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Abstract

Image denoising is the process of removing noise from

noisy images, which is an image domain transferring task,

i.e., from a single or several noise level domains to a photo-

realistic domain. In this paper, we propose an effective im-

age denoising method by learning two image priors from

the perspective of domain alignment. We tackle the domain

alignment on two levels. 1) the feature-level prior is to learn

domain-invariant features for corrupted images with differ-

ent level noise; 2) the pixel-level prior is used to push the

denoised images to the natural image manifold. The two

image priors are based on H-divergence theory and imple-

mented by learning classifiers in adversarial training man-

ners. We evaluate our approach on multiple datasets. The

results demonstrate the effectiveness of our approach for ro-

bust image denoising on both synthetic and real-world noisy

images. Furthermore, we show that the feature-level prior

is capable of alleviating the discrepancy between different

level noise. It can be used to improve the blind denoising

performance in terms of distortion measures (PSNR and

SSIM), while pixel-level prior can effectively improve the

perceptual quality to ensure the realistic outputs, which is

further validated by subjective evaluation.

1. Introduction

Image denoising is a fundamental problem in low-level

vision as well as an important pre-processing step for many

other image restoration problems [57, 23]. It aims at recov-

ering a noise-free image x from its noisy observation(s) y

by following the degradation model y = x+ v. As in many

previous literatures [5, 14, 57, 41, 58], v is usually assumed

additive white Gaussian noise (AWGN) of standard devi-

ation σ. Therefore, prior knowledge modeling on images

plays an essential part in image denoising.

The main success of the recent image denoising meth-

ods comes from the effective image prior modeling over the

input images [5, 14, 20]. State of the art model-based meth-

ods such as BM3D [12] and WNNM [20] can be further

extended to remove unknown noises. However, there are a

few drawbacks of these methods. First, these methods usu-

ally involve a complex and time-consuming optimization

process in the testing stage. Second, the image priors em-

ployed in most of these approaches are hand-crafted, such

as nonlocal self-similarity and gradients, which are mainly

based on the internal information of the input image without

any external information.

In parallel, there is another type of denoising methods

based on discriminative learning. They aim to train a deep

denoising network with paired training datasets (noisy and

clear images) and learn the underlying noise model implic-

itly to achieve fast inference [6, 57, 58, 29], among which

DnCNN [56] and FFDNet [58] have obtained remarkable

results. However existing discriminative learning methods

are usually designed to a specific noise level with limited

flexibility. Though DnCNN-B [56] can be trained for dif-

ferent noise levels for blind image denoising, it still cannot

generalize well to real-world noisy images. FFDNet [58]

still requires a tunable noise level map as the input to tackle

various noise levels. Therefore, it is of great interest to de-

velop general image priors which can help handle image

denoising with a wide range of noise levels and generalize

well for real-world noisy images.

To this end, we propose a new image denoising model,

referred to Deep Image Prior Network (DIPNet), based on

data-driven image priors. In particular, we consider image

denoising as a domain transferring problem, i.e., from noise

domain to photo-realistic domain. Inspired by this, we pro-

pose two image priors: 1) the feature-level prior which is

designed to help decrease domain discrepancy between cor-

rupted images with different noise levels for robust image

denoising; 2) the pixel-level prior which is used to push

the denoised image to photo-realistic domain for percep-

tual improvement. In particular, we model both priors as



discriminator networks, which are trained by an adversar-

ial training strategy to minimize the H-divergence between

different image domains.

The contribution of this work can be summarized as fol-

lows:

• We propose an effective deep residual model based

on data-driven image priors, namely DIPNet, for blind

image denoising. Our method can achieve state of the

art results for both synthetic and real-world noise re-

moval.

• We design two image priors based on adversarial train-

ing. The feature-level prior is capable of alleviating the

discrepancy between different noise levels to improve

the denoising performance, while pixel-level prior can

effectively improve the perceptual quality and produce

photo-realistic results.

