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Abstract

This paper introduces a novel large dataset for video de-

blurring, video super-resolution and studies the state-of-

the-art as emerged from the NTIRE 2019 video restora-

tion challenges. The video deblurring and video super-

resolution challenges are each the first challenge of its kind,

with 4 competitions, hundreds of participants and tens of

proposed solutions. Our newly collected REalistic and Di-

verse Scenes dataset (REDS) was employed by the chal-

lenges. In our study, we compare the solutions from the

challenges to a set of representative methods from the liter-

ature and evaluate them on our proposed REDS dataset. We

find that the NTIRE 2019 challenges push the state-of-the-

art in video deblurring and super-resolution, reaching com-

pelling performance on our newly proposed REDS dataset.

1. Introduction

Example-based video deblurring and super-resolution

aim to recover the rich details and the clear texture

from blurry and low-resolution video frames, based on

prior examples under the form of degraded blurry and

low-resolution (LR) and corresponding sharp and high-

resolution (HR) videos. The loss of contents can be caused

by various factors such as quantization error, limitations of

the sensor from the capturing camera, shakes from hand-

held cameras, fast moving objects, compression at saving

time, or other degrading operators and the use of downscal-

ing operators to reduce the video resolution for storage pur-

poses. Video deblurring and video super-resolution are rep-

resentative ill-posed problems in visual quality restoration

problems as the space of the corresponding sharp HR video

is very large.

Video deblurring [37, 12, 28, 35, 13, 15] as well as video

super-resolution [27, 22, 3, 29, 9, 26, 36] have received
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Figure 1: Representative methods from the challenges and

their average PSNR performance on REDS dataset for each

competition track.

much interest in the literature of research. Still, as seen

in the single image super-resolution literature [30, 8, 32, 1,

31, 2, 4] for further progress in video deblurring and SR,

standardized benchmarks are essential to allow comparison

of different proposed methods under the same conditions.

In recent video deblurring works, [23, 28, 35] datasets

that synthesize realistic motion blurs are popular for train-

ing and evaluation. However, there are different pros and

cons in the blur synthesis techniques for each dataset. For

video super-resolution, Vid4 dataset [21] with 155 frames

is commonly used for comparison and each work employs

different training datasets [26, 9, 29, 3].

In this work, we propose a novel REDS dataset with RE-

alistic and Dynamic Scenes of 720× 1280 resolution high-

quality video frames collected by ourselves. It has 30000

frames with various contents, locations, natural and hand-

made objects. Moreover, we organized the first example-



(a) REDS validation frames (b) REDS test frames

Figure 2: Visualization of the proposed REDS validation and test frames. REDS contains 240, 30, 30 sequences for training,

validation, test, respectively. Each sequence has 100 frame length.

based video deblurring and video super-resolution online

challenges which used the REDS dataset. The NTIRE 2019

challenges employ 4 types of degradations and correspond-

ing competition tracks: motion blur, motion blur with com-

pression artifacts, bicubic downscaling, and bicubic down-

scaling with motion blur. The degradation information is

not given and only known through the training data pairs of

degraded and ground truth frames.

Another contribution of this paper is a study of our newly

proposed REDS with the achieved performance by the win-

ners of the NTIRE 2019 video deblurring and video super-

resolution challenges and representative methods from re-

cent years. We report results using a selection of image

quality measures for benchmarking. Fig. 1 shows submitted

solutions for the NTIRE 2019 challenge and their achieve-

ments evaluated on the REDS dataset.

The remainder of the paper is structured as follows. Sec-

tion 2 introduces the REDS dataset. Section 3 reviews the

NTIRE 2019 video challenges and its settings. Section 4

introduces the image quality assessment (IQA) measures,

Section 5 - the datasets, and Section 6 - the methods from

our study. Section 7 concludes the paper.

