
Evaluating Parameterization Methods for

Convolutional Neural Network (CNN)-Based Image Operators

Seung-Wook Kim, Sung-Jin Cho, Kwang-Hyun Uhm, Seo-Won Ji, Sang-Won Lee, and Sung-Jea Ko∗

School of Electrical Engineering, Korea University

Seoul, Korea

{swkim, sjcho, khuhm, swji, swlee}@dali.korea.ac.kr, sjko@korea.ac.kr

Abstract

Recently, deep neural networks have been widely used

to approximate or improve image operators. In general,

an image operator has some hyper-parameters that change

its operating configurations, e.g., the strength of smoothing,

up-scale factors in super-resolution, or a type of image op-

erator. To address varying parameter settings, an image op-

erator taking such parameters as its input, namely a param-

eterized image operator, is an essential cue in image pro-

cessing. Since many types of parameterization techniques

exist, a comparative analysis is required in the context of

image processing. In this paper, we therefore analytically

explore the operation principles of these parameterization

techniques and study their differences. In addition, perfor-

mance comparisons between image operators parameter-

ized by using these methods are assessed experimentally on

common image processing tasks including image smooth-

ing, denoising, deblocking, and super-resolution.

1. Introduction

Image operators are traditional research topics in mul-

timedia processing and computer vision [2, 19, 20, 16,

18, 10]. As deep learning technology advances in re-

cent years, various image operators using deep neural net-

works (DNNs) have been proposed to mimic conventional

image operators or boost the performance of image process-

ing tasks [6, 8, 17]. Most image operators have some hyper-

parameters controlling its actions, e.g., the up-scale size in

super-resolution and the strength of smoothing in the filter-

ing process, as well as a choice of image operators.

A simple solution for dealing with such parameters is

to train multiple networks separately, each of which is in

charge of a specific parameter value and learns the mapping

function with the parameter. However, this approach can

be very inefficient because, for each parameter, a different

∗Corresponding author

Input image ConvNet Output image

Image operator

Parameter vector 

Figure 1. Illustration of parameterized image operators.

DNN model should be learned, i.e., the same number of

models as the number of parameters is required. Thus, if a

parameter spans too many values, this approach becomes

infeasible. Various parameterization methods have been

proposed to construct a feasible network model and control

its built-in parameters [5, 3, 4, 12]. As conventional image

operators employ many different parameterization methods,

however, it is unclear what similarities such methods have

and how they are different.

For more insight and effective implementation, this

paper studies the properties of different parameterization

methods. A taxonomy of the operation principles of each

parameterization method is first presented. Then, we im-

plement different parameterization methods by adopting a

common network using residual blocks [7] for image pro-

cessing. For experiments, we build a data set by combining

images from public image databases, the Berkeley segmen-

tation data set (BSDS) [1] and the Waterlloo Exploration

data set (WEDS) [11], and generate the images for each im-

age processing task by using randomly selected parameter

values. Then, we train the image operator networks using

the generated data set and compare the network models with

different parameterization methods. Based on extensive ex-

perimental results, our recommendations will be given re-

garding which parameterization method should be used for

the given image operator.

This paper is organized as follows. In Section 2, a tax-

onomy of the parameterization methods for DNNs is pre-

sented. Further, their relation and operation principles are

discussed. Implementation details and the experimental

1



OutputOutputOutputOutputOutputOutput

Input

Convolution unit
(weights 𝐖௞భ, bias 𝐁௞భ)

Convolution unit
(weights 𝐖௞మ, bias 𝐁௞మ)

Convolution unit
(weights 𝐖௞ಾ, bias 𝐁௞ಾ)

Convolution unit
(weights 𝐖 || 𝐖෩ , bias 𝐁)

𝑘ଵ𝑘ଶ 𝑘ெ1’s
0’s

Concat

Convolution unit
(weights 𝐖 || 𝐖෩ , bias 𝐁)

𝑘’s

Convolution unit
(weights 𝑘𝐖, bias 𝐁)

× 𝑘

(a) (b) (c) (d)

Input Input Input Input Input
Concat

Figure 2. Different types of parameterized image operators. Type 1: the separated networks for each different parameter (a); Type 2: the

single network with one-hot vector concatenation (b); Type 3: the single network with the parameter value concatenation(c); Type 4: the

decoupled network (d).

setup are described in Section 3. Section 4 shows the ex-

tensive experimental results and Section 5 concludes this

paper.

