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Figure 1: (top) Hazy images. (bottom) Images after haze is removed using our fully convolutional neural network (CNN) approach.

Abstract

Haze degrades content and obscures information of im-

ages, which can negatively impact vision-based decision-

making in real-time systems. In this paper, we propose an

efficient fully convolutional neural network (CNN) image

dehazing method designed to run on edge graphical pro-

cessing units (GPUs). We utilize three variants of our archi-

tecture to explore the dependency of dehazed image quality

on parameter count and model design. The first two vari-

ants presented, a small and big version, make use of a sin-

gle efficient encoder–decoder convolutional feature extrac-

tor. The final variant utilizes a pair of encoder–decoders for

atmospheric light and transmission map estimation. Each

variant ends with an image refinement pyramid pooling net-

work to form the final dehazed image. For the big variant

of the single-encoder network, we demonstrate state-of-the-

art performance on the NYU Depth dataset. For the small

variant, we maintain competitive performance on the super-

resolution O/I-HAZE datasets without the need for image

cropping. Finally, we examine some challenges presented

by the Dense-Haze dataset when leveraging CNN architec-

tures for dehazing of dense haze imagery and examine the

impact of loss function selection on image quality. Bench-

marks are included to show the feasibility of introducing

this approach into real-time systems.

* Equal contribution.

1. Introduction

Many computer vision applications, such as those for

image classification and object detection, are trained on

datasets comprised of mostly pristine imagery. However, to

ensure dependability in real-world environments, computer

vision algorithms must be able to perform consistently in

various levels of visual degradation. One primary source of

image degradation is haze, which introduces challenging,

nonlinear noise to a scene. Haze is caused by particulates

in the atmosphere, such as dust, fumes, and mist, that ab-

sorb and scatter light. Image degradation from haze can

adversely affect computer vision algorithms, making it a

principle concern for future systems that incorporate visual

information into their decision-making processes. Previous

works [20, 21] have established the negative impact of haze

on object detection and recognition tasks and have further-

more shown the benefit of introducing image dehazing as

a prepossessing step to computer vision tasks. Introduc-

ing image enhancement algorithms such as image dehaz-

ing may prove to be an important step in creating reliable

vision-based systems.

1.1. Single Image Dehazing

The presence of haze in images is often described by the

atmospheric scattering model [19, 24, 25, 26], which is clas-

sically formulated:

I(x) = J(x)t(x) +A(1− t(x)) (1)



where I(x) is the captured hazy image, J(x) is the haze-

free image, A is the global atmospheric light, and t(x) is the

transmission map. Consequently, by estimating the global

atmospheric light and transmission map for a captured hazy

image, the haze-free image can be recovered. This ap-

proach has been the basis of several successful approaches

[6, 10, 11, 15, 17, 23, 34]. More recently, neural network

approaches have also been proposed to estimate these scene

properties [32].

To evaluate the performance of these algorithms, peak

signal-to-noise ratio (PSNR) and structural similarity in-

dex (SSIM) are commonly used to quantify dehazed image

restoration quality. PSNR (measured in decibels) is an ab-

solute error, calculated using the mean square error (MSE)

of a pixel relative to its maximum possible value. Alterna-

tively, SSIM attempts to improve upon absolute error met-

rics by more closely aligning with human perception under

the assumption that humans’ visual systems are highly at-

tuned to extracting structural information [31]. Neverthe-

less, these metrics do not always agree with human assess-

ment of the similarity of images [22] and qualitative assess-

ment remains an important component in evaluating perfor-

mance.

1.2. Contributions

In this paper, we present a family of fully convolutional

neural network architectures for single image dehazing ca-

pable of being deployed on edge GPUs. First, we present

two network variants, dubbed Small and Big FastNet, where

Small and Big refer to the widths of the networks. Second,

we present a neural network based on the atmospheric scat-

tering model that estimates the transmission map and atmo-

spheric light of a scene. We utilize these networks to study

change in accuracy as a function of total network parame-

ters, as well as to assess the benefits of estimating a scene’s

transmission map and atmospheric light. For this paper,

we loosely define efficiency based on model performance

versus parameter count. All of the proposed networks uti-

lize both an encoder–decoder structure adapted from ef-

ficient image segmentation networks [8] and a fully con-

nected pyramid pooling network [12] for output image re-

finement. Finally, we show benchmarks on reference hard-

ware for varying pixel counts to examine the feasibility of

incorporating these algorithms in real-time systems.