2. Proposed REDS Dataset

We propose the REDS dataset, a novel REalistic and Dy-

namic Scenes dataset of 720 × 1280 resolution for train-

ing and benchmarking example-based video deblurring and

super-resolution (see Fig. 2). REDS is intended to com-

plement the existing video deblurring and SR datasets (see

Fig. 7) to increase the content diversity and provide more

realism in degradation, especially, motion blur.

Recording: We manually recorded 300 RGB video clips,

paying attention to the quality of each frame, diversity of

source contents (scenes and locations) and dynamics of var-

ious motion. We used the GoPro HERO6 Black camera to

record videos of 1080 × 1920 resolution at 120 fps. In

contrast to the previous datasets for deblurring that cap-

tured videos in higher frame rate (240 fps) [23, 28], we

choose slower frame rate for better quality. Note that most

consumer-level high-speed cameras don’t access all of the

cell arrays during the readout time. Under the limited com-

putational power of the camera processors, decreasing the

frame rate allows access to more sensor array elements, in-

creasing the number of effective pixels per frame. Each

frame remains sharp when the shutter speed is fast. Still,

the effective pixels are less than the full resolution. Also,

noise or MPEG lossy compression could bring some arti-

facts.

Frame interpolation: Motion blur occurs due to the dy-

namics during the camera exposure. Averaging the high-

frame-rate video frames approximates the photograph taken

at a longer exposure [23]. When the frame rate is not high

enough, simply averaging frames may generate unnatural

spikes or steps in the blur trajectory [35], especially when

the resolution is high and the motion is fast. To fill in the

missing information between the frames, we employed a

CNN trained to interpolate frames [24]. We chose a learned

CNN instead of optical flow to handle nonlinear motions



(d) Sharp (e) Blur (120 fps) (f) Blur (240 fps) (g) Blur (480 fps) (h) Blur (1920 fps)
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Figure 3: Visual comparison of the synthesized blur by the virtual frame rate of video. Averaging frames at 120 or 240 fps

could cause unnatural blurs with artifacts in case of large motion. The noted fps refers to the virtual frame rate of interpolated

videos that are averaged to create blurry frames.

and the warping artifacts. We increase the frame rate to vir-

tual 1920 fps by recursively interpolating the frames. The

effect of interpolation in the quality of blur is shown in

Fig. 3.

Calibration: When taking a picture, the sensor signal

is converted to RGB pixels by a nonlinear camera re-

sponse function (CRF). We calibrated the inverse CRF us-

ing Robertson et al. [25] images captured at various expo-

sures. As 8-bit representation saturates at value 255, the cal-

ibration could be inaccurate at higher pixel values (p > 250)

when the calibration images are over-exposed. Hence, we

replace the inverse CRF at p > 250 by appending a lin-

ear function having a slope of the inverse CRF at p = 250.

Here, p denotes the RGB pixel value. We visualize the esti-

mated CRF in Fig. 4, compare with linear [28] and gamma

function [23] that are assumed for blur synthesis.

Blur synthesis: We average the 1920 fps video frames to

produce virtual 24 fps blurry video with duty cycle τ = 0.8.

The averaging is done in the signal space to mimic a camera

imaging pipeline, using the estimated CRF and the inverse

CRF. To further increase the per-pixel quality of the data,

we suppress the noise and artifacts by downscaling both

the synthesized blurry frames and the recorded sharp frames

by 2/3 to 720 × 1280 resolution. We used OpenCV func-

tion resize bicubic interpolation as it produces visually

sharper results than MATLAB due to different parameter

value. There are 300 sequences in total, and each sequence

contains 100 pairs of the blurry and sharp frame. We use

those generated blurry videos as input for the NTIRE 2019
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Figure 4: Calibrated inverse camera response function of

GoPro HERO6 Black for RGB channels. It differs from

the linear or gamma function assumptions from the previous

datasets.

Video Deblurring Challenge Track 1: Clean.

