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Abstract

This paper reviews the first NTIRE challenge on video

deblurring (restoration of rich details and high frequency

components from blurred video frames) with focus on the

proposed solutions and results. A new REalistic and Di-

verse Scenes dataset (REDS) was employed. The challenge

was divided into 2 tracks. Track 1 employed dynamic mo-

tion blurs while Track 2 had additional MPEG video com-

pression artifacts. Each competition had 109 and 93 reg-

istered participants. Total 13 teams competed in the final

testing phase. They gauge the state-of-the-art in video de-

blurring problem.

1. Introduction

Example-based video deblurring aims to recover the rich

details and the sharp edges from blurry video frames based

on a set of prior examples with blurry and sharp videos.

The loss of sharpness can be caused by various sources,

typically by the motions during the exposure. Hand-held

cameras are prone to shake while the multiple objects in the

scene can act with translation, rotation, deformation, etc.

The presence of blur in the videos makes it hard to recog-

nize textures in the scene rendering the videos visually un-

pleasing. Deblurring is generally an ill-posed problem since

infinitely many latent sharp frames are in the large solution
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space for a single blurry frame.

In the field of image/video restoration, deblurring has

received much attention and many approaches have been

proposed. However, evaluating the accuracy of a deblur-

ring algorithm is a tricky issue as it is hard to acquire a

pixel-level aligned pair of blurry and sharp image simulta-

neously. Köhler et al. [10] used a robot to record camera

motions and replayed it to capture the same scenes with dif-

ferent exposures. They successfully modeled camera shake

blurs for 4 different scenes and 12 different kernels. More

recently, new techniques were proposed to synthesize real-

istic blurry images from high-speed cameras [13, 18] and

high-resolution videos [27]. By averaging high-frame-rate

(240 fps) video frames to generate a blurry frame, realistic

blurs of dynamic scenes could be generated.

The proposed datasets enabled quantitative evaluation of

the proposed deblurring methods and inspired the training

of various deep neural networks [13, 18, 27, 8, 20, 9]. How-

ever, the problem of modeling blurs with realism is not

solved yet. 240 fps is still too slow to capture the fast mo-

tion of objects [27] and simple averaging of frames does

not accurately model the nonlinear property of the camera

imaging pipeline [13]. Also, the typical lossy compression

of video which makes deblurring difficult, is not considered.

Furthermore, the high-frame-rate video recordings usually

have less number of effective pixels than the frame resolu-

tion. This is because the camera sensors cannot be fully ac-

cessed by the processors during the short readout time in a

duty cycle. It makes the video reference frame quality to be

lower than typical frame-rate videos or static photographs.

The NTIRE 2019 video deblurring challenge is a step

forward in benchmarking and training of video deblurring

algorithms. It uses REalistic and Dynamic Scenes (REDS)



(a) Sharp Uncompressed (b) Blurry (c) Blurry + Compressed

Figure 1: Visualization of the REDS dataset used for NTIRE 2019 Video Deblurring Challenge. The degradations include

dynamic motion blur and lossy video compression artifacts.

dataset [12] consisting of 30000 reference frames with two

types of degradation: dynamic motion blurs and MPEG

video compression artifacts. The REDS dataset is intro-

duced in [12] along with a study of challenge results. In the

next, we describe the NTIRE 2019 video deblurring chal-

lenge, present and discuss the results and describe the meth-

ods.

2. The Challenge

The objectives of the NTIRE 2019 challenge on video

deblurring are: (i) to gauge and push forward the state-

of-the-art in video deblurring; (ii) to compare different so-

lutions; (iii) to promote REDS, a novel large-scale high-

quality video dataset; and (iv) to promote more challenging

video deblurring settings.

2.1. REDS Dataset

As a step forward from the previously deblurring

datasets, a novel dataset is promoted, namely REDS

dataset [12]. It consists of 300 video sequences having

length of 100 frames with 720 × 1280 resolution. 240 se-

quences are for training, 30 for validation and the rest 30 for

testing purposes. The frames are of high quality in terms of

the reference frames, diverse scenes and locations, realis-

tic approximation of motion blurs, and the used standard

lossy compression artifacts. REDS covers a large diversity

of contents, people, handmade objects and environments

(cities).