2. Parameterization methods

In this section, parameterized image operators proposed

in the field of DNNs are presented and their operating char-

acteristics are summarized. We will review four types of fa-

mous parameterization approaches, of which the overview

is given in Figure 2

2.1. Type 1: Training separated networks

The simplest way to cope with varying parameter values

of image operators is to train independent networks for dif-

ferent parameter values, as shown in Figure 2(a). In this

type of networks, data sets consisting of a pair of inputs

and labels for the parameter values are first generated and

divided into data subsets according to values of the param-

eters. Then, each independent network is trained separately

using the data subset for the corresponding parameters. For

the sake of simplicity, we hereinafter assume a single-layer

convolution unit to represent a convolutional network (Con-

vNet) and describe the case of the one-dimensional input

and output. Without loss of generality, it is easy to extend

the concept to the image domain. Formally, let an input im-

age x ∈ R
d and a parameter km given, where the value of

km represents encoded information, e.g., the up-scale size

in super-resolution and the strength of smoothing in the fil-

tering process, as well as a choice of image operators. Then,

an output of the image operator for the channel c can be ob-

tained as follows:

yc =
〈

W
(c)
km

,x
〉

+ b
(c)
km

, (1)

where 〈·, ·〉 is a function of inner product, and W
(c)
km

∈ R
d

and b
(c)
km

∈ R denote the weights and biases of the cth chan-

nel with respect to a parameter km for m ∈ {1, 2, · · · ,M},

respectively. Since the networks are separately trained, each

image operator works normally only when an input image

produced by using parameters corresponding to the network

is given. However, this approach becomes infeasible as a

parameter spans many values, i.e., the value of M becomes

very large, because the same number of image operators as

the number of parameters should be trained.

2.2. Type 2: Concatenating one­hot vectors

Type 2 is also a common approach in which the input

channels are increased and the information of the parame-

ter [4, 12] is included. In this approach, a one-hot vector

containing the parameter information is appended to the in-

put of the image operator. Figure 2(b) illustrates an exam-

ple. Let the concatenated input denoted as

x̃ = x||okm
, (2)

where || is the concatenation operations of two features,

and okm
= [0, · · · , 0, 1, 0, · · · , 0]T ∈ {0, 1}M represents

the one-hot vector, of which the kmth channel value is 1
and otherwise 0. Note that, since the input channels are

increased, the channel number of weights is accordingly in-

creased. The output of an image operator can be obtained

by

yc =
〈

W
(c)||W̃(c), x̃

〉

+ b(c)

=
〈

W
(c),x

〉

+
〈

W̃
(c),okm

〉

+ b(c)

=
〈

W
(c),x

〉

+ w̃
(c)
km

+ b(c)

,

〈

W
(c),x

〉

+ b̃
(c)
km

,

(3)



where W̃
(c) =

[

w̃
(c)
k1

, w̃
(c)
k2

, · · · , w̃
(c)
kM

]

is the appended

weight as the number of input channels increases. From (3),

we can find that the network output of Type 2 is controlled

by the bias term corresponding to the parameter km. As

compared with Type 1, Type 2 has a more efficient structure

sharing the weight terms having a large volume for different

parameters. However, Type 2 is still not a flexible structure

because, as the covering range of the parameter increases,

the size of an image operator also grows. If the parameter

km is a continuous value, the network model is still infeasi-

ble.

2.3. Type 3: Concatenating parameter values

In [3], a parameterization method is introduced, in which

a condition value is given to a network to produce a desired

value under the given condition. As shown in Figure 2(c),

in this type, the parameter value itself is first concatenated

as follows:

x̃ = x||km. (4)

Then, by feeding x̃ into the image operator, the channel out-

put is obtained by

yc =
〈

W
(c)||w(c), x̃

〉

+ b(c)

=
〈

W
(c),x

〉

+ kmw(c) + b(c)

,

〈

W
(c),x

〉

+ b̃
(c)
km

.