• Compared with previous methods, our method sig-

nificantly improves the generalizability when adapt-

ing from synthetic Gaussian denoising to real-world

noise removal. In particular, a single model trained for

blind Gaussian noise removal can outperform compet-

ing methods designed specifically for real-world noise

removal.

2. Related Work

2.1. Image Denoising

A large number of image denoising methods have been

proposed over the recent years, and generally they can be

grouped into two major categories: model-based methods

and discriminative learning based methods.

Model-based Methods are usually depended on human-

crafted image priors such as nonlocal self-similarity [14, 41,

5], sparsity [15] and gradients [47, 52]. Two of the classic

methods are BM3D [12] and WNNM [20], which are usu-

ally used as the benchmark methods for image denoising.

In particular, BM3D uses an enhanced sparse representation

for denoising by grouping similar 2D image fragments into

3D data arrays. WNNM proposes to use weighted nuclear

norm minimization for image denoising by exploiting im-

age nonlocal self-similarity. These models can be also fur-

ther extended to handle blind denoising problem with vari-

ous noise levels. In addition, a few approaches [38, 44, 60]

are also proposed to directly address blind image denoising

problem by modeling image noise to assist corresponding

denoising algorithms. However, these models are based on

human-crafted priors which are designed under limited ob-

servations. In this paper, instead of only using the internal

information of the input images, we propose to automati-

cally learn image priors by making full use of external in-

formation.

Discriminative Learning Based Methods try to model

image prior implicitly with paired (noisy and clear images)

training data. These models have achieved great success in

image denoising by taking advantage of the recent devel-

opment of deep learning. Several approaches adopt either

a plain Multilayer Perceptron (MLP) [6] or convolutional

neural networks (CNN) [29, 53, 1, 34, 57, 7] to learn a non-

linear mapping from noisy images to photo-realistic ones.

It is worth to mention that remarkable results have been ob-

tained by recent deep learning based models. DnCNN [56]

successfully trains a deep CNN model with batch normal-

ization and residual learning to further boost denoising per-

formance. Moreover, DnCNN can be extended to handle

noisy images with different level noise. A generic image-

to-image regression deep model (RBDN) [48] can be ef-

fectively used for image denoising. A deep kernel predic-

tion network [42] is trained for denoising bursts of images

taken from a handheld camera. GAN-CNN [8] proposes to

use generative adversarial network (GAN) to estimate the

noise distribution for blind image denoising. Furthermore,

FFDNet [58] presents a fast and flexible denoising convo-

lutional neural network, which can handle a wide range of

noise levels with a tunable noise level map. Recently deep

image prior [51] is also proposed for general image restora-

tion. However, most previous discriminative learning based

methods have to learn multiple models for handling images

with different noise levels. It is still a challenging issue to

develop a single discriminative model for general image de-

noising for both synthetic and real-world noises.

Deep Learning on Image Transformation. Beyond

image denoising, deep CNNs have been successfully ap-

plied to other image transformation tasks, where a model

receives a certain input image and transforms it into the

desired output. These applications include image super-

resolution [13], downsampling[24], colorization [32], de-

blurring [35], style transfer [30], semantic segmentation

[39], image synthesis [25, 19] etc. In addition, [4] analy-

ses the trade-off between the distortion and perception mea-

sures for image restoration algorithms. However their mod-

els are designed to handle input images within a specific do-

main, and cannot be directly used for blind image denoising

with unknown noise level. In this work, we focus on using

a single model to effectively handle a wide range of noise

levels with data-driven image priors and also investigate the

perception-distortion trade-off in terms of image denoising.

3. Method

Our goal is to develop a model which can take the noisy

images to produce photo-realistic ones. The primary chal-

lenges are twofold: first, our model should be flexible and

robust to process the same images corrupted with different

level noise; second, we must ensure that the denoised im-

ages are realistic and visually pleasing. To address these



challenges, we propose to learn two image priors based on

H-divergence theory, considering that the corrupted images

with different level noise as well as clear images are in dif-

ferent image domains.