The paper makes the following contributions:

• A novel neural network architecture that efficiently

achieves state-of-the-art performance in single image

dehazing on the NYU Depth dataset.

• A scaled-down architecture capable of running on

super-resolution imagery without the need for crop-

ping, which is a common requirement for previous ap-

proaches.

• An empirical evaluation of the impact of loss function

on restoration quality.

• A discussion of the value of utilizing the atmospheric

scattering model when designing neural network im-

age dehazing models.

• A discussion on the challenges of using deep learn-

ing methods for haze removal, such as the effects from

overfitting.

• Timing benchmarks for running our architectures on

desktop and edge GPUs.

2. Related Work

Although there has and continues to be a tremendous

amount of success in single image dehazing without the use

of neural networks, many recent state-of-the-art techniques

utilize deep learning frameworks [7, 9, 20, 32]. These

approaches generally incorporate neural network building

blocks originally proposed for image segmentation, style

transfer, object detection, and other computer vision tasks.

For example, U-Nets [28], feature pyramid networks [21],

and residual networks [13] were all utilized as part of the

2018 NTIRE Image Dehazing Challenge [1].

2.1. Atmospheric Model Learning

Several successful techniques leverage hand-engineered

features to estimate the transmission map for image dehaz-

ing [10, 11, 30]. In contrast to these approaches, Cai et

al. [7] proposed an end-to-end network that learns features

useful for estimating a transmission map. However, this

method and similar transmission estimation methods [27]

do not address estimating the atmospheric light within a

scene. Zhang and Patel [32] addressed this issue by es-

timating both the atmospheric light and transmission map

within a generative adversarial learning framework. In this

approach, the unknown variables from the atmospheric scat-

tering model are estimated using independent neural net-

work architectures; U-Net is used to learn atmospheric light

and a densely connected network is used to learn a trans-

mission map estimation. Additionally, Li et al. [20] showed

that the atmospheric scattering model, described in Equa-

tion 1, could be reformulated via a linear transform to a

single variable and bias.

J(x) = K(x)I(x)−K(x) + b (2)

K(x) =

1
t(x) (I(x)−A) + (A− b)

I(x)− 1
(3)

This formulation fits naturally within a deep learning frame-

work and hints at the effectiveness of purely convolutional

approaches.



2.2. Style Transfer and Segmentation Networks

Generative adversarial networks (GANs) for image style

transfer have become increasingly popular in recent years

with algorithms such as Pix2Pix [14] and CycleGAN [33].

Haze removal can also be thought of from a style trans-

fer perspective: transferring images from the hazy domain

to the haze-free domain. This approach was attempted by

Engin et al. [9], in which cycle consistency and perceptual

losses were combined in a CycleGAN framework.

Additionally, approaches from semantic image segmen-

tation, such as feature pyramid networks, have proven to be

effective in image dehazing applications. Image segmenta-

tion networks often utilize encoder–decoder pairs to learn

embedded representations of inputs that take into account

multi-scale features. Chaurasia and Culurciello [8] pro-

posed an efficient semantic segmentation architecture based

on a fully convolutional encoder–decoder framework. Their

encoder uses a ResNet18 model [13] for feature encoding

and avoids a loss of spatial information by reintroducing

residuals from each encoder to the output of its correspond-

ing decoder.

2.3. Super­Resolution Imagery

One challenge in using neural networks for single im-

age dehazing is processing high-resolution input. Several

techniques in the 2018 NTIRE Image Dehazing Challenge

handled the relatively high-input resolution of the I-HAZE

[4] and O-HAZE [5] datasets by cropping input imagery

into many smaller frames or downsampling the input im-

agery and resizing the final outputs [1]. These approaches

are limited by total GPU memory and not GPU processing

power; therefore, models with fewer parameters are capable

of accepting higher-resolution input imagery.