Video compression: The above process was done to pro-

duce high-quality videos and blurs without realistic arti-

facts such as noise and compression. To promote the devel-

opment of deblurring methods that apply to more realistic

and common degradation, we compress the frames by sav-

ing the videos in mp4 (MPEG-4 Part 14) format. We used

MATLAB VideoWriter to save the videos at 60% qual-

ity. Those compresed blurry videos are introduced to the
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Figure 5: Visualization of the REDS dataset and the degradation types. In the video deblurring challenge, motion blurs (Track

1) and video compressed (Track 2) data were provided. The video super-resolution challenge provided the low-resolution of

sharp (Track 1) and blurry (Track 2) frames.

NTIRE 2019 Video Deblurring Challenge: Track 2 Com-

pression artifacts.

Downscaling: We also downscale the sharp and the

blurry frames, respectively, to promote the development

of example-based video super-resolution algorithms. They

are employed in the NTIRE 2019 Video Super-Resolution

Challenge: Track 1 Clean and Track 2 Blur. We used MAT-

LAB function imresize bicubic interpolation at scale 4.

Diversity: We visited various countries, cities and towns,

institutes and facilities, theme parks, festivals, palaces and

castles, tourist attractions, historical places, zoos, stores,

water parks, etc. to capture diverse scenes and objects. The

contents include people from various nationalities, crowds,

handmade objects, buildings, structures, artworks, furni-

ture, vehicles, colorful textured clothes, and many other ob-

jects of different categories.

Partitions: After collecting and processing the REDS 300

video sequences, we computed the PSNR between the

blurry and sharp frames. We split the REDS 300 sequences

of frames into the train, validation, test sets. We randomly

generated partitions of 240 train, 30 validation, and 30

test sequences until we achieved a good balance in qual-

ity. Fig. 2 visualizes part of the 30 sequences for validation

and testing of the REDS dataset.

3. NTIRE 2019 Video Challenges

The NTIRE 2019 challenges on example-based video

deblurring and super-resolution were the first of their kind

and had the following objectives: to gauge the state-of-the-

art in video deblurring and video super-resolution, to fa-

cilitate comparison of different solutions on a novel large

dataset - REDS, and to propose more challenging and real-

istic deblurring and super-resolution settings. Fig. 5 shows

an example of set of degraded images provided in each chal-

lenge (i.e., deblurring and super-resolution).

Video Deblurring Challenge The challenge has two

tracks: Track 1 for blurs (‘clean’) and Track 2 for additional

MPEG compression (‘compression artifacts’). For Track 1,

the degradation is a carefully processed realistic motion blur

and facilitates easy deployment of recent solutions. Track

2 is more challenging as it uses a combination of blur and

lossy compression. For both of the tracks, blur kernel is un-

known. The compression method and the ratio were also

unknown to the challenge participants. But they are im-

plicitly known through exemplars of the blurry compressed

frames and the corresponding sharp, uncompressed frames.

Video Super-Resolution Challenges The challenge has

two tracks: Track 1 for bicubic downscaling (‘clean’) and

Track 2 for blurs followed by bicubic downscaling (‘blur’).



For Track 1, the resizing is the popular bicubic downscal-

ing by scale 4 and enables the straightforward application

of the previous solutions. Track 2 is more challenging as

the loss of information suffers from both of the downscal-

ing and the motion blurs that are different for every frame

and every pixel.

The hosting platform for the competitions is CodaLab1.

For each competition, we provide the degraded (blurry,

compressed, LR) and the reference (sharp HR) train frames

(from the REDS train set) for training during the devel-

opment phase. The phase allowed the participants to test

their solutions on the validation frames (from REDS vali-

dation set) and compare their scores through an online val-

idation server and associated leaderboard. Due to the mas-

sive size of the dataset, only every 10th frame was evaluated

(300 frames). The final testing (evaluation) phase provided

the degraded test frames (from REDS test set) and invited

the submission of the restored results before the challenge

deadline. In the testing phase, the full test set (3000 frames)

was involved in measuring the scores and rankings. PSNR

and SSIM are the challenge main quantitative quality as-

sessment measures for the restoration results. Also, we ig-

nore a 1-pixel image boundary from each image to mini-

mize distortions from the boundary effect.