3.1. Distribution Alignment with H­divergence

The H-divergence [2, 3] is proposed to estimate the do-

main divergence from two set of unlabeled data with dif-

ferent distributions. It is a classifier-induced divergence

through learning a hypothesis from a class of finite com-

plexity. For simplicity, we first consider the H-divergence

of two set of samples. Thus, the problem of distribution

alignment of the two domains can be formulated through

a binary classification. Specifically we define a domain as

a distribution D on inputs X , thus x′ and x′′ can be de-

noted as samples belonging to the two different domains D′

and D′′ respectively. We also denote a labeling function

h : X → [0, 1] as a domain classifier in order to predict

different labels of samples to 0 or 1 for domain D′ and D′′

respectively. Let H be a hypothesis class on X , i.e., a set

of possible domain classifiers h ∈ H. The H-divergence

between domain D′ and D′′ is defined as follows:

dH(D
′
,D

′′
) = 2

(

1 − min
h∈H

[ 1

N

∑

x

LD′ (h(x)) +
1

N

∑

x

LD′′ (h(x))
])

(1)

where LD′ and LD′′ denote the loss of label prediction

h(x′) and h(x′′) on domain D′ and D′′ respectively. N

is the total number of samples for a given dataset. We can

see that the domain distance H is inversely proportional to

the loss of the optimal domain classifier h(x).
Under the context of deep learning, x can be defined as

the output image or hidden activations produced by a neural

network f . Therefore, in order to reduce the dissimilarity of

the distributions D and D′, we can train f to maximize the

loss of the domain classifier. As a result, we need to play a

maxmin game between f and h as follows:

min
f

dH(D
′
,D

′′
) ⇔ max

f
min
h∈H

{
1

N

∑

x

LD′ (h(x))+
1

N

∑

x

LD′′ (h(x))}

(2)

Furthermore, when considering multiple sets of samples

with m domains denoted as D1,D2...,Dm. The distribu-

tion alignment can be formulated to a similar image opti-

mization problem as follows:

min
f

dH(D
1
,D

2
, ...,D

m
) ⇔ max

f
min
h∈H

{
1

N

∑

m

∑

x

LDm (h(x))} (3)

In practice, this optimization can be achieved in an adver-

sarial training manner by two ways. One is to adopt gen-

erative adversarial networks (GANs) framework [19] by re-

versing the label of the two categories; the other is to inte-

grate a gradient reversal layer (GRL) [17, 9] in CNN model.

In particular, GRL is designed to retain the input unchanged

during forward propagation and reverses the gradient by

multiplying it with a negative constant during the backprop-

agation. Additionally, GRL can be easily extended to multi-

class inputs while GAN is more appropriate to deal with

inputs with two categories. In our work, GRL and GAN

are used to train feature-level and pixel-level priors respec-

tively.

3.2. Learnable Image Priors

Motivation. Most classic image denoising models can

be formulated to solve the following problem [58]:

x̂ = argmin
x

1

2σ
‖y − x‖2 + λP (x) (4)

where the first part 1
2σ‖y−x‖2 is the data fidelity term with

different noise level σ, the second part P (x) is the regular-

ization term with image prior which is usually predefined. λ

is the hyper-parameter to balance the two parts. A discrimi-

native denoising model, which is adopted in this work, aims

to learn a non-linear mapping function x = F(y) parame-

terized by W to predict the latent clear image x from noisy

image y. Thus, the solution of Equation 4 is given by:

x̂ = F(y, σ, λ, P ;W ) (5)

The key to the success of this framework lies on the pre-

defined image prior. This observation motivates us to learn

image priors directly from image data. In particular, we pro-

pose to learn two data-driven image priors on feature level

and pixel level respectively.

