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Abstract

Many real-world solutions for image restoration are

learning-free and based on handcrafted image priors such

as self-similarity. Recently, deep-learning methods that use

training data, have achieved state-of-the-art results in var-

ious image restoration tasks (e.g., super-resolution and in-

painting). Ulyanov et al. bridge the gap between these two

families of methods in [29]. They have shown that learning-

free methods perform close to the state-of-the-art learning-

based methods (≈ 1 PSNR). Their approach benefits from

the encoder-decoder network (ed).

In this paper, we propose a framework based on

the multi-level extensions of the encoder-decoder network

(med) to investigate interesting aspects of the relationship

between image restoration and network construction inde-

pendent of learning. Our framework allows various net-

work structures by modifying the following network compo-

nents: skip links, cascading of the network input into inter-

mediate layers, a composition of the encoder-decoder sub-

networks, and network depth. These handcrafted network

structures illustrate how the construction of untrained net-

works influence the following image restoration tasks: de-

noising, super-resolution, and inpainting. We also demon-

strate image reconstruction using flash and no-flash image

pairs. We provide performance comparisons with the state-

of-the-art methods for all the restoration tasks above.

1. Introduction

Image restoration is an ill-posed problem which aims to

recover an image given its corrupted observation (e.g., de-

noising [39, 5, 31], super-resolution [14, 23, 2], and inpaint-

ing [36, 34, 33]). Corruption may occur due to noise, cam-

era shake, and due to the fact that the picture was taken in

rain or underwater [16]. Image restoration methods could

be mainly classified into two types - traditional methods

and deep-learning (DL) methods. Traditional methods in-

clude spatial filtering methods (e.g., bilateral filters [28],

non-local means [4]), wavelet transform based methods [6],

and dictionary learning and sparse coding [17, 37]. DL

methods generally include a neural network to learn im-

age prior from the training samples (learning-based1) for

restoration, where the training samples contain paired ex-

amples of corrupted and high-quality images.

Traditional methods are generally faster and compar-

atively less cumbersome to implement, e.g., filtering ap-

proaches [8]. Whereas DL methods could be tricky to im-

plement. For example, methods based on adversarial loss

require training of two separate networks, namely a genera-

tor and a discriminator [14]. Moreover, DL methods output

photo-realistic images with finer details of features due to

the image prior being captured by feature learning on a col-

lection of images [14, 38, 3].

Representation learning from images gives insight into

the image statistics captured by the network. The main idea

is to perform various image restoration tasks to learn a bet-

ter image prior [12]. However, it is focused on the learning-

based setting [1]. There are fewer studies that directly in-

vestigate the image prior captured by the neural network

without using any training datasets. Ulyanov et al. first

conducted the studies to achieve image restoration without

using a training sample (learning-free) [29]. This paper fo-

cuses on the research thread mentioned above. Our work

combine the ideas of traditional methods and the DL ap-

proaches similar to [10, 25, 15, 35, 29].

Our ablation study shows how the structure of the un-

trained network influences the quality of image restoration

achieved by them. For example, inpainting of a large miss-

ing region is qualitatively better-achieved using an encoder-

decoder network without skip connections, whereas super-

resolution is better-achieved with skip links (Fig. 10 and

Fig. 11).

We have performed extensive experiments on various

handcrafted network architectures obtained by modifying

the network components. We focus on the following net-

work components: depth of the network, skip connections,

cascading of the network input into intermediate layers

1The learning refers to training the network on the collection of images

and learning-free refers to the methods which do not use training data.



(cascade), and composition of the encoder-decoder subnet-

works (composition). We show how each of the above net-

work components affects image restoration. For example,

we show how the performance of denoising gets affected

when we increase the depth of the network (Fig. 4).

We have formulated a framework called multi-level en-

coder decoder (med) that models various handcrafted net-

work architectures. An instance from our framework med is

a composition of three encoder-decoder networks (Fig. 2).

The multi-level extension of encoder-decoder is motivated

to exploit the re-occurrence of an image patch at differ-

ent resolutions. We show our analysis using six different

network instances of med (Table 1). These handcrafted

network architectures help us develop insight into how the

network construction influences image restoration (Fig. 4,

Fig. 7, Fig. 8, Fig. 10, and Fig. 11). The key idea is to it-

eratively minimize the loss between the network output and

the corrupted image to implicitly capture the image prior in

the network.