Challenge results Each competition had on average 100

registered participants and 13 ∼ 14 teams submitted the

final results, code/executables, and factsheets for the final

test phase. All these competing solutions and the achieved

results on the REDS test data are described in the NTIRE

2019 video deblurring and super-resolution challenge re-

ports. All the proposed challenge solutions employ deep

learning of convolutional neural networks and use GPUs

for both training and testing. They propose a diversity of

ideas and design details and generally build upon and go be-

yond the recent video deblurring [28, 13, 35, 15] and super-

resolution [11, 3, 29] works. In Fig. 6, we plot the aver-

age PSNR vs. runtime results of the challenge solutions in

comparison with several other representative methods. In

Table 1, we show results for a selection of them. The chal-

lenge winning solutions are mostly consistent across the 4

competitions, indicating that the proposed solutions for the

video deblurring and video super-resolution generalize well

to each other. Also, PSNR and SSIM scores correlate well.

The scores on Track 2 are generally worse than on Track 1

for the same methods/solutions for both of the tasks and

reflects the increasing difficulty from the combination of

degradation types.

4. Image Quality Assessment (IQA)

There are significant interests in the automatic assess-

ment of the image quality, and many approaches have been

1https://competitions.codalab.org/

Video Deblurring Video Super-Resolution

Track 1 Track 2 Track 1 Track 2

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HelloVSR 36.96 0.9657 31.69 0.8783 31.79 0.8962 30.17 0.8649

UIUC-IFP 35.71 0.9522 29.78 0.8285 30.81 0.8748 29.46 0.8430

KAIST-VICLAB 34.09 0.9361 29.63 0.8261 - - - -

BMIPL UNIST DJ 33.71 0.9363 29.19 0.8190 - - - -

SuperRior - - - - 31.13 0.8811 - -

CyberverseSanDiego - - - - 31.00 0.8822 27.71 0.8067

no processing/bicubic 26.13 0.7749 25.40 0.7336 26.48 0.7799 24.05 0.6809

Table 1: Quantitative results on the REDS test set for 4

video restoration competitions.

proposed. With the presence of carefully generated dataset

with ground truth reference frames, we mainly focus on the

full reference measures.

When we have a ground truth image G with C color

channels and H × W pixels, the quality of a correspond-

ing (whether degraded or restored) image I can be defined

as the pixel-level fidelity to the ground truth. One of the

most popular metrics are Mean Square Error (MSE) de-

fined as Eq. 1. Another popular measure which is directly

related to MSE is Peak Signal-to-Noise Ratio (PSNR) de-

fined as Eq. 2. However, since minimizing MSE is equiva-

lent to predicting a mean of possible solutions, MSE-based

restoration models reconstruct blurry output images. Also,

they are vulnerable to a simple translation, too.

MSE =
1

CHW

C,H,W∑

c,h,w

(Gchw − Ichw)
2

(1)

PSNR = 10 log
10

2552

MSE
(2)

Another group of referenced metrics evaluates the im-

age similarity in terms of the structure rather than the raw

value. While MSE and PSNR measure the amount of error,

the Structural Similarity index (SSIM) [34] is a percep-

tual quality based model that considers the degradation of

images as changes in the perceived structural information.

Above metrics are not designed to measure the quality

of the restored images or videos from blur, compression,

or low-resolution. However, they tend to generalize well

for various types of image distortions as well and typically

used to evaluate the accuracy of many methods that try to

improve the visual quality.

As deblurring and super-resolution aim to recover

the lost information such as detailed textures and high-

frequency components from the latent image, an ideal IQA

measure would use and reflect fidelity to the ground truth

when it is available. However, often the ground truth is

not available for real data, and the space of possible solu-

tions is large. Therefore, plausible and perceptually quali-

tative restoration results are desirable as long as the infor-

mation from the degraded images or videos is preserved.