Feature-level Prior. Equation 5 requires predefined

noise level σ, thus the trained model cannot be flexible

enough to handle different noise levels with a single net-

work. In order to achieve blind image denoising, we seek

to incorporate noise level information by learning an image

prior in the feature space. In particular, we train a multi-

class discriminator on the output of fused features from lo-

cal and global path (see Section 3.3) for different noise level

images as shown in Figure 1. We try to learn the feature-

level prior (Pfeat) via a multi-class cross entropy loss as

follows:

Lpfeat
= −

1

N

N
∑

i=1

log
( ep̂i

∑m

j=1 e
pi,j

)

(6)

Here m denotes the number of noise levels. pi,j is the out-

put score for jth class for a given image i and p̂i is output

score for the correct class. We add a gradient reversal layer

(GRL) before the multi-class discriminator to achieve the

adversarial training as shown in Figure 1.

Pixel-level Prior. The pixel-level prior Ppix is designed

to push the denoised image to the natural image manifold to

ensure realistic outputs. To achieve this, we employ a patch-

based discriminator under the GAN framework. We adopt
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Figure 1. The dashed rectangle is used to construct the loss func-

tion to learn feature-level prior.

a perceptual discriminator [50] to stabilize and improve

the performance of GAN by embedding the convolutional

parts of a pre-trained deep classification network (Figure 2).

Specifically, the extracted features of the output image from

the pre-trained network are concatenated with the output of

the previous layer, and then processed by learnable blocks

of convolutional operations. We use 3 stride convolutional

blocks to achieve spatial downsampling and use relu1 1,

relu2 1 and relu3 1 of VGG-19 [49] for feature extraction.

The final classification is processed on each activation from

the feature map. As the effective receptive field for each

activation corresponds to an image patch on the input im-

age [45], the discriminator actually predicts each label for

each image patch. Patch based discriminator is quite useful

to model high-frequencies in image denoising by restricting

our attention to the structure in local image patches.
The optimization of discriminator is similar to classic bi-

nary classification. Specifically let us denote D as the label
of input image, thus we assign D = 1 for denoised images

and 0 for clear images; p(w,h) represents the feature map
activation of the discriminator at location (w, h). Then the
pixel-level prior (ppix) loss with N samples can be written
as:

Lppix
= −

1

N

N
∑

i=1

Dilog(p
(w,h)
i

) + (1 − Di)log(1 − p
(w,h)
i

) (7)

As discussed in Section 3.1, we try to simultaneously mini-

mize above loss with respect to the discriminator and maxi-

mize it with respect to the transformation network. This can

be achieved by the training strategy of generative adversar-

ial network.

3.3. Transformation Network

Inspired by the architectural guidelines of several previ-

ous works [21, 33, 30], our image transformation network

consists of 3 components: a stack of residual blocks (Fig-

ure 3) to extract low-level features of the input image and

two asymmetric paths to extract local and global features

respectively. Our architecture then fuses these two paths to

produce the final output.

Low-level Path. The input noisy image is first processed

by a 16-layer residual network with skip-connection to ex-

tract low-level features (Figure 3). The “pre-activation”

N residual  

blocks

binary
classifier

denoised 
image

conv

clear 
image

noisy
image

Pretrained
VGGNet

relu1_1 relu2_1 relu3_1

︸concat

conv conv conv

︸concat

Figure 2. The dashed rectangle is used to construct the loss func-

tion to learn pixel-level prior.

residual block [22] is adopted as it is much easier to train

and generalizes better than the original ResNet [21]. For

all the residual blocks, a kernel size of 3 × 3 and zero-

padding are used to keep the spatial size of the input. We

also keep the number of features constant as 32 in all the

residual blocks. Moreover, a skip-connection is added be-

tween the input features and the output of the last residual

block. As a result, complex patterns can be extracted with a

large spatial support.

Local Path and Global Path. Similar to [18, 26], the

encoded features are further processed by two asymmetric

networks for local and global feature extraction.

The local path is fully convolutional and consists of two

residual blocks as shown in Figure 3. It specializes in learn-

ing local features while retaining the spatial information.

As argued in [21], the residual connections make it easy to

learn identical function, which is an appealing property for

the transformation network considering that the output im-

age shares a lot of structures with the input image.

