figure 5 shows the visual-

ization of SR images obtained by the models, which demon-

strates that PSNR and SSIM of MsDN are comparable with

them of MsDN. The average runtime of MsRN and MsDN

on validation dataset are about 21 and 20 seconds, respec-

tively. Therefore, we conclude that MsDNN is an effective

method to solve the SR challenge from NTIRE 2019 ac-

cording to our baselines, and the performance of MsRN and

MsDN are comparable for single image SR.

6. Discussion

Utilizing the empirical experiments in Section 5, we have

showed the robustness of MsDNN for image SR with un-

known upscaling factors. To test the performance of Ms-

DNN for image SR with different downscaling operators,

i.e., LR images are obtained by different cameras, we di-

vide the validation dataset into two parts, i.e., Validation-

1 and Validation-2. the former is composed of the LR-

and HR image pairs obtained by camera-1, the latter con-

sists of the LR- and HR image pairs obtained by camera-2.



Table 2. The average PSNR and SSIM of compared methods on the validation dataset. The blue value denotes the maximum among the

values obtained by L2 norm based models. The red value denotes the maximum among the values obtained by L1 norm based models.

Method
Interpolation Baseline-R

MsRN
Baseline-D

MsDN

Model MsRN-2 MsRN-1 MsDN-2 MsDN-1

PSNR 27.78 29.09 29.42 29.49 29.02 29.47 29.51

SSIM 0.8163 0.8557 0.8646 0.8664 0.8528 0.8651 0.8671

Then we compute the average PSNR and SSIM of every

model on Validation-1 and Validation-2, as shown in Table

3. The quantitative evaluation shows that the performance

of MsDNN on Validation-2 is better than it on Validation-

1. Besides, we test the performance of models on Set5 [2],

Set14 [19] and DIV2K [22]. To be specific, each LR image

is the biucbic interpolation (×3) of corresponding down-

sampled HR image. Table 4 shows that the performance of

MsDNN on the datasets is even worse than it of bicubic,

of which the reason could be that there does not contain

bicubic downscaling (×3) operator from HR to LR image

pairs in the training dataset of NTIRE 2019. Therefore, for

the LR images obtained by different downscaling operators,

the exploration of improving the generalization capability

of DNN is still a difficult but interesting task.

7. Conclusion

The NTIRE 2019 image SR challenge is difficult since

the upscaling factor of each LR image is unknown and the

downscaling operators from HR to LR image pairs are dif-

ferent. Due to the fact that the sizes of an LR image and

its ground truth are the same, processing the input images

directly in LR space is extremely expensive. Besides, in

the testing phase, the maximal number of filters of a con-

volutional layer is limited by the single GPU memory. For

example, the number of filters of each convolutional layer

must be less than 32 for a GPU with 11 GB memory in our

experiments. To tackle these difficulties, we have proposed

a multi-scale deep neural network to solve the SR challenge

from NTIRE 2019. First, we have processed the input im-

ages mainly in the two downscaling spaces to simplify the

computation complexity in the training and testing phases.

Second, we have developed two deep neural networks in

the downscaling spaces to super-resolve the LR images with

unknown upscaling factors. Finally, we have tested the per-

formance of MsDNN in Section 5 to show its robustness for

image SR with unknown upscaling factors.
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