(5)

Note that, in (5), b̃
(c)
km

= kmw(c)+b(c). As compared to (3),

in Type 3, the separated bias term with respect to the param-

eter km is approximated as

w̃
(c)
km

≈ kmw(c). (6)

By decomposing the bias term into the parameter value and

its coefficient, Type 3 can efficiently conduct a parameter-

ized image operation even if a value of the parameter is not

quantized, i.e., the network can deal with a continuous pa-

rameter value.

2.4. Type 4: Decoupled network

Recently, Fan et al. [5] proposed a network architecture

more focusing on the parameterized image operation. They

design another network which dynamically generates the

weights for the convolution layers of an image operator with

varying input parameters. Such design enables a parameter-

ized image operator to be decoupled from parameter adap-

tation. In this model, the weight of a convolution layer is

obtained by using a single fully-connected layer. Since the

fully-connected layer takes a parameter km as its input, the

weight for an image operator can be obtained by

W
(c)
km

= kmW
(c)
FC , (7)

where W
(c)
FC denotes the weight of the fully-connected layer

(in fact, the fully-connected layer also has a bias term, but

we omitted this term to simplify the analysis). Using (7), the

channel output of a parameterized image operator is given

by

yc =
〈

W
(c)
km

,x
〉

+ b(c)

=
〈

kmW
(c)
FC ,x

〉

+ b(c)

= km

〈

W
(c)
FC ,x

〉

+ b(c).

(8)

As compared to (1), in Type 4, the separated convolutions

with respect to the parameter km are approximated by scal-

ing the channel output. In this case, the parameter km is

used as a scale factor.

2.5. Discussion

As can be seen in the aforementioned review, Types 2-4

are an approximation of Type 1 to construct a single net-

work model dealing with the multiple inputs of parame-

ters. For different parameter values, Types 2 and 3 em-

ploy the same weights of the convolution layers and, on

the other hand, tweak the operating configurations via bias

values; on the contrary, Type 4 changes the configurations

by scaling the weight values of the convolution layers. Let

us consider that an activation function, e.g., rectified linear

unit (ReLU) [13], is applied after the parameterized con-

volution layer. In Types 2 and 3, the ReLU non-linearity

discards the channel values if
〈

W
(c),x

〉

< −b̃
(c)
km

, i.e., the

sparsity of the output feature maps is controlled by the in-

put parameter values. In Type 4, since the bias term does not

vary according to the parameters, the sparsity of the feature

map is not influenced. Instead, the weight terms are scaled

by the parameter values as in (8), and thus the magnitude

of the feature map is changed by the parameter values (al-

though Types 2 and 3 also can change the magnitude of the

output by adding the bias terms, the effect of Type 4 is more

dramatic). Intuitively, we can expect that scaling the mag-

nitude of the feature maps would have an advantage in han-

dling the intensity of an image operation. For switching the

image operator through parameter values, however, it is not

easy to say which type is better than the others.

3. Experimental setup

In this section, the experimental setup to evaluate the

different parameterization methods for the image operator,

Types 1-4, is presented. We first introduce the network ar-

chitecture used to verify the performance of each image op-

erators for the different parameterization methods. Next,

the implementation details for the experiment are given. Fi-

nally, we describe the data sets used for evaluation and the

evaluation criteria.



Conv 3×3 - stride:1

Conv 4×4 - stride:2

Deconv 4×4 - stride:2

Conv 3×3 - stride:1

Conv 3×3 - stride:1

Input

Output

×6

Conv 3×3 – stride:1, dilation: 1

Conv 3×3 – stride:1, dilation: 𝟐𝒑
ResBlock

Output

Input

pth ResBlock

Figure 3. An overall network architecture composed of 17 convo-

lution layers using simple basic residual blocks.

Image operators PSNR SSIM

L0 smoothing [16] 35.33 0.9665

Pencil drawing [10] 30.65 0.8592

Denoising 35.92 0.9404

Super-resolution 34.94 0.8718

Deblocking 34.48 0.8932

Table 1. PSNR and SSIM results obtained by using the separated

networks (Type 1).