All the videos used to create the dataset are manually

recorded with GoPro HERO6 Black. They were originally

recorded in 1080×1920 resolution at 120 fps. We calibrated

the camera response function using [17] with regularization.

Then the frames are interpolated [15] to virtually increase

the frame rate up to 1920 fps so that averaged frames could

exhibit smooth and realistic blurs without spikes and step

artifacts. Then, the virtual frames are averaged in the signal

space to mimic camera imaging pipeline [13]. To suppress

noise and compression artifacts in the reference frames and

to increase the effective number of pixels per resolution,

the synthesized blur and the corresponding sharp frames are

downscaled to 720 × 1280 resolution. The resulting blurry

video frames simulate 24 fps videos captured at duty cycle

τ = 0.8.

2.2. Tracks and competitions

Track 1: Clean facilitates a deployment of recently pro-

posed methods for the task of example-based video deblur-

ring. It assumes that the quality degradation is caused by

the camera shakes and the motion of objects that are the

main assumptions in dynamic scene deblurring. Each blurry

frame is obtained by the procedure described in Section 2.1

and with more details in [12].

Track 2: Compression artifacts goes one step ahead and

considers the actual compression of video recordings. The

blurry frames in a sequence that are saved independently

after synthesis are collected to be saved as a single mp4

(MPEG-4 Part 14) video clip. We used MATLAB to save

the video at 60% quality. Note that the degradation degree

of each frame due to compression may not uniform.

Competitions Both video deblurring challenge tracks are

hosted as Codalab competitions. CodaLab platform was

used for all of the NTIRE 2019 challenge competitions.

Each participant is required to register to the CodaLab chal-

lenge tracks to access the data and submit their deblurred

results.

Challenge phases (1) Development (training) phase: the

participants got both the blurry, the additionally compressed

and the sharp train video frames and the blurry frames of the



validation set. The participants had the opportunity to test

their solutions on the blurry validation frames and to receive

feedback by uploading their results to the server. Due to the

large-scale of the validation dataset, every 10th frame was

involved in evaluation. A validation leaderboard is avail-

able; (2) Final evaluation (test) phase: the participants got

the sharp reference validation frames with the blurry test

frames. They had to submit both the deblurred frames and

a description of their methods and code/executables before

the challenge deadline. One week later, the final results

were made available to the participants. The final results

reflect the performance on every frame of the test set.

Evaluation protocol The Peak Signal-to-Noise Ratio

(PSNR) measured in deciBels (dB) and the Structural Sim-

ilarity index (SSIM) [26] computed between a result frame

and the ground truth are the quantitative measures. The

higher the scores are the better the restoration fidelity to the

ground truth frame. A rim of 1 pixel is ignored in the eval-

uation.

3. Challenge Results

From 109 and 93 registered participants for the compe-

titions, 13 teams entered in the final phase and submitted

results, codes/excutables, and factsheets. Table 1 reports

the final scoring results of the challenge and Table 2 shows

the runtimes and the major details for each entry. Section 4

describes briefly the method of each team while in the Ap-

pendix A are the team members and their affiliations.

Use of temporal information All the proposed meth-

ods use the end-to-end deep learning and employ the

GPU(s) for both training and testing. Interestingly, in

contrast to the recent RNN-based video deblurring meth-

ods [8, 27, 9], most teams (HelloVSR, UIUC-IFP, KAIST-

VICLAB, BMIPL UNIST DJ, IPCV IITM, JeonghunKim,

iPAL-Deblur) aggregated several video frames in channel

dimension and let CNN learn the temporal relation to de-

blur a target frame. TTI used a recurrent model inspred

from DBPN [4]. TeamInception, Game of tensors, and KSC

proposed single image deblurring methods.

Restoration fidelity HelloVSR, UIUC-IFP, and KAIST-

VICLAB are the best scoring teams. HelloVSR is the

winner of NTIRE 2019 Video Deblurring Challenge.