3. Proposed Method

3.1. Network Architecture

Our proposed fully convolutional neural networks

(CNNs) build upon past work in efficient image segmen-

tation and deep learning-based image dehazing. For our

Small FastNet model, we adapted the LinkNet architecture

[8] by removing the final softmax and prediction layers in

order to pass features directly into a pyramid pooling net-

work at the full input spatial resolution. LinkNet uses layers

from a pretrained ResNet18 model for its encoder modules.

For our Big FastNet model, we modified the original archi-

tecture’s encoder to utilize ResNet50 as its encoder module;

we observe that the increased model width (achieved with

the deeper ResNet encoder) leads to improved restoration

quality at a small speed trade off. Both these models use a

single encoder–decoder to learn features of the image, fol-

lowed by an image refinement pyramid pooling network.

The pyramid pooling network helps preserve multi-scale

Figure 2: Proposed models: (left) Our FastNet single encoder–

decoder architecture, which forwards features directly into a pyra-

mid refinement network. (right) Our DualFastNet architecture,

which estimates both atmospheric light and transmission maps to

form dehazed images via Equation 1.

features when forming the final output image by progres-

sively embedding inputs at multiple scales and then resizing

all scaled embeddings to the output resolution.

In addition to the two single-encoder models, we intro-

duce DualFastNet, which is inspired by past work in atmo-

spheric model networks, notably by Zhang and Patel [32].

Rather than using a single encoder–decoder, our DualFast-

Net approach uses two separate encoder–decoder models to

learn atmospheric light and transmission map estimations.

These estimations are then used as input to calculate a de-

hazed image using the formulation described in Equation

1. This approach was used in our submission to the 2019

NTIRE Image Dehazing Challenge; however, as described

in later sections, further studies indicate that Big Fast-

Net yields better performance on larger datasets. Our sin-

gle encoder–decoder FastNet variant and double encoder–

decoder DualFastNet variant are both shown in Figure 2.

3.2. Implementation and Training Details

We utilized several loss functions and data augmenta-

tion techniques described further in subsequent sections.

Our implementation was developed in PyTorch and all re-

sults can be generated using our provided code∗. We uti-

lized ADAM [18] as an optimizer for training with an ini-

tial learning rate of 1 × 10−3. During training, valida-

tion was done per epoch and models with improved vali-

∗https://github.com/pmm09c/ntire-dehazing



dation loss were saved. Early stopping was used and train-

ing ended upon reaching convergence in validation loss to

prevent overfitting. Each model was initially trained using

MSE as the loss function. However, as described in later

sections, some models were fine tuned using a secondary

loss function. When validating models based on SSIM and

PSNR, we chose to report the model with the highest SSIM,

even if the corresponding PSNR was not the highest of all

models trained. This means that for all results presented in

this paper, models with higher PSNR may be achievable,

but with degradation to SSIM.

4. Experiments

4.1. Datasets

We trained and evaluated our proposed methods on four

datasets. First, we leveraged the NYU Depth dataset V2 as

prepared by Zhang and Patel [32]† and demonstrate an im-

provement over previous state-of-the-art approaches. This

dataset contains 1,000 unique training examples from the

NYU Depth dataset V2 [29] and 4,000 total training sam-

ples (each sample has four variations with varying levels

of haze). These images are synthesized with the follow-

ing parameters: A ∈ [0.5, 1.0] and β ∈ [1.4, 1.6], where

A is atmospheric light and β is the scattering coefficient.

Each training sample consists of a hazy image, an atmo-

spheric light image, a transmission map image, and a de-

hazed ground truth image. Four hundred test examples are

generated in a similar fashion from the NYU Depth dataset

V2.

Additionally, we evaluated our approach on the more

challenging Dense-Haze dataset [3] and the high-resolution

O- and I-HAZE datasets. These datasets provide real-world

imagery that can be used to evaluate the generalizability of

our models, the usability of our models on high-resolution

data, and the overall performance of our models in various

conditions. For the NTIRE 2019 Image Dehazing Chal-

lenge, our models were trained exclusively on the Dense-

Haze dataset with randomly initialized weights. Models

used to evaluate the O/I-HAZE datasets were trained on O/I-

HAZE data using weights generated from training the NYU

Depth dataset.