3.1. Network architecture for an image operator

We empirically test the different parameterization meth-

ods, Types 1-4, using a simple network architecture inspired

by CycleGAN [21] and StarGAN [4]. Figure 3 shows the

overall network architecture of an image operator, which

has a symmetric structure. The network is composed of one

convolution layer for the low-level feature extraction, an-

other convolution layer with a stride size of two for down-

sampling, six residual blocks [7], one convolution layer for

aggregating the features from the residual blocks, one de-

convolution layer with a stride size of two for upsampling,

and a final convolution layer for producing the results in

the form of image. In the network architecture used, there

are two residual paths to learn the residual information be-

tween the input and output images more effectively. As

shown in Figure 3, a residual block consists of two 3 × 3
convolution layers and a skip connection. Among the two

convolution layers, the latter one has a dilation rate of 2p

for p = 1, 2, · · · , 6 to increase the receptive field of the im-

age operator. We used the channel number of 64 for all the

convolution and deconvolution layers in the network model

except for the last convolution layer. The ReLU [13] is used

as an activation function.

3.2. Implementation details

3.2.1 Details

In parameterized image operators, two approaches are gen-

erally used, parameterizing only the first feature layer and

parameterizing all network layers. In this paper, we tested

both ways to verify which method is more effective for an

image operator. Every feature layer was initialized using

the Xavier method [14]. Since this paper does not focus

on the performance improvement of image operators, we

employed simple ℓ2 loss between an output and its label to

optimize the model parameters. The full source code is im-

plemented on the Pytorch [15] framework and will be avail-

able online. All models were trained using the Adam [9]

solver with β1 = 0.9 and β2 = 0.999. The mini-batch size

was set to 12 for all experiments. We trained all network

models for 50 epochs with an initial learning rate of 10−2,

which is divided by 10 at 30 epochs and again at 40 epochs.

Our experiments were conducted on a single NVIDIA Titan

X GPU.

3.2.2 Image operators

To compare the parameterization methods on various types

of image operators, we utilized two types of image process-

ing tasks, image filtering and image restoration. For the

image filtering task, we adopted L0 smoothing [16], rel-

ative total variation (RTV) [18], and pencil drawing [10].

For the image restoration task, we utilized denoising, super-

resolution, and JPEG artifact deblocking.

3.3. Types of parameters

As mentioned earlier, parameters can change the operat-

ing configurations of an image operator such as the intensity

of image processing. Also, the parameterization can be ex-

tended to handle multiple image operators if we allocate a

specific parameter value for each image processing task. In

Section 4, we will present the results of three sets of ex-

periments. First, we build a network model for each single

image operator and only parameterize the intensity of image

processing (Subsection 4.1: A single operator with multiple

parameters). Second, we build a single model, fix the inten-

sity of image processing, and parameterize switching the

image operators (Subsection 4.2: Multiple operators with a

single parameter). Finally, we build a single model and pa-

rameterize both switching the image operators and varying

the intensity of image operations (Subsection 4.3: Multiple

operators with multiple parameters).



Ty
pe

 3
Ty

pe
 3

Ty
pe

 3
Ty

pe
 3

Ty
pe

 4
Ty

pe
 4

Ty
pe

 4
Ty

pe
 4

In
pu

t
In

pu
t

RT
V

L 0
sm

oo
th

in
g

D
en

oi
sin

g
D

eb
lo

ck
in

g
Su

pe
r-r

es
ol

ut
io

n

Input Input InputType 3 Type 3 Type 3 Type 4Type 4Type 4

Figure 4. Resultant images of the image operators parameterized by Types 3 and 4. From left to right, the input parameter values increase.

For the super-resolution task, the image operator restores the input images down-sampled with the scale factors of two, three, and four,

respectively, from left to right. We only show the results of applying the parameterization to all layers due to the page limit.



L0 smoothing Pencil drawing Denoising Super-resolution Deblocking

G
T 

or
 In

pu
t

Ty
pe

 1
Ty

pe
 2

Ty
pe

 3
Ty

pe
 4

Figure 5. Resultant images of the image operators parameterized by Types 1-4. For L0 smoothing [16] and pencil drawing [10], the first

row shows the ground truth labels for the filtered results, and for image restoration, it depicts the input to be recovered.