There is an inherent contrast in our objectives. On the

one hand, we aim to experiment with various high capac-

ity networks to show the relation between image restoration

and network construction. The higher depth allows more

network components and various network structures for the

analysis of the image prior. On the other hand, the high ca-

pacity network should not negatively influence the quality

of image restoration. This is due to the fact that the higher

depth network suffers from the vanishing gradients prob-

lem [18, 26]. One option is to use skip links to propagate

the gradients and feed the image features from the interme-

diate layers to the last layers of the network [18]. Our main

contributions are summarized as follows.

• To the best of our knowledge, this is the first study of a

multi-level encoder-decoder framework (med) designed

to illustrate the relationship between image restoration

and network construction, independent of training data

and using DL. The med framework allows analysis of the

deep prior by using four networks components (depth,

skip connections, composition, cascade) whereas DIP

[29] includes the investigation based on the two net-

work components (depth and skip connections). The med

framework provides a more rigorous evaluation of the

usefulness of skip connections compared to [29].

• We also perform various image restoration tasks to show

the quality of the image prior captured by the multi-level

network architectures. We have achieved results compa-

rable to the state-of-the-art methods for denoising, super-

resolution, and inpainting with x% pixels drop despite

experimenting with various high-capacity networks. We

also observe a better flash no-flash based image construc-

tion when compared to [29].

2. Related work

Image restoration aims to recover a good quality image

from a corrupted observation. It is a useful preprocessing

step for other problems, e.g., classification [30]. Mao et

al. have shown image restoration using an ed network with

symmetric skip links between the layers of encoder and de-

coder [18]. There are various proposals for the loss func-

tions for the image restoration tasks, e.g., adversarial loss

[14], perceptual loss [14], or contextual loss [20, 19]. In

addition, Chang et al. have proposed a single generic net-

work for various image restoration tasks [22]. However, the

drawback to this line of work is that the restoration output

could be biased toward a particular training dataset.

Ulyanov et al. showed that a randomly-initialized ed

network works as a hand-crafted prior for restoring images

without training data [29]. Motivated by their approach, our

learning-free framework only uses the handcrafted structure

of the network for image restoration. However, unlike [29],

we explore how the network components directly influence

various image restoration tasks.

3. Multi-level Encoder-Decoder Framework

In this section, we explain the multi-level encoder-

decoder framework (med) and its major components. We

shall also discuss an example construction of a multi-level

encoder-decoder network and then provide a classification

of the networks useful for our experiments.

The med is one of the general class of networks, where

each network is a composition of encoder-decoder blocks as

subnetworks. We address med as a network F for devising

a simpler explanation. The med network F is a compo-

sition of two subnetworks, namely a generator G and an

enhancer E. The image restoration network F is defined in

Eq. 1.
(1)F = E ◦G

Here, the generator and the enhancer are either an encoder-

decoder network (ed) or a composition of ed networks. The

encoders determine the abstract representation of the image

features, which are used by the decoder for the reconstruc-

tion of the image. The composition of networks allows mul-

tiple sub-networks to learn image features from the down-

sampled versions of the corrupted image. This would en-

force the output of the generator to be consistent across the

multiple scales of the target image2 to improvise the quality

of the image restoration.

The multi-level encoder-decoder framework is motivated

to model various network architectures by modifying the

network components described in Subsection 3.1. For ex-

ample, let’s suppose the generator is a depth-k ed network.

2Target image refers to the high-quality image whose corrupted obser-

vation Î is given for restoration.



There are five network configurations obtained by modi-

fying the skip connections, namely, Intra-skip, Inter-skip

encoder-encoder, Inter-skip decoder-encoder, No-skip, and

Full-skip connections3. There are two network configu-

rations based on the cascading of the network input, i.e.,

network with cascade or network without cascade. There

could be (k−1) different generator-enhancer compositions

for a depth-k generator network. We do not consider depth-

k enhancer to reduce the model capacity. Finally, given a

depth-k ed network as the generator, the med framework

will allow 1×5×2×(k−1) = 10(k−1) different network

structures. On the other hand, [29] will allow only two dif-

ferent network configurations (network with skip connec-

tions and without skip connections). Therefore, the gen-

eralization med provides various networks to analyze the

effects of network components on the quality of the image

restoration. Technically, the med is a general framework

to explore the nature of the mapping between the network

parameter space and the natural image space.