4.2. Architecture Comparison

We studied three variants of our fully convolutional neu-

ral network: Small FastNet, Big FastNet, and DualFastNet.

As a result of studying these models, we present empiri-

cal evidence of the benefits of increasing model width and

show the capability of fully convolutional methods to gen-

eralize image dehazing mechanisms without the need for an

explicit atmospheric model. In later sections, we use the

Dense-Haze dataset to show that introducing model priors

†https://github.com/hezhangsprinter/DCPDN

PSNR SSIM Parameters

Small FastNet 24.08 0.9034 11,554,167

DualFastNetMSE×1 24.69 0.9081 23,072,725

DualFastNetMSE×4 22.30 0.8650 23,072,725

DualFastNetstep 28.13 0.9483 23,072,725

Big FastNet 29.69 0.9563 28,782,647

Table 1: We compare the three variations of the proposed model

architecture. Each model is trained until convergence with MSE

loss only. DualFastNet is trained with three methods. Models were

trained and evaluated on the NYU Depth dataset.

through the atmospheric scattering model, as done in the

DualFastNet architecture, can benefit training when limited

training samples are available.

Each model was trained and tested on the NYU Depth

dataset with MSE loss only and we report the resulting

PSNR and SSIM. MSE loss was enforced on the output im-

age of both Small and Big FastNet. For DualFastNet, we

examined three ways to train our model. Originally pro-

posed by Zhang and Patel [32], we employed a stage-wise

learning technique to train atmospheric light, transmission

map, and image formation networks separately to quicken

convergence; training was completed with the entire model

being fine tuned. Although this approach was found to be

effective, it burdens the training process. We denote this

step-wise learning technique as DualFastNetstep. We also

explored whether our DualFastNet model can be trained

wholly from scratch — both with MSE loss enforced on

atmospheric light, the transmission map, the dehazed im-

age, and refined output image (DualFastNetMSE×4), and

with MSE loss enforced only on the refined output image

(DualFastNetMSE×1). Results are summarized in Table

1. Model performance and parameter count appear to be

related; models with higher parameter count yield higher

performance. In addition, the step-wise learning technique

is the most effective for training the atmospheric scatter-

ing model-based DualFastNet. The widest architecture, Big

FastNet, performs the best of our proposed architectures in

both PSNR and SSIM, indicating that using a wider net-

work is a viable alternative to incorporating an atmospheric

model prior into the neural network architecture.

4.3. Loss Functions and Fine Tuning

We investigated the impact of loss function selection

when optimizing our model on the NYU Depth dataset.

Specifically, we fitted our models using a least absolute de-

viations (L1) loss and MSE loss baseline, and then further

trained with a second refinement loss function. Refinement

functions considered were: content loss [16], L1 loss, MSE

loss, and SSIM loss. For the purpose of training time, we

trained with our smallest model, Small FastNet. Results

from this study are summarized in Table 2. Results indi-



cate that training with L1 loss followed by MSE refinement

generates images with the highest PSNR, whereas training

with MSE loss followed by SSIM refinement generates im-

ages with the highest SSIM. Images generated with any of

the loss functions studied are qualitatively similar, as shown

in Figure 3.

Loss Function PSNR SSIM

L1 26.34 0.9324

L1 −→ MSE 26.74 0.9358

L1 −→ SSIM 25.68 0.9364

MSE 24.08 0.9034

MSE −→ L1 25.81 0.9272

MSE −→ SSIM 25.18 0.9439

MSE −→ Content Loss 22.12 0.8559

Table 2: Comparison of loss functions used to train Small FastNet.

Models were trained and evaluated on the NYU Depth dataset.