Image operators

PSNR SSIM

1st layer All layers 1st layer All layers

Type 3 Type 4 Type 3 Type 4 Type 3 Type 4 Type 3 Type 4

RTV [18] 41.68 41.85 41.93 42.17 0.9866 0.9876 0.9878 0.9883

L0 smoothing [16] 35.31 35.36 35.26 35.89 0.9618 0.9610 0.9598 0.9672

Denoising 32.56 32.61 32.58 32.64 0.8260 0.8287 0.8277 0.8296

Super-resolution 35.20 35.20 35.17 35.26 0.8753 0.8753 0.8749 0.8767

Deblocking 34.27 34.27 34.27 34.28 0.8830 0.8830 0.8828 0.8831

Table 2. PSNR and SSIM results obtained by using the networks parameterized by Type 3 and Type 4. In this experiment, each single

operator with multiple parameters was learned. Parameterization methods applied only to the first layer and to all layers were both

evaluated.



Image operators

PSNR SSIM

1st layer All layers 1st layer All layers

Type 2 Type 3 Type 4 Type 2 Type 3 Type 4 Type 2 Type 3 Type 4 Type 2 Type 3 Type 4

L0 smoothing [16] 31.57 31.16 31.59 32.03 30.90 31.69 0.9010 0.8903 0.9025 0.9124 0.8856 0.9078

Pencil drawing [10] 30.55 30.25 30.54 30.63 29.72 30.31 0.8365 0.8129 0.8270 0.8439 0.8017 0.8304

Denoising 33.20 32.18 33.24 33.70 31.68 33.38 0.8892 0.8390 0.8859 0.8983 0.8094 0.8918

Super-resolution 33.72 33.37 33.67 33.90 33.19 33.61 0.8456 0.8377 0.8458 0.8528 0.8316 0.8456

Deblocking 33.50 33.04 33.45 33.69 32.72 33.39 0.8754 0.8701 0.8739 0.8776 0.8690 0.8740

Table 3. PSNR and SSIM results obtained by using the networks parameterized by Type 2, Type 3, and Type 4. In this experiment,

multiple operators with a single parameter were learned. Parameterization methods applied only to the first layer and to all layers were

both evaluated.

Image operators

PSNR SSIM

1st layer All layers 1st layer All layers

Type 3 Type 4 Type 3 Type 4 Type 3 Type 4 Type 3 Type 4

L0 smoothing [16] 34.79 35.60 34.93 35.51 0.9551 0.9635 0.9552 0.9629

Denoising 32.34 32.48 32.32 32.48 0.8260 0.8287 0.8277 0.8296

Super-resolution 34.84 35.04 34.84 35.03 0.8678 0.8714 0.8681 0.8712

Deblocking 34.01 34.10 34.04 34.12 0.8778 0.8793 0.8780 0.8794

Table 4. PSNR and SSIM results obtained by using the networks parameterized by Type 3 and Type 4. In this experiment, Multipl operators

with multiple parameters were learned. Parameterization methods applied only to the first layer and to all layers were both evaluated.

3.3.1 Parameter sampling

For each image operation task, parameter values that deter-

mine the intensity of image operation spans very different

ranges. Thus, following the parameter sampling methods

in [5], we uniformly sampled parameters in either the log-

arithm or the linear space according to the image operation

tasks (Subsections 4.1 and 4.3). For the parameter of chang-

ing the image operators, we uniformly sampled values in the

linear space within [0, 1] (Subsections 4.2 and 4.3). For the

experiments using a single parameter value, we sampled a

median parameter value in the sampling space of the corre-

sponding image operation task unless otherwise noted.

3.3.2 Data sets

In the experiments, we make use of the natural images in

the Berkeley segmentation data set (BSDS) [1], which con-

tains 500 images for image segmentation, and the Waterloo

Exploration data set (WEDS) [11], which contains 4,744

images for image quality assessment. To evaluate the per-

formance of image operators, we randomly selected 100 im-

ages from the BSDS and 1,000 images from the WEDS and

utilized the combined set of the selected images as a test

set. On the other hand, we created a train set which is a

combination of the remained 4,144 images. For each image

filtering task, we generated seven random parameter val-

ues by employing the aforementioned parameter sampling

method to produce the ground truth labels with the gener-

ated parameters. Similarly, for each image restoration task,

we constructed seven input images with the randomly gen-

erated parameters except the super-resolution task. That is,

for each task, the train set of 29,008 images and the test

set of 7,700 images were employed for our experiments.