3.1. Network Components

We focus on the following components to show how the

network structure affects the image restoration output. (a)

skip connections, (b) depth of the network, (c) cascading

of the network input into the intermediate layers, and (d)

composition of two ed networks. We describe each of these

components as follows.

(a) Skip connections. The skip link between the layers Li

and Lj , where i and j are the indices of the network layers

with i < j, is made by concatenating the output of the layer

Lj−1 with the output of the layer Li and then feeding into

the layer Lj . We have provided the detailed classification of

the skip connections in supplementary material. In Fig. 1(a)

and Fig. 1(b), we have pictorially shown useful skip link

configurations for the paper.

(b) Depth of the network. It is measured by the number of

layers present in the network. Higher depth networks cap-

ture finer feature details. However, a very high depth could

negatively influence the performance (Fig. 3). There are

two ways to increase network depth. First, by introducing a

new layer into the encoder-decoder (ed) network. Second,

by performing a composition of the two ed networks.

(c) Cascading of network input (cascade). It is a pro-

cedure to successively down-sample the network input and

then feed it into the intermediate layers of the network. For-

mally, to provide the network input at the intermediate layer

L, we resize the network input and then concatenate it with

the layer L − 1. Next, we feed the resulting tensor into the

layer L. Cascading of network inputs was also utilized by

Chen et al. [7]. We use it to provide the image features into

the enhancer network (Fig. 1(c)).

3In the supplementary material we have provided the details of different

types of skip connections.

(d) Composition of ed networks (composition). The com-

position of two encoder-decoder networks is achieved by

feeding the output of the first ed network into the second

ed network. The composition of two ed networks increases

the network depth and the number of skip connections. The

main objective of performing the network composition is to

learn image features from the downsampled versions of the

corrupted image.

(a) Intra-skip. (b) Full-skip.

(c) Cascading of network input.

Figure 1: Network components. Layers of the encoder are

in red and layers of the decoder are in blue. (a) Intra-skip:

the skip connections within EDS network. (b) Full-skip:

both the Intra-skip connections and Inter-skip connections

are present. (c) Cascading of the network input.

3.2. Multilevel EncoderDecoder Network

Here, we give an example construction of med network

F . It is a three-level ed network where the generator is the

first ed and the enhancer is a composition of the other two

ed (Fig. 2).
(2)F = E2 ◦ E1 ◦G

In Eq. 2, the subnetwork G is the generator and subnetwork

E2 ◦ E1 is the enhancer E. The networks G, E1, and E2

are defined as follows. G : R
m×n×c → R

m×n×c, E1 :
R

m

2
×

n

2
×c → R

m

2
×

n

2
×c, and E2 : R

m

4
×

n

4
×c → R

m

4
×

n

4
×c.

Here, c is the number of channels (c is 3 for RGB images).

The generator G operates at 2× the resolution of E1 and

4× the resolution of E2. A resize operator R is used to

down-sample the output of G to feed into E1 and down-

sample the output of E1 to feed into E2. We have abstracted

out R in Eq. 2 for devising a simpler explanation. As de-

scribed earlier, the enhancer E = E2 ◦ E1 is mainly used

to improvise the output of the generator G by making it

consistent across different resolutions of the target images.

3.3. Network Classification

We have provided an example construction of a multi-

level encoder-decoder network in Fig. 2. Similarly, there

are various other network architectures we can get by mod-

ifying the network components. We give a classification of



Figure 2: Multi-level encoder-decoder network architecture. An example construction of a three-level med network. The

generator G is an ed network and enhancer E = E1 ◦E2 is the composition of two ed networks. There are skip connections

within each ed subnetwork. The layers are shown using colors as follows: Convolutional layer with stride

=1, Convolutional layer with stride=2, Batch Normalization, and Upsampling. The subnet-

work G is a depth-5 ed network, E1 is a depth-4 ed network, and E2 is a depth-3 ed network.

med networks useful for our methods to analyze these net-

work architectures. The med network is classified based

on skip links and cascading of the network input, as shown

in Table 1. The network MED has no skip connections

and MEDS has Intra-skip connections (the character “S” in

MEDS denotes the presence of skip connections). The net-

work MEDSF has Full-skip connections. Similarly, MEDC

has cascading of network input without skip connections

(the character “C” in MEDC denotes the cascading of net-

work input). MEDSFC has cascading of network input with

Full-skip connections. We will use the networks given in

Table 1 for our experiments. For example, to see the ef-

fects of the decreasing skip links, one could perform image

restoration with MEDSF, MEDS, and MED networks.