There have been several studies about deblurring and super-

resolution which aimed to improve perceptual quality with

adversarial and perceptual losses [23, 17, 18, 10, 39].
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Figure 6: Runtime vs. PSNR results on NTIRE 2019 Video Deblurring & Super-Resolution Challenges on REDS test data.

Most of the image/video restoration methods evaluate

their performance on either the luminance component or

full RGB channels. Luminance component (Y channel from

the YCbCr color representation) is considered to be more

important since the human perception typically recognizes

the texture by the luminance while the changes in chroma

component are less sensitive to the human eyes. In this chal-

lenge, we measure the quality metrics using the RGB chan-

nels to put more weight on the vividness and color as well

as the luminance. We ignore the 1-pixel width boundary of

the image from the evaluation.

5. Datasets

In this section, we describe the datasets that are studied

in video deblurring and super-resolution literature for train-

ing and evaluation.Fig. 7 shows sample frames from com-

monly used video deblurring and super-resolution datasets.

5.1. Video Deblurring Datasets

In the early studies of video deblurring, researches used

real blurry videos for their experiments [5, 12]. As the

ground-truth sharp videos were not available, the perceptual

quality was the primary way to compare different methods.

Wulff and Black [37] presented a bilayered blur model that

could have different blur status in the front and back layer

segments. Köhler et al. [16] recorded the 6D motion of the

camera and played it back to capture blurry and correspond-

ing sharp images. To simulate such a blurring process in

more general dynamic environments, Kim et al. [14] used

a high-speed camera to take an average of sharp frames to

synthesize blurs in HD (720 × 1280) resolution. Nah et

al. [23] extended their data and presented GOPRO dataset

consisting of 2103 training and 1111 testing frame pairs,

assuming gamma function as CRF. Su et al. [28] used mul-

tiple cameras to present dataset containing 5708 training



(a) GOPRO dataset [23] (b) DVD dataset [28]

(c) Real blurry videos [5] (d) Vid4 dataset [21]

Figure 7: Visualization of the standard popular video datasets. (a), (b), and (c) are for deblurring. (d) is for super-resolution.

and 1000 testing frames. Wieschollek et al. [35] collected

high-resolution videos from the web, interpolated frames

with linear optical flow and downsampled them to generate

smoother blurs for training.

5.2. Video SuperResolution Datasets

Vid4 [21] is a commonly used dataset for evaluating

video super-resolution methods. Vid4 contains a total of

155 frames from 4 sequences. The resolution of each

frame varies 480 × 704 to 576 × 704. However, those

HR frames contain several artifacts from compression and

noise. Vimeo-90k [38] is a recently proposed large-scale

dataset containing 64612 training samples with 448 × 256
resolution. Also, several works evaluated their methods

on customized datasets to validate the proposed methods

on higher resolution videos with rich details. Caballero et

al. [3] used the CDVL database, training their model with

3000 FHD (1080 × 1920) frames. Tao et al. [29] proposed

SPMCS dataset of FHD resolution videos. 945 sequences

are for training, and the rest 30 sequences are for evalu-

ation. Sajjadi et al. [26] also collected FHD videos from

YouTube for evaluation (YT10). Jo et al. [9] used 4 videos

as their validation set (Val4). These diverse training and

evaluation datasets make it difficult to compare the solutions

fairly. Furthermore, the downscaling methods are mixed up

between Gaussian blurs and bicubic interpolation with dif-

ferent parameters.



5.3. REDS

Our proposed REDS dataset is intended to be in high-

quality in terms of the reference frame and the realism of

the degradation. We focus on making smooth and natural

blurs while the compression artifact follows the standard

codec and the downscaling is consistent with the single-

image super-resolution literature. The dynamics between

neighbor frames make the problem more challenging and

promote the development of restoration methods. Refer to

Section 2 for the dataset acquisition details.