For super-resolution, we used three upscale factors of two,

three, and four as a parameter value.

3.3.3 Evaluation criteria

We conducted four sets of experiments: 1) A single operator

with a single parameter as a baseline; 2) A single operator

with multiple parameters; 3) Multiple operators with a sin-

gle parameter; 4) Multiple operators with multiple parame-

ters. As described above, for the experiment with a single

parameter, we used only the median value within the param-

eter range. The performance of the image operators was

evaluated on the test set by using average peak signal-to-

noise ratio (PSNR) and structural similarity index (SSIM)

as image error metrics.

4. Experimental results

4.1. Experiment 1: A single operator with multiple
parameters

In this experiment, we compare the performance be-

tween Type 3 and Type 4 for the image filtering tasks, RTV

and L0 smoothing, and the image restoration tasks, Denois-

ing, super-resolution, and deblocking. Type 2 is not con-

sidered in this case because it cannot be implemented with

the parameter spanning a large number of values. Table 2



shows PSNR and SSIM results. For the image filtering task,

Type 4 achieves the better results in terms of both PSNR and

SSIM, but the improvement is not considerable. Since RTV

is a relaxed filter of L0 smoothing, in both Types, PSNR and

SSIM of RTV are much higher than those of L0 smooth-

ing. Similar results can be seen for the image restoration

tasks. For both tasks, the parameterization method applied

to all the layers mostly shows better results than that applied

to the first layer; however, the performance increase is not

very significant. Figure 4 exhibits the results of the image

operators parameterized by Types 3 and 4. As can be seen

in Table 2, the parameterized image operators work well

in various image processing tasks, and produce the results

with similar image quality.

4.2. Experiment 2: Multiple operators with a single
parameter

In this experiment, we compare the performance be-

tween Types 2-4 for the image filtering tasks, L0 smooth-

ing and pencil drawing, and the image restoration tasks,

denoising, super-resolution, and deblocking. For the pen-

cil drawing, we used the desired parameter recommended

in [10]. As shown in Table 3, Type 2 achieves the best re-

sults in all image processing tasks. Even Type 2 applied

to only the first layer achieves the comparable or higher re-

sults in terms of PSNR and SSIM as compared with the

other types applied to all the layers. As shown in Tables 1

and 3, the separated networks for each task achieve a better

performance than the other types which employ a single net-

work. Types 3 and 4, which are the linear approximation of

Type 2 with respect to the biases and that of Type 1 with re-

spect to the weights, respectively, show somewhat the poor

performance of learning a single network processing mul-

tiple image operations. Accordingly, similar results can be

observed in Figure 5. In the five image processing tasks,

Type 1 exhibits the best results. For a given parameter with

a fixed value, image operators based on CNN work well de-

spite using a very simple structure. As we discussed in Sec-

tion 2, Types 2-4 are the approximated versions of Type 1,

and thus the performance of Types 2-4 tends to be lower

then Type 1. Among Types 2-4, Type 2 deals with the mul-

tiple image operators well as compared with Types 3 and 4.

4.3. Experiment 3: Multiple operators with multi­
ple parameters

In this experiment, we compare the performance be-

tween Type 3 and Type 4 for L0 smoothing, denoising,

super-resolution, and deblocking tasks. Similar to the re-

sults in Table 2, the image operator parameterized by Type 4

shows the better PSNR and SSIM results than that parame-

terized by Type 3. For both types, parameterizing the first

layer and all layers achieves similar PSNR and SSIM val-

ues. As comparing between Tables 2 and 4, the performance

is degraded, but the performance degradation is not very

significant considering all the results of Table 4 is obtained

by using only a single network.

5. Discussion and conclusion

As discussed in Section 2, common parameterization

methods can be classified into two groups: one is to share

the weight terms and control the bias terms according to pa-

rameter values; the other one is to handle the weight terms

while fixing bias terms.