HelloVSR achieves 36.96 dB for Track 1 and 31.69 dB for

Track 2 that are +10.83 dB and +6.29 dB better than the in-

put blurry video, respectively. HelloVSR team achieves the

best results for both of the competition tracks. Their solu-

tion shows significant improvements compared to the other

submitted solutions and is also consistent in NTIRE 2019

Video Super-Resolution Challenge [14].

Runtime / efficiency In Fig. 2 and 3, we plot the running

time per image vs. achieved PSNR performance for both

tracks. Interestingly, HelloVSR team showed good effi-

ciency in running time, compared to other high ranked so-

lutions. KSC team showed good trade off between runtime

and quality of the results. In takes 0.78 s per frame for Track

1, on Titan X Pascal GPU while most other solutions require

more than 1 second per frame.
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Figure 2: Runtime vs. performance for Track 1: Clean.
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Figure 3: Runtime vs. performance for Track 2: Compres-

sion artifacts.

Ensembles Many solutions used self-ensemble [22] that av-

erages the results from flipped and rotated inputs at test

time. HelloVSR did not use rotation to reduce computation.

Train data REDS dataset [12] has 24000 train frames and

all the participants found the amount of data to be suffi-

cient for training their models. Training data augmentation

strategy [22] such as flips and rotations by 90 degrees were

employed by most of the participants.

Conclusions From the analysis of the presented results, we

conclude that the proposed methods gauge the state-of-the-

art performance in video deblurring. The methods proposed

by the high ranking teams (HelloVSR, UIUC-IFP, KAIST-

VICLAB) exhibit consistent superiority in both tracks in

terms of PSNR and SSIM.



Track 1:

Clean

Track 2:

Compression artifacts

Team Author PSNR SSIM PSNR SSIM

HelloVSR xixihaha 36.96 (1) 0.9657 31.69 (1) 0.8783

UIUC-IFP fyc0624 35.71 (2) 0.9522 29.78 (2) 0.8285

KAIST-VICLAB KAIST VICLAB 34.09 (3) 0.9361 29.63 (3) 0.8261

BMIPL UNIST DJ BMIPL UNIST JS 33.71 (4) 0.9363 29.19 (4) 0.8190

TTI iim lab 33.13 (6) 0.9198 29.14 (5) 0.8145

TeamInception swz30 33.46 (5) 0.9293 28.33 (9) 0.7976

Game of tensors rkgupta 32.06 (9) 0.9070 28.53 (6) 0.8034

KSC fanhongfei 32.78 (7) 0.9187 - -

IPCV IITM kuldeeppurohit3 32.73 (8) 0.9147 - -

Jeonghunkim JeonghunKim 31.98(10) 0.9061 28.41 (8) 0.7962

Game of tensors rahul12122 31.76(11) 0.9025 28.44 (7) 0.8014

withdrawn team 29.56(12) 0.8474 27.76(10) 0.7801

iPAL-Deblur mo.tofighi 26.33(13) 0.7491 - -

no processing baseline 26.13 0.7749 25.40 0.7336

Table 1: NTIRE 2019 Video Deblurring Challenge results on the REDS test data. HelloVSR team is the challenge winner

with UIUC-IFP and KAIST-VICLAB coming on 2nd and 3rd place, respectively, with consistent performance on both tracks.

Team
Track 1

Clean

Track 2

Compression artifacts
Platform

GPU

(at runtime)

Ensemble / Fusion

(at runtime)

HelloVSR 3.908 3.950 PyTorch TITAN Xp flip (x4)

UIUC-IFP 13.570 13.570 PyTorch Tesla V100 flip/rotation (x8)

KAIST-VICLAB 4.540 4.540 TensorFlow TITAN Xp flip/rotation (x8)

BMIPL UNIST DJ 27.870 27.870 PyTorch TITAN V flip/rotation (x8)

TTI 3.800 3.800 PyTorch TITAN X -

TeamInception 14.600 14.600 PyTorch Tesla V100 flip/rotation (x8)

Game of tensors 1.960 1.880 TensorFlow TITAN X flip/rotation (x8)

KSC 0.780 - TensorFlow TITAN X -

IPCV IITM 1.600 - PyTorch TITAN X flip/rotation (x8)

Jeonghunkim 9.500 6.000 TensorFlow TITAN X flip/rotation (x8)

Game of tensors 0.524 0.500 TensorFlow TITAN X -

withdrawn team 398.000 398.000 - - -

iPAL-Deblur 0.085 - PyTorch TITAN Xp -

Table 2: Reported runtimes per frame on REDS test data and details from the factsheets.