No skip Intra-skip Full-Skip

Cascade MEDC MEDSC MEDSFC

No Cascade MED MEDS MEDSF

Table 1: Classification of med networks. The classifica-

tion is based on the following network components: skip-

links and cascading of network input at intermediate layers.

The graphical representations of the above network compo-

nents are shown in Fig. 1.

4. Applications

In this section, we show the performance on the follow-

ing image restoration tasks: super-resolution, denoising, in-

painting, and flash no-flash. We provide the technical de-

tails of the experiments in the supplementary material.

The aim of image restoration is to reconstruct the image

features given a corrupted image Î . The image Î is com-

puted by adding noise or blur or downsampling the target

image I . Ulyanov et al. formulated the image restoration

problem to the setting of DL based learning-free framework

[29]. The image restoration framework is as follows.

(3)θ∗ =arg min
θ

L(Fθ(ẑ), Î);

Here, L is the loss function and F is a network with param-

eters denoted by θ and the network input z is prepared from

the corrupted image Î . The loss function in the Eq. 3 is a

general definition. We now discuss how to perform various

image restoration tasks.

Denoising. Denoising aims to reduce noise and recover

the clean image where the learning process is assisted only

by the corrupted image. Consider a noisy image Î . Let

d1 = D( 1
2
, Î) and d2 = D( 1

4
, Î) be the down-sampled ver-

sions of the image Î . Our approaches are based on the fol-

lowing property of a natural image: patch recurrence within

and across multiple scales. Using this property, one could

say that the down-sampled corrupted image contains some

of the image features. To make the best use of the property

above, our multi-scale loss L(Fθ(z), Î) (Eq. 3) for denois-

ing is defined in Eq. 4.

(4)
θ∗ = arg min

θ

λ1‖Gθ(z)− Î‖

+ λ2‖E
1

θ (z)− d1‖+λ3‖E
2

θ (z)− d2‖

Here, F = E2 ◦E1 ◦G (Eq. 2). Loss function in Eq. 4 en-

forces the output of the generator to be consistent across the

multiple resolutions of the target image. Stated differently,

the network performs image restoration at multiple resolu-

tions. Intuitively, achieving restoration at multiple scales is

more challenging than at a single scale. Therefore, we ex-

pect that solving a harder problem could help in learning a

better image prior [12]. The image prior is implicitly cap-

tured by the network which is required to restore the image

features [29].

Denoising using our MEDSF is shown in Fig. 3. Our

MEDSF achieves SSIM=0.72 whereas the baseline DIP

[29] outputs a SSIM of 0.71 for a noise strength of σ = 100.

The PSNR values for our MEDSF is 20.95 and DIP out-

puts a PSNR of 21.36. In Fig. 5, we can observe that a

higher PSNR value do not imply higher perceptual quality.

We emphasize that the learning-free methods are sensitive



(a) Original,

image

(b) Noisy,

image

(c) DIP,

(0.479, 18.65)

(d) Ours,

(0.496, 18.39)

Figure 3: Denoising. A comparison between DIP [29] and

our MEDSF for denoising with noise strength of σ = 100
using the performance metric (SSIM, PSNR).

Figure 4: Network depth effects on denoising. EDS5 is

a depth-5 ed network with skip connections (similarly for

EDS6 and EDS7). The highest-depth network MEDSF con-

verges faster. EDS5 network (lower depth) achieves the

highest PSNR value but converges the slowest. This shows

that a higher model capacity does not necessarily lead to

improved performance.

to hyper-parameters4. Therefore, the performance of DIP

and our MEDSF could probably be further maximized by

changing the hyper-parameters.

In Fig. 4, we can observe the effects of network depth on

denoising. The network initially learns the global features

from the corrupted image by minimizing the loss function

defined in Eq. 4. Later, the network starts learning fine

feature details which includes noise. Therefore, due to

over learning, it produces noisy spots similar to the ones

contained in the corrupted image. For example, MEDSF

intermediate output at around 1000 iterations is the desired

noise free image because it achieves the maximum PSNR.