For a single network coping with a single operator with a

single parameter, independent networks that are separately

trained can be the best choice. However, in case of deal-

ing with many parameter values, a single network is re-

quired for real-world applications. For a single operator

with multiple parameters, as we expected, Type 4 achieves

the better performance than Type 3, and for multiple oper-

ators with multiple parameters, similar results can be ob-

served. However, the performance difference is not very

significant. For multiple operators with a single parameter,

Type 2 shows the best results, but there still exists great per-

formance difference between Types 1 and 2. As comparing

Types 2 and 3, we can also find that the performance differ-

ence is quite significant. To be short, for a single network

generating images through very different image processing

tasks, Type 2 can be the best choice; on the other hand, for

a single network generating images with parameters han-

dling the intensity of image processing, Type 4 will perform

well, and Type 2 can be a good alternative as considering the

computational complexity. In addition, applying the param-

eterization only to the first layer achieves satisfactory results

in spite of much lower resource increases as compared with

applying the parameterization to all layers.

In this paper, the operation properties of widely used pa-

rameterization methods for the image operator have been

analytically and empirically studied. In future work, we

will explore the combinations of different types consider-

ing their operation properties. In addition, we will attempt

to extend the parameterization methods from linear approx-

imation to the non-linear approach.

Acknowledgments

This work was supported by Institute of Information &

Communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government (MSIT) (No.2014-

3-00077, Development of global multi-target tracking and

event prediction techniques based on real-time large-scale

analysis)

References

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE Trans.



Pattern Anal. Mach. Intell., 33(5):898–916, May 2011. 1, 7

[2] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm

for image denoising. In Proc. IEEE Comput. Vis. Pattern

Recognit., 2005. 1

[3] Q. Chen, J. Xu, and V. Koltun. Fast image processing with

fully-convolutional networks. In Proc. IEEE Int. Conf. Com-

put. Vis., 2017. 1, 3

[4] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo.

Stargan: Unified generative adversarial networks for multi-

domain image-to-image translation. In Proc. IEEE Comput.

Vis. Pattern Recognit., 2018. 1, 2, 4

[5] Q. Fan, D. Chen, L. Yuan, G. Hua, N. Yu, and B. Chen. De-

couple learning for parameterized image operators. In Proc.

European Conf. Comput. Vis., 2018. 1, 3, 7

[6] Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf. A generic

deep architecture for single image reflection removal and im-

age smoothing. In Proc. IEEE Int. Conf. Comput. Vis., 2017.

1

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proc. IEEE Comput. Vis. Pattern

Recognit., 2016. 1, 4

[8] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In Proc.

IEEE Comput. Vis. Pattern Recognit., 2016. 1

[9] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In Proc. Int. Conf. Learn. Representations, 2015.

4

[10] C. Lu, L. Xu, and J. Jia. Combining sketch and tone for

pencil drawing production. In Proceedings of the Symposium

on Non-Photorealistic Animation and Rendering, pages 65–

73, 2012. 1, 4, 6, 7, 8

[11] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and

L. Zhang. Waterloo Exploration Database: New challenges

for image quality assessment models. IEEE Trans. Image

Process., 26(2):1004–1016, Feb. 2017. 1, 7

[12] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014. 1, 2

[13] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In Proc. Int. Conf. Mach.

Learn., 2010. 3, 4

[14] V. Nair and G. E. Hinton. Understanding the difficulty of

training deep feedforward neural networks. In Proceedings

of the Thirteenth International Conference on Artificial In-

telligence and Statistics, 2010. 4

[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017. 4

[16] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l 0 gra-

dient minimization. ACM Transactions on Graphics (TOG),

30(6):174, 2011. 1, 4, 6, 7

[17] L. Xu, J. Ren, Q. Yan, R. Liao, and J. Jia. Deep edge-aware

filters. In Proc. Int. Conf. Mach. Learn., 2015. 1

[18] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from

texture via relative total variation. ACM Transactions on

Graphics (TOG), 31(6):139, 2012. 1, 4, 6

[19] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-

resolution via sparse representation. IEEE Trans. Image Pro-

cess., 19(11):2861–2873, 2010. 1

[20] G. Zhai, W. Zhang, X. Yang, W. Lin, and Y. Xu. Efficient

image deblocking based on postfiltering in shifted windows.

18(1):122–126, 2008. 1

[21] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In Proc. IEEE Int. Conf. Comput. Vis., 2017. 4