The global path uses two fully-connected layers to learn

global features. Each fully-connected layer is followed by

a ReLU layer as the activation function. A global average

pooling layer [36] is used to ensure that our model can pro-

cess images of any resolution. Finally, the global informa-

tion is summarized as a fixed dimensional vector and used

to regularize the local features produced by the local path.

The local and global features are then fused into a com-

mon set of features, which are fed to a convolutional layer to

produce the output. The fusion is achieved by a point-wise

affine mixing with ReLU non-linearity as follows:

Fc[x, y] = ReLU
(

∑

c′

w
′

cc′Gc′ +
∑

c′

wcc′Lc′ [x, y] + bc

)

(8)

where the Fc[x, y] is the fused activation at the point [x, y]
of cth channel. Gc′ and Lc′ denote the global and local

features. c and c′ are the number of channels of fused and

input features. w′
cc′ and wcc′ are learnable weights to com-

pute point-wise combinations of global and local features.

This can be implemented with common convolutional oper-

ation with 1 × 1 kernels, which yields a fused 3-d array as

the same shape as the input local features.
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Figure 3. Overview of our transformation network. The input noisy image is first processed by a deep residual network to compute low-

level features, which are further split into two paths to learn both local and global features. Our model then fuses these two paths to produce

the final output.

3.4. Loss Function

Pixel-wise mean square error (MSE) between two im-

ages is widely used as an optimization target for image de-

noising problem. However, MSE could result in unsatis-

fying results with over-smooth textures. In this work, we

adopt L1 loss as it encourages less blurring for image re-

construction [28]. Specially the L1 loss between denoised

image x̂ and clear image x of shape [C, W , H] is calculated

as:

L1 =
1

CWH

C
∑

c=1

W
∑

w=1

H
∑

h=1

‖xc,w,h − x̂c,w,h‖ (9)

Therefore the final training losses for feature-level and

pixel-level prior of the proposed method are as follows:

Lfeat = L1 + λ1Lpfeat
(10)

Lpix = L1 + λ2Lppix
(11)

In our experiments, the hyper-parameter λ1 and λ2 is fixed

to 0.001 to balance the fidelity loss and the image prior loss.

From Figure 1 and 2, we can see that all the components can

be trained jointly in an end-to-end manner using a standard

SGD algorithm.

4. Experiments

We conduct experiments on synthetic images for addi-

tive white Gaussian noise removal with either known or un-

known noise levels as well as real-world noisy image de-

noising.

4.1. Datasets and Experiment Setting

We train our models on the 2014 Microsoft COCO

dataset [37], which is a large-scale dataset containing

82,783 training images. We randomly crop image patches

of size 64 × 64 for training. The input noisy images are

obtained by adding AWGN of noise level σ ∈ [15, 75]
while the corresponding clear images are used as ground-

truth. The noisy images are not clipped as previous works

[56, 58]. To evaluate our denoiser on Gaussian noise re-

moval, we use 3 datasets, i.e., CBSD68 [46] (68 images),

Kodak24[16] (24 images) McMaster [59] (18 image) with

synthetic noise. In addition, two benchmarks are considered

to evaluate our method for real-world noise removal. The

dataset1 is provided in [54], which includes 100 cropped

images for evaluation and dataset2 is provided by in [43],

which includes noisy images of 11 static scenes. Both

datasets provide a mean image as the “ground truth”, with

which PSNR and SSIM can be calculated.

Our DIPNet employs 3 × 3 kernel for all the convolu-

tional layers in the transformation network and the two dis-

criminator networks. Each convolutional layer is followed

by a batch normalization layer [27] to stabilize and accel-

erate the deep network training. We train all the models

using Adam [31] to achieve stochastic optimization with a

batch size of 64 for 30 epochs and it takes around 24 hours

for our model to get converged. The initial learning rate

is 10−3, which is smoothly annealed by the cosine shape

learning rate schedule introduced by [40]. Our implemen-

tation is based on deep learning framework Pytorch and a

single GTX 1080Ti GPU.