Super-resolution. Given a low-resolution (LR) image Î ∈
R

m×n×3, and a scaling factor t, super-resolution aims to

enhance the image quality and generate a high-resolution

(HR) image IH ∈ R
mt×nt×3. We feed network input z

into med network F = E2 ◦E1 ◦G and solve the following

4The learning-free methods are sensitive to hyper-parameters shown in

Fig. 4 of the supplementary material and DIP [29].

minimization problem given in Eq. 5.

(5)

θ∗ = arg min
θ

λ1‖Gθ(z)− u0‖

+ λ2‖E
1

θ (z)− u1‖+λ3‖E
2

θ (z)− Î‖

Here, u0 = U(Î , 4) and u1 = U(Î , 2) are the up-

sampled versions of the corrupted LR image Î . Eq. 5 deter-

mines the network parameter θ∗ which minimizes the loss

L(Fθ(z), Î).
Super-resolution achieved by Ulyanov et al. in Deep Im-

age Prior (DIP) is the state-of-the-art in DL-based learning-

free methods to the best of our knowledge [29]. DIP does

not use training samples to learn the image prior in contrast

to the learning-based methods which benefit from the train-

ing data and adversarial loss or perceptual loss [23, 14].

Thus, it lacks local level features in the output image.

However, it is shown to output better images than various

learning-free methods such as bicubic upsampling [29].

We achieved an average SSIM of 0.80, whereas DIP [29]

achieved an average SSIM of 0.81 for 4×super-resolution.

We obtained 24.48 as the average PSNR. Whereas DIP

achieved an average PSNR of 25.145. The perceptual

quality of the generated images by the proposed approach

is observed to be comparable to that of DIP (Fig. 5).

Image inpainting. It involves computing missing pixel val-

ues in the corrupted image Î using the corresponding binary

mask m ∈ {0, 1}k×l. Inpainting has various applications

such as removing undesirable objects and text in an image,

restoring damaged paintings, and computing missing pixels

lost during transmission.

Suppose I is the target image and the corrupted image

Î is obtained using the mask m as follows Î = I ⊙ m,

where ⊙ is the Hadamard product. Let d1 = D( 1
2
, Î) and

d2 = D( 1
4
, Î) be the down-sampled versions of the cor-

rupted image Î , and m1 = D( 1
2
,m) and m2 = D( 1

4
,m)

be the down-sampled versions of the mask m. We solve the

following minimization problem given in Eq. 6.

(6)
θ∗ = arg min

θ

λ1‖(Gθ(z)− Î)⊙m‖

+ λ2‖(E
1

θ (z)− d1)⊙m2‖+λ3‖(E
2

θ (z)− d2)⊙m3‖

We show the following three inpainting tasks. (1) restoring

missing pixels lost by masking the target image with a ran-

domly generated binary mask (Fig. 6), (2) region-inpainting

which includes painting a large region (Fig. 7 and Fig. 10),

and (3) removing text superimposed on an image (Fig. 8).

5RGB images in Set14 dataset had three channels and our med net-

work also outputs RGB images having three channels. However, super-

resolution output of DIP [29] have images with four channels (including

the alpha channel). Therefore, to get a fair comparison, we reproduced the

DIP output before drawing the comparison.



(a) High resolution image. (b) Low resolution image. (c) DIP [29], (0.88, 28.2). (d) MEDSF, (0.88, 25.43).

Figure 5: 4× Image super-resolution. A qualitative comparision using performance metric (SSIM, PSNR). We can observe

that a higher PSNR value does not imply a higher perceptual quality.

Inpainting requires understanding the global context and

the local structure of the target image [34]. We believe that

region-inpainting is the most challenging task because the

information from the nearby pixels might not always be suf-

ficient to complete the scene.

We obtained 24.62 as the average PSNR and 0.86 as

the average SSIM for inpainting with 90% missing pixels.

Whereas DIP [29] achieved an average PSNR of 25.05 and

an average SSIM of 0.86. The perceptual quality of the

generated images by the proposed approach is observed to

be comparable to that of the other methods (Fig. 6).