6. NTIRE 2019 Video Deblurring and Super-

Resolution Challenge Methods

In this study, we use the top methods from NTIRE 2019

Video Deblurring and Super-Resolution Challenges as well

as several representative methods from recent literature.

6.1. NTIRE 2019 Video Challenge Methods

HelloVSR is the winner of the both NTIRE 2019 video de-

blurring and super-resolution challenges. They proposed

the EDVR framework [33]. The consecutive frames go

through PCD module to be aligned features to the target

frame. Then TSA fusion module is used to fuse the tem-

poral information between the features. Finally, the recon-

struction module based on residual blocks [20] and upsam-

pling module predicts the restored frame. Most of the op-

erations are performed in a coarse scale as the deblurring

model has downsampling layers in the front.

UIUC-IFP is a winner of NTIRE 2019 video deblurring

and super-resolution challenges. They built, WDVR archi-

tecture inspired by WDSR [40, 7]. They investigate the

effectiveness of 2D and 3D convolutions under a limited

computational budget. The deep structure with 3D convo-

lutional layers explores spatial and temporal context infor-

mation jointly. In contrast to 2D convolution models where

the temporal connection lies in the early channel fusion, the

3D convolution extracts the temporal relation gradually.

KAIST-VICLAB proposed a video deblurring model that

has three parallel branches. One branch predicts motion de-

blurring kernel that is convolved on the input target frame

to recover low-frequency components. Another branch gen-

erates the RGB residual image directly. They are linearly

combined by the weight map which is produced by the other

branch.

SuperRior team employed an adaptive ensemble

model [19] for video super-resolution. They trained

an adaptive ensemble module that generates a spatial

weight map that averages different model that learns a

spatial weight map for 3 different architectured super-

resolution models. They trained an ensemble model that

generates a spatial weight map for RDN [42], RCAN [41],

and DUF [9]. Each module architecture is modified to take

multi-frame inputs.

6.2. Other Representative Methods

We select several recently proposed methods for video

deblurring and super-resolution and introduce them.

Video deblurring methods

DBN of Su et al. [28] applies channel-wise concatenation

to multiple frames. Neighbor frames are warped to be

aligned with a center frame using homography or optical

flow. The encoder-decoder architecture fuses information

from the aligned frames to deblur the center frame.

RDN of Wieschollek et al. [35] builds a recurrent network

that reuses part of the features from the previous frame in

multiple scales.

OVD of Kim et al. [13] employs a temporal blending mod-

ule in a fast RNN architecture. The model learns blend-

ing parameters for injecting information from previous time

steps to the current frame.

STTN of Kim et al. [15] introduces a spatiotemporal flow

estimation module that captures long-range temporal de-

pendencies. The module can also be applied in video super-

resolution.

Video super-resolution methods

VSRNet of Kappeler et al. [11] presents CNN architec-

tures with early fusion with concatenated input frames or

extracted features from the frames. They enforce their con-

volutional kernels to be symmetric to accelerate training.

Also, optical flow is applied to compensate for the motion

between neighbor frames.

ESPCN of Caballero et al. [3] investigates into early fusion,

slow fusion, and 3D convolutions to learn temporal rela-

tion. They propose to use a multi-scale spatial transformer

for motion compensation. Sub-pixel convolution that makes

computation efficient is employed instead of bicubic inter-

polation preprocessing, similarly to FSRCNN [6].

SPMC of Tao et al. [29] proposes a sub-pixel motion

compensation layer for frame alignment with convolutional

LSTM architecture.

7. Conclusion

In this paper, we introduced REDS, a new dataset for

video deblurring and super-resolution benchmarking. We

provide high-quality ground truth reference frames as well

as corresponding degraded frames. Each degraded frame

models commonly occurring video degradations such as

motion blur, compression, and downsampling. We studied

the winning solutions from the NTIRE 2019 video deblur-

ring and super-resolution challenges in comparison with

representative methods from the recent literature.
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