4. Challenge Methods and Teams

4.1. HelloVSR team

HelloVSR team proposes the EDVR framework [23],

which takes 2N+1 degraded frames as inputs and gener-

ates one restored frame, as shown in Fig. 4. First, the high-

resolution inputs are first downsampled by a factor of 4.

Then most computation is done in the low-resolution space,

which largely saves the computational cost. To alleviate the

effects of blurry frames on alignment, a PreDeblur module

is used to pre-process the blurry inputs before alignment.

Each neighboring frame is aligned to the reference frame

by the PCD alignment module at the feature level. The

TSA fusion module is used to effectively fuse the aligned

features. The fused features then pass through a reconstruc-

tion module, which consists of several residual blocks [11]

in EDVR and can be easily replaced by any other advanced

modules in image restoration [13, 31, 30, 25]. The upsam-

pling operation is performed at the end of the network to

resize the features back to the original input resolution. Fi-

nally, the restored frame is obtained by adding the predicted

image residual to the input reference frame [7]. Note that

EDVR is a generic architecture also suitable for other video

restoration tasks, such as super-resolution.

To address large and complex motions between frames,

which are common in the REDS dataset, they propose a
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Figure 4: HelloVSR team: the proposed EDVR framework.

Pyramid, Cascading and Deformable convolution (PCD)

alignment module. In this module, deformable convolu-

tions [2, 21] is adopted to align frames at the feature level.

They use a pyramid structure that first aligns features in

lower scales with coarse estimations, and then propagates

the offsets and aligned features to higher scales to facilitate

precise motion compensation, which is similar to the no-

tion adopted in optical flow estimation [6, 19]. Moreover,

an additional deformable convolution is cascaded after the

pyramidal alignment to further improve the robustness of

alignment. The overview of PCD module is shown in Fig. 5.

Since different frames and locations are not equally in-

formative due to the imperfect alignment and imbalanced

blur among frames, a Temporal and Spatial Attention (TSA)

fusion module is designed to dynamically aggregate neigh-

boring frames in pixel-level, as shown in Fig. 5. Temporal

attention is introduced by computing the element-wise cor-

relation between the reference frame and each neighboring

frame in an embedding space. The correlation coefficients

then weigh each neighboring feature at each location. The

weighted features from all frames are then convolved and

fused together. After the fusion, they further apply spatial

attention [28, 24, 30] to assign weights to each location in

each channel to exploit cross-channel and spatial informa-

tion more effectively.
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Figure 5: PCD alignment module and TSA fusion module

in EDVR.

They also use a two-stage strategy to further boost the

performance. Specifically, a similar but shallower EDVR

network is cascaded to refine the output frames of the first

stage. The cascaded network can further remove the severe

motion blur that cannot be handled by the preceding model

and alleviate the inconsistency among output frames.

4.2. UIUC-IFP team

UIUC-IFP team proposes a new method, WDVR, which

is based on WDSR [29, 3]. To achieve a better speed-

accuracy trade-off, they investigate the intersection of three

dimensions in deep video restoration networks: spatial,

channel, and temporal. They enumerate various network

architectures ranging from 2D convolutional models to 3D

convolutional models and delve into their gains and losses

in terms of training time, model size, boundary effects,

prediction accuracy, and the visual quality of the restored

videos. Under a strictly controlled computational budget,

they explore the designs of each residual building block in

a video restoration network, which consists of a mixture of

2D and 3D convolutional layers.

4.3. KAIST-VICLAB team
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Figure 6: KAIST-VICLAB team: overall pipeline of the

model.