Flash No-flash. Given a pair of flash and no-flash images,

the objective is to get a single high-quality image which

incorporates details of the scene from the flash image and

ambient illumination from the no-flash image [21, 9]. The

combined image helps to achieve denoising, white balanc-

ing, red-eye correction [21], foreground extraction [27], and

saliency detection [11].

Consider a pair (IF , INF ), where IF is a flash image

and INF is a no-flash image. The network input z is pre-

pared by concatenating IF and INF . Let f1 = D( 1
2
, INF )

and f2 = D( 1
4
, INF ) be the down-sampled versions of

INF . We solve the optimization problem given in Eq. 7.

(7)

θ∗ = arg min
θ

λ1

(

‖Gθ(z)− INF ‖+‖E1

θ (z)− f1‖

+ ‖E2

θ (z)− f2‖
)

+ λ2‖Gθ(z)− IF ‖

Here, λ1 and λ2 are the coefficients to control the image

features from INF and IF . The flash no-flash output is

shown in Fig. 9. It is worth noting that our implementation

of flash no-flash is more flexible in providing features from

both flash and no-flash images using coefficients λ1 and λ2,

unlike [29] (Fig. 12 of the supplementary material).

5. Network Structures Effects on Restoration

Here, we discuss the various aspects of the relation

between the network construction and image restoration

using the med framework. Our choice of the multi-level

architecture (a high capacity network) is motivated to

illustrate the behavior of various network components

(Sec. 3). We emphasize that the image restoration quality

from untrained networks is sensitive to hyper-parameters

search [29]. We now discuss the results of the ablation

studies that we have conducted.

Effects of Skip links. Skip connections have shown

adverse effects on inpainting, see Fig. 7, Fig. 8, and Fig. 10

(the number of skip connections in the above figures

decreases from left to right). Our interpretation of the

adverse effects is as follows. The layers of encoder have

under-developed regions and their pixel values are close to

that of the mask (either zero or one). The skip connections

pass such intermediate representation to the decoder, which

leads to reconstruction bias. Therefore, output images have

pixel values that are close to the mask.

Effects of Depth. In Fig. 4, we observe a higher the depth

network converges faster because it has a large number

of parameters. However, a lower depth network EDS5

could achieve better restoration than the higher depth

network MEDSF. There could be two major factors for the

above result. First, higher depth network suffer from the

vanishing gradient problem which negatively influences

the performance [18, 26]. Second, the increase in the

number skip connections due to higher depth, influence the

performance positively [18]. We believe that the decrease

in the PSNR value indicates that the negative influence of

the network depth could have more impact compared to the

performance enhancement we get from skip connections.

Effects of Cascading of network input (cascade). The

cascade and the skip connection looks similar because they

both provide image features to the intermediate layers of

the network. However, they provide a different type of

image features. Cascade provides image features from

the corrupted image. Whereas, skip connections pass the



(a) Original image (b) Corrupted image (c) DIP [29], (0.85, 25.48) (d) Ours, (0.85, 26.18)

Figure 6: Inpainting. A comparision for restoration of 90% missing pixels using performance metric (SSIM, PSNR).

(a) Original

image

(b) MEDSFC,

24.87

(c) MEDSF,

23.20

(d) MEDSC,

24.28

(e) MEDS,

24.04

(f) MEDC,

26.80

(g) MED,

25.83

Figure 7: Cascading of network input. Effects of cascading of the network input in the intermediate layers of the network

on removing an object from an image given in (a). The vase present in (a) is removed using a white mask, and then inpainting

is performed. Networks in (b) and (c) have the same set of skip links. Similarly, (d) and (e) have the same collection of skip

links, and (f) and (g) do not have skip links. Cascading of network input is performed in (b), (d) and (f). (b) and (c) shows

that cascading of network input into the intermediate layers of the network improves the performance. Similarly, we can

observe that the cascading of network input performed better for other networks: (d) and (e), and (f) and (g).

DIP [29] med (Ours)

Depth ✔ ✔

Skip-links ✔ ✔

Composition of ed ✖ ✔

Cascading of input ✖ ✔

Table 2: Network components to investigate the influence

of the network structures for image restoration tasks.

image features from the intermediate layers of the network.

Object removal (inpainting) is better achieved using

cascade (Fig. 7). Whereas providing image features using

skip connections have shown adverse effects for inpainting

(Fig. 10). This could be because of the image features

captured at the intermediate layers of the network are less

interpretable than the features present in the corrupted

image.