4.4. Timing Benchmarks

We performed timing benchmarks to help asses the fea-

sibility of introducing our method as a pre-processing step

for computer vision algorithms in real-time systems. The

average timing over 20 runs is presented on both the Ti-

tan RTX desktop GPU and Tegra Xavier edge GPU. We

progressively increased input resolution until we could no

longer process a given input batch size due to GPU memory

limitations. Timing results are given in frames per second

for both floating point 32 and floating point 16. Full timing

results are presented in Table 4. Unsurprisingly, the biggest

timing gains come from utilizing a batch size greater than

1 and operating at floating point 16. For real-time applica-

tions, this introduces latency in exchange for throughput.

4.5. Comparison with State­of­the­Art Methods

4.5.1 Results on NYU Depth Dataset

For the NYU Depth dataset, we show state-of-the-art per-

formance using our Big FastNet model trained with MSE

loss and SSIM loss as refinement. Additionally, the model

performs efficiently relative to its parameter count. Our

model width can also be scaled down in exchange for SSIM

and PSNR. For instance, Small FastNet has 11 million pa-

rameters, 6x smaller than Zhang and Patel’s [32] approach,

and still performs competitively. Results for our method

and other approaches are summarized in Table 3.

4.5.2 Results on High-Resolution O/I-HAZE Dataset

We evaluated our method on the benchmark high-resolution

O/I-HAZE datasets [4, 5]. Because of limitations in GPU

memory, we used our Small FastNet model in this evalua-

tion. Because this model has fewer parameters than other

Model PSNR SSIM Parameters

Input 13.85 0.70 -

He. et al. [11](CVPR’09) - 0.86 -

Zhu. et al. [34](TIP’15) - 0.86 -

Ren. et al. [27](ECCV’16) - 0.82 0.0084

Berman. et al. [6](CVPR’16) 16.92 0.80 -

Li. et al. [20](ICCV’17) - 0.88 0.018

Small FastNet (Ours) 25.18 0.94 11.55

Zhang & Patel [32](CVPR’18) 29.28 0.96 66.89

Big FastNet (Ours) 30.37 0.97 28.78

Table 3: Quantitative comparison of our Big FastNet method with

other state-of-the-art approaches tested on the NYU Depth test

dataset. SSIM of other methods are drawn from [32] while PSNR

values and parameter counts were reproduced with the original

public implementations. Parameter count is measured in millions.

While smaller models exist, our method has fewer parameters and

higher SSIM and PSNR than current state-of-the-art methods.

models studied, we were able to perform inference on the

native full-resolution test imagery with a Titan RTX GPU.

Past approaches typically use one of two methods: (1) for-

ward pass patches of the test image and stitch the final out-

put, or (2) operate on lower-input resolution imagery and

rescale the output [1]. Two models were trained separately

using MSE loss, one on the O-HAZE dataset and one on the

I-HAZE dataset. Each model was trained using the NYU

Depth dataset pretrained model generated in earlier experi-

ments rather than from randomly initialized weights. Train-

ing loss converged after only a few epochs, indicating that

features learned from the NYU Depth dataset transfer well

to other datasets, such as the O/I-HAZE datasets. To train

our models, we augmented the dataset by extracting multi-

scale patches reshaped to our training input size.

Our Small FastNet results are competitive with results

from the 2018 NTIRE Image Dehazing Challenge, Indoor

and Outdoor tracks [1]. We achieve SSIM of 0.8089 and

PSNR of 18.56 for the I-HAZE test dataset and SSIM of

0.7459 and PSNR of 22.07 for the O-HAZE test dataset.

Each metric is ranked within the top 10 for its category with

respect to the 2018 NTIRE Image Dehazing Challenge [1].

Figure 4 shows several images generated with our ap-

proach, including results from early training and results

from the end of training when top SSIM has been reached.

Although SSIM and PSNR continue to improve in later

epochs of training, artifacts in imagery commonly seen in

neural network approaches for image generation become

noticeable. This indicates that it is important to not only

maximize SSIM and PSNR, but also to conduct thorough

qualitative analysis when evaluating top models for image

dehazing. Because pixel values within areas of continu-

ous dense haze are likely unrecoverable, the neural network

learns to minimize its loss by using the average pixel value

learned from similar areas in training data when it encoun-



Input L1 L1 −→ MSE L1 −→ SSIM MSE MSE −→ L1 MSE −→ SSIM Truth

Figure 3: Examples of images produced using different loss functions and our Small FastNet architecture. Each column shows results for

a different loss function. Images are from the NYU Depth dataset.

ters dense haze. This causes the artifacts observed in Figure

4. In short, areas with unrecoverable pixel values are sub-

stituted with random training artifacts, which are likely to

be strong indicators of overfitting.