4.2. AWGN noise Removal

Non-blind AWGN Removal. We first test our DIPNet-S

on noisy images corrupted with a specific noise level σ, re-

ferring non-blind AWGN removal. In other words, we train

separate models for different noise levels without any im-

age priors. We compare our method with CBM3D [12] and

FFDNet [58]. Table 1 reports denoising results on different



Clear image Noisy image BM3D (28.28dB) DnCNN-B (28.80dB) FFDNet (28.87dB) DIPNet-BF (28.92dB)

Figure 4. Denoising comparisons of an image from CBSD68 dataset with noise level σ = 50.

Dataset Method σ=15 σ=25 σ=35 σ=50 σ=75

CBSD68

CBM3D 33.52 30.71 28.89 27.38 25.74

FFDNet 33.87 31.21 29.58 27.92 26.24

DIPNet-S 33.90 31.25 29.60 27.91 26.16

Kodak24

CBM3D 34.28 31.68 29.90 28.46 26.82

FFDNet 34.63 32.13 30.57 28.98 27.27

DIPNet-S 34.64 32.15 30.56 28.97 27.27

McMaster

CBM3D 34.06 31.66 29.92 28.51 26.79

FFDNet 34.66 32.35 30.81 29.18 27.33

DIPNet-S 34.67 32.35 30.88 29.19 27.35

Table 1. Non-blind denoising results of different methods on

CBSD68, Kodak24 and McMaster for AWGN noise with level

σ = 15, 25, 35, 50 and 75.

Dataset Method σ=15 σ=25 σ=35 σ=50 σ=75 average

CBSD68
DnCNN-B 33.89 31.23 29.58 27.92 24.47 29.42

DIPNet-B 33.88 31.16 29.49 27.89 26.01 29.69

DIPNet-BP 33.70 31.07 29.36 27.82 25.99 29.59

DIPNet-BF 33.86 31.24 29.59 27.93 26.29 29.78

Kodak24
DnCNN-B 34.48 32.03 30.46 28.85 25.04 30.17

DIPNet-B 34.44 32.01 30.47 28.90 27.19 30.60

DIPNet-BP 33.49 31.18 29.75 28.20 26.32 29.76

DIPNet-BF 34.62 32.11 30.55 28.97 27.28 30.71

McMaster
DnCNN-B 33.44 31.51 30.14 28.61 25.10 29.76

DIPNet-B 34.33 32.09 30.61 28.76 25.86 30.33

DIPNet-BP 33.54 31.52 30.08 28.14 25.48 29.75

DIPNet-BF 34.56 32.33 30.56 29.18 27.32 30.79

Table 2. Blind denoising results of different methods on CBSD68,

Kodak24 and McMaster for AWGN noise with level σ = 15, 25,

35, 50 and 75.

datasets. We can see that our DIPNet-S can achieve state

of the art results and outperform other methods. Moreover,

the improvement generalizes well across different datasets

as well as different noise levels.

Blind AWGN Removal. We further extend our model

for blind image denoising with unknown noise levels. Un-

like most previous works [6, 10] that need to first esti-

mate the noise level and then select the denoising model

trained with the corresponding noise level, we train three

blind models in our experiments: DIPNet-B refers to the

P
S

N
R

Input noise level

DIPNet−15

DIPNet−25

DIPNet−35

DIPNet−50

DIPNet−BF 

DIPNet−BP

DIPNet−75

0 25 50 75 100

20

30

Figure 5. Noise level sensitivity curves of DIPNet models trained

with different noise levels. The averaged PSNR results are evalu-

ated on CBSD68 for different input noise levels.

model trained without any image priors, DIPNet-BF and

DIPNet-BP refer to the models trained with feature-level

and pixel-level priors respectively. Specifically, 5 noise lev-

els (σ = 15, 25, 35, 50, 75) are adopted to train our blind

denoising models. We compare our method with state of

the art method DnCNN-B on different datasets. As shown

in table 2, our DIPNet-BF can achieve state of the art re-

sults for blind AWGN noise removal. DIPNet-BF is flexi-

ble enough to handle a wide range of noise levels effectively

with a single network. In addition, we compare the visual

results of different methods for an image in CBSD68 cor-

rupted with noise level σ = 50. From Figure 4, we can see

that BM3D shows slightly blurred results, DnCNN-B and

FFDNet could produce over-smooth edges and textures. In-

stead, DIPNet-BF can produce the best perceptual quality

of denoised images with sharp edges and fine details.