KAIST-VICLAB team proposes a convolutional neural

network to predict motion deblur kernel for each pixel loca-

tion. Each 2-dimensional deblur kernel is applied to the cor-

responding input blurry pixel and its square neighbor pixels

to generate a clean pixel. Output pixel values are borrowed

from the surrounding values, as the output pixel is a dot

product of its neighboring pixels and their corresponding



coef�cients, the deblur kernel. Therefore, thislocal con-
volution estimates coarse (low-frequency) output. At the
same time, the network outputs RGB residual image which
is added to the above locally convolved output. Since the
image created by local convolution is responsible for low-
frequency component of the clean image, the other branch
of the network only needs to produce a residual image,
which is simpler than hallucinating the component of the
pixel values from scratch. As a result, the RGB output im-
age of the convolutional neural network can concentrate on
the details (high-frequency) of the scene. The locally con-
volved output and the residual image are linearly combined
to be the �nal output with a weight map which is another
branch of the network. Hence, there are three outputs of
the proposed network. The overall architecture is depicted
in Fig. 6. They also propose a spatial-bottleneck block as a
base building block of their network. The proposed model
consists of mainly two parts, encoder and decoder. For the
encoder part, residual encoder blocks are the base blocks.
Input tensor is fed into a convolutional layer with stride 2
and a transposed convolution with stride 2 in the residual
encoder block. The �rst convolutional layer halves the spa-
tial size while doubling the number of channels of the input
tensor. The following transposed layer reversely doubles
the spatial size and reduce the number of channels to the
original size. At the end of the block, input tensor is added
for the purpose of residual learning. This procedure en-
larges the receptive �eld size of the network while retaining
details by residual learning. For the decoder part, residual
decoder blocks are the base building blocks. The residual
decoder blocks are similar to the residual encoder blocks,
but the order of convolutional and transposed convolutional
layer is reversed.

4.4. BMIPL UNIST DJ team

Figure 7: BMIPLUNIST DJ team: proposed pipeline.

BMIPL UNIST DJ team proposes a network [16] with
a new module base, as shown in Fig.7. The network �rst
down-scales the input color image with the size ofW � H �
3 to the feature maps with the size ofW=4 � H=4 � 64,
using the “Down-Scaling 1” module in Fig.7(b). Then,

these feature maps are fed into the backbone network as
well as residual in residual (RIR) skip connection to yield
initial deblurred feature maps in the spatial dimension of
W=4 � H=4. Then, up-scaling and CNN will result in
the intermediate deblurred image estimate with the size of
W=2 � H=2 � 3. This result is combined with the down-
scaled blurred image in the “Down-Scaling 2” module in
Fig. 7 (b) for the deblurring at the scale ofW=2 � H=2 us-
ing another backbone network, RIR, and up-scaling process
to yield the �nal deblurred output image with the size of
W � H . And they use residual channel attention network
(RCAN) [30] as a backbone of their network. They set the
number of res-group as 10 and the number of res-block as
20.

4.5. TTI team

Figure 8: TTI team: proposed scheme.

TTI team proposes a network architecture in Fig.8 in-
spired by a single image super-resolution model [4]. They
integrate spatial and temporal contexts from the consecu-
tive video frames using a recurrent encoder-decoder mod-
ule. The module fuses multi-frame information with more
traditional single image deblurring computation path for
the target frame. In contrast to most of the prior works
where frames are pooled together by stacking or warping,
their model, Recurrent Back-Projection Network (RBPN),
treats each context frame as a separate source of informa-
tion. These sources are combined in an iterative re�nement
framework inspired by the idea of back-projection. This is
aided by explicitly representing estimated inter-frame mo-
tion with respect to the target frame, rather than explicitly
aligning frames.

4.6. TeamInception team

TeamInception team proposes a deep residual network
with spatial and depth-wise attention to address the problem
of video deblurring. The complete framework is shown in
Fig. 9. Inspired from the work of [30] on super-resolution,
they propose a method that is recursive in nature. The
main idea is to gradually remove the effect of blurring from
the input frame and recover the sharp image. At the en-
try point of the RDAN (recursive dual attention network),
they employ a convolutional layer that takes as input the
blurred image and extracts low-level features. The fea-