Effects of Composition of ed networks. The two-level

med network performed better than a three level med net-

work for text-removal from an image (Fig. 8). However,

the performance difference is not very significant (less than

PSNR SSIM

DIP [29] Ours DIP [29] Ours

Denoising 21.36 20.95 0.71 0.72

Inpainting 25.05 24.62 0.86 0.86

SISR 25.14 24.48 0.81 0.80

Table 3: A quantitative comparison for denoising, inpaint-

ing, and single image super-resolution (SISR) using aver-

age PSNR and SSIM. We provide the visual comparison of

generated images in the supplementary material. The per-

ceptual quality of the generated images is comparable to

DIP [29] despite the med network has a higher capacity to

accommodate various network components (Table 2).

one PSNR). A network composition increases the network

depth and the number of skip connections. Therefore, a

three-level med could have more influence on restoration

from skip connections compared to a two-level med net-

work. Similarly, a three-level med could also increase the

effects of vanishing gradients due to the higher depth. The

composition of the networks shows the combined effects of

increasing depth and skip connections.



(a) Masked

image
(b) MEDSF*,

30.92

(c) MEDSF,

30.40

(d) MEDS*,

31.05

(e) MEDS,

30.35

(f) MED*,

30.18

(g) MED,

29.35

Figure 8: Composition of networks. Effects of the composition of the ed networks. MEDSF∗, MEDS∗, and MED∗ are two

levels ed networks. MED, MEDS, and MEDSF are three level ed networks (enhancer is a composition of two ed networks).

(b) and (c) shows that the two-level full-skip network performed better than three levels of the full-skip network. Similarly,

we can observe that the two-level med network performed better for other networks: (d) and (e), and (f) and (g).

(a) Flash image (b) No-flash (c) DIP, 17.03 (d) Ours, 18.54

Figure 9: Flash-no flash reconstruction. (a) Flash image.

(b) No flash image. (c) DIP. (d) Ours MEDS.

(a) Masked image. (b) MEDSF. (c) MED.

Figure 10: Skip connections (I). The network with skip

links (MEDSF) does not perform well for region inpainting

compared to the network without skip connections.

(a) LR image. (b) MED, 0.63. (c) MEDSF, 0.70.

Figure 11: Skip connections (II). Skip links (MEDSF) im-

proves 4× super-resolution as shown by SSIM.

6. Conclusion

We have shown interesting aspects of the relationship

between image restoration and network construction. Our

methods are unsupervised and they only use the corrupted

image for restoration instead of using any training data.

Therefore, we believe that it does not produce a biased

output unlike learning-based methods, e.g., model collapse

[24]. We feel it is a challenging experimental setup com-

pared to supervised learning setup because the network is

not learning image features by the pairs of low and high-

quality images. The challenge is the limited contextual un-

derstanding due to the lack of feature learning from the

training data.

Our med framework is a generalization of DIP [29].

This generalization is novel because it incorporates various

network components and an enhancer network. The med

framework is more expressive in terms of casting different

network structures to perform the ablation studies for vari-

ous aspects of the network (Table 2). We also discuss im-

age restoration task specific network structures that perform

comparably to the state-of-the-art methods (Table 3).

The major components of the restoration framework are

the network and the loss function (Eq. 3). We have shown

analysis using various network structures and MSE loss6.

The study of MSE loss is useful as it is used in other image

restoration methods. For example, MSE with adversarial

loss in [13, 25] and MSE with contextual loss in [19].

We observed that some network components do not en-

hance the restoration quality. For example, a network with

skip links does not perform well for inpainting. Therefore,

the experiments on a network with skip connections for in-

painting will not be efficient. Wang et al. have used skip

connections for video inpainting [32]. However, their ap-

proach is in the supervised learning setup, unlike our unsu-

pervised setup. We believe that there are similarities in both

setups. For example, if a network component is negatively

influencing the image prior learning from the corrupted im-

age (unsupervised setup), then it should also negatively in-

fluence the learning from the multiple images of training

data (supervised setup). We propose as future work to study

our restoration framework in the supervised learning setup.

6In Fig. 13 of the supplementary material, we show that MSE per-

formed better than contextual loss [20].
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