Dataset Metric CBM3D WNNM MLP TNRD DnCNN NI Guided DIPNet-B DIPNet-BF DIPNet-BP

Dataset1[54]
PSNR 37.40 36.59 38.07 38.17 36.08 37.77 38.35 38.44 38.47 37.89

SSIM 0.9526 0.9247 0.9615 0.9640 0.9161 0.9570 0.9669 0.9669 0.9676 0.9636

Dataset2[43]
PSNR 35.19 35.77 36.46 36.61 33.86 35.49 37.15 37.23 37.45 35.94

SSIM 0.8580 0.9381 0.9436 0.9463 0.8635 0.9126 0.9504 0.9389 0.9452 0.9217

Table 3. Average PSNR(dB) and SSIM of different denoising methods on real-world noisy images in dataset1 [54] and dataset2 [43].

4.3. Noise Level Sensitivity

We further conduct experiments to investigate the noise

level sensitivity of the proposed DIPNet models consider-

ing that the input noise level is usually unknown or very

hard to estimate in practice. We compare the denoising per-

formances of several different non-blind and blind DIPNet

models with different input noise levels. Figure 5 shows the

noise level sensitivity curves of different DIPNet models.

Specifically, we consider the 5 non-blind DIPNets trained

with known noise levels, e.g., “DIPNet-15” represents DIP-

Net trained with the fixed noise level σ = 15. We also com-

pare the results of DIPNet-BF and DIPNet-BP. As shown in

Figure 5, we have the following two observations:

• For non-blind DIPNets, the best performances are

achieved when the input noise level matches the noise

level used for training. The PSNR values decrease

slowly when using lower input noise levels and begin

to drops significantly when the input noise levels sur-

pass the training noise levels.

• Our DIPNet-BF and DIPNet-BP demonstrate more

stable performance with different input noise levels

and the PSNR values denoising slowly with higher in-

put noise levels. DIPNet-BF is capable of generalizing

well to a wide range noise level (5, 100) when trained

only on 5 fixed noise levels and outperforms nearly all

the non-blind models for different input noise levels.

Based on the above observations, it is clear that the non-

blind DIPNet-S models with specific noise levels are more

sensitive to input noise, especially higher levels. DIPNet-

BF demonstrates much stable performance in terms of a

wide range of noise levels. DIPNet-BP is more sensitive

to higher level noise.

4.4. Real Noise Removal

Furthermore, we evaluate our blind models on real noisy

image datasets provided by [43] and [54] in terms of PSNR

and SSIM. We compare with CBM3D [12], DnCNN [56],

WNNM[20], TNRD[11] and MLP [6], which are state-

of-the-art methods for AWGN noise removal. We also

compare with Neat Image (NI) which is a set of commer-

cial software for image denoising [54] and recent Guided

[55]. Table 3 reports denoising results on the two datasets.

We can see that our model trained with feature-level prior

(DIPNet-BF) can achieve superior performance compared

dataset DIPNet-BF DIPNet-BP

CBSD68 0.3404 0.6596

dataset1 0.3857 0.6143

Table 4. Subjective evaluation results on CBSD68 [46] and

dataset1 [54]. We show the average preference for all the vol-

unteers.

with traditional methods like CBM3D and deep learn-

ing based DnCNN. Moreover, our method can outperform

Guided algorithm[55], which is designed specifically for re-

alistic noise removal. We provide a visual example by dif-

ferent denoising methods from dataset1 [54] in Figure 6.

We can observe that using feature-level prior can effectively

improve PSNR but still produce over-smooth textures. The

pixel-level prior can help produce sharper appearance but

with lower PSNR and SSIM. This is due to the appearance

of high-frequency artifacts.