4.5.3 Results on Dense-Haze Dataset

The 2019 NTIRE Image Dehazing Challenge [2] introduces

a novel dataset, called Dense-Haze, containing challenging,

dense haze imagery. The dataset includes 45 training im-

ages, 5 validation images, and 5 test images, each with a

resolution of 1600 x 1200 pixels. We trained our DualFast-

Net model on all 45 training images, as well as 2 validation

images, leaving 3 images for validation and 5 for testing.

Training started with randomly initialized weights and data

were randomly cropped and rotated throughout. Our model

produced results that were competitive with other models

in the challenge, achieving a PSNR score of 16.37 and an

SSIM score of 0.569 on test images. Examples of the im-

ages generated are shown in Figure 1.

Although Big FastNet outperforms our other models in

earlier experiments, these experiments did not use models

trained on sparse datasets with randomly initialized weights

as was done in this challenge. We have observed that when

limited to fewer training samples, DualFastNet can generate

superior results, indicating that the atmospheric scattering

model is a helpful prior in certain conditions. Specifically,

on the Dense-Haze dataset, Big FastNet achieved the high-

est SSIM and DualFastNet achieved the highest PSNR. A

qualitative study of output images was done that informed

the decision to use DualFastNet in our challenge submis-

sion.



Image

Size

Batch

Size

Small-32

RTX

Small-16

RTX

Big-32

RTX

Big-16

RTX

Small-32

Xavier

Small-16

Xavier

Big-32

Xavier

Big-16

Xavier

512x512 1 190.35 164.17 97.44 131.59 16.31 23.07 8.41 17.46

512x512 4 225.98 313.38 132.91 231.41 16.21 28.64 8.46 20.80

512x512 8 231.35 367.20 138.07 263.53 16.08 29.09 8.42 21.12

1024x1024 1 58.03 79.21 33.15 57.39 3.92 7.54 2.02 5.18

1024x1024 4 60.11 100.43 34.66 70.34 3.77 7.83 1.98 5.29

2048x2048 1 14.65 25.31 8.45 17.53 0.87 1.95 0.48 1.28

Table 4: Timing benchmarks generated with TensorRT to assess the feasibility of introducing our model to a real-time system. In general,

increasing batch size allows for higher frames per second (FPS) processing in exchange for latency. Small or Big indicates the FastNet

model used. The floating point precision is indicated by 16 or 32. Results are described in average FPS over 20 iterations.

Input Early Training Output Top SSIM Output

Figure 4: Example of images produced by our Small FastNet ar-

chitecture for the I-HAZE dataset (top) and O-HAZE dataset (bot-

tom). Overfitting leads to improved SSIM and PSNR, but causes

qualitative defects.

5. Conclusion

In this paper, we propose a family of novel neural net-

work architectures for single image dehazing, as well as

present both quantitative and a qualitative evaluation of

these architectures and their loss functions. On the NYU

Depth dataset, Big FastNet, our largest model, outperforms

its smaller variant and our architecture based on the atmo-

spheric scattering model. Additionally, this approach out-

performs other state-of-the-art neural networks on the NYU

Depth dataset in both performance and efficiency. How-

ever, our experimental results indicate that the atmospheric

scattering model is a useful prior for a neural network ar-

chitecture when training data is limited. Our architectures

can be run as part of real-time systems on edge GPUs and

have been benchmarked on multiple input imagery sizes.

Finally, we discuss our results and challenges working with

the O-HAZE, I-HAZE, and Dense-Haze datasets. In the

2019 NTIRE Image Dehazing Challenge, our efficient, at-

mospheric scattering model-based neural network architec-

ture, DualFastNet, achieved competitive results, obtaining

a PSNR score of 16.37 and an SSIM score of 0.569 on test

images.
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