4.5. Effectiveness of Image Priors

We further demonstrate the effectiveness of the two im-

age priors in our model. We consider blind image denois-

ing trained with 5 noise levels (σ = 15, 25, 35, 50, 75) in

Section 4.2. Quantitative results for AWGN and real noise

removal are summarized in Table 2 and Table 3. Two vi-

sual examples are provided in Figure 7. The first row shows

AWGN noise removal results for an image from Kodak24,

the second row shows the real noise removal for an image

from dataset2 [43]. We can see that DIPNet-BF trained

with feature-level prior provides the highest PSNR values

for different noise levels, especially for higher noise lev-

els. What’s more, DIPNet-BF shows superior performance

over DIPNet-B on real noise removal task. It is clear that

the feature-level prior can effectively improve the generaliz-

ability when adapting from synthetic Gaussian denoising to

real noise removal by encoding domain-invariant features.

On the other hand, incorporating pixel-level prior degrades

the denoising performance of DIPNet in terms of PSNR.

However, we observe that using pixel-level prior can yield

better texture details and sharp edges when compared to

clear images (Figure 7) while feature-level prior could pro-

duce slightly over-smooth images. The pixel-level prior can

achieve perceptual improvements to produce photo-realistic

images but with lower PSNR values by introducing high-

frequency artifacts.



Ground truth
PSNR / SSIM

Noisy image
35.24dB / 0.8674

CBM3D
37.38dB / 0.9776

DnCNN-B
35.49dB / 0.8827

DIPNet-BF
39.08dB / 0.9778

DIPNet-BP
37.75dB / 0.9590

Figure 6. Denoising results on a real noisy image with different method. The test real images are from dataset1 [54].

Clear image Noisy image (14.94dB) DIPNet-BF (26.37dB)DIPNet-B (26.32dB) DIPNet-BP (25.84dB)

Clear image (PSNR) Noisy image (36.71dB) DIPNet-BF  (41.75dB)DIPNet-B  (41.35dB) DIPNet-BP (39.25dB)

Figure 7. Noise removal comparisons of our methods. The first row is the results of AWGN noise removal for an image from Kodak24

dataset with noise level σ = 50. The second row is the results of real noise removal for an image from dataset2 [43].

4.6. Subjective Evaluation

We have conducted a subjective evaluation to quantify

the ability of the two image priors to produce perceptu-

ally convincing images. In particular, we show volunteers

4 images each time, i.e., the noisy image, ground-truth im-

age and two denoised images produced by DIPNet-BF and

DIPNet-BP and ask them which denoised version they pre-

fer. We ask 12 volunteers to performance the evaluation on

CBSD68 (68 images) [46] and dataset1 (100 images) [54]

for both synthetic and real noise removal respectively. The

experimental results of the voting test across all the volun-

teers are summarized in Table 4. We can see that DIPNet-

BP outperforms DIPNet-BF by a large margin and DIPNet-

BP is superior in terms of perceptual quality. It is be-

cause pixel-level prior can produce high-frequency details

as shown in Figure 7, which are visually pleasing especially

for images with high texture details. However, the gener-

ated high-frequency details fail to exactly match the fidelity

expected in the clear images. As a result, the denoising per-

formances with pixel-level prior is inferior in terms of dis-

tortion measures like PSNR and SSIM. Additional exam-

ples are depicted in the supplementary material.

5. Conclusion

In this paper, we have developed an effective blind im-

age denoising model based on data-driven image priors.

The two image priors are designed from the perspective of

domain alignment. Specifically the feature-level prior can

help alleviate the domain discrepancy across different level

noise and improve the blind image denoising performance.

The pixel-level prior is able to push the denoised outputs to

the natural image manifold for perceptual quality improve-

ment. This is further confirmed by a subjective evaluation.

The two image priors are learned based on adversarial train-

ing of H-divergence using the standard SGD optimization

technique. Validated on various datasets, our approach can

achieve state of the art results for both synthetic and real-

world noise removal.
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