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Abstract

In this paper, a simple topology of Capsule Network

(CapsNet) is investigated for the problem of image coloriza-

tion. The generative and segmentation capabilities of the

original CapsNet topology, which is proposed for image

classification problem, is leveraged for the colorization of

the images by modifying the network as follows: 1) The

original CapsNet model is adapted to map the grayscale

input to the output in the CIE Lab colorspace, 2) The fea-

ture detector part of the model is updated by using deeper

feature layers inherited from VGG-19 pre-trained model

with weights in order to transfer low-level image represen-

tation capability to this model, 3) The margin loss function

is modified as Mean Squared Error (MSE) loss to minimize

the image-to-image mapping. The resulting CapsNet model

is named as Colorizer Capsule Network (ColorCapsNet).

The performance of the ColorCapsNet is evaluated on the

DIV2K dataset and promising results are obtained to in-

vestigate Capsule Networks further for image colorization

problem.

1. Introduction

Image colorization is the problem of converting the im-

age from grayscale to the another colorspace so that the

image is colorized. As the colorization problem requires

a mapping from the simpler data (one-channel grayscale

image) to the more complex data (multi-channel composite

image), many different mappings may be obtained with the

most of them is far from satisfactory colorization. Hence,

the problem of image colorization is stated as ill-posed.

There are many methods proposed in the literature to

tackle down the ill-posed nature of the colorization prob-

lem, These studies may be classified as in two categories:

Colorization with 1) guidance [4, 7, 10, 13, 16], and 2) no

guidance [2, 3, 8, 12, 17]. In guided colorization, user inter-

action/example image is asked to provide feedback about

colorization and this feedback is combined with the col-

orization algorithm to obtain satisfactory results. In col-

Figure 1: An example of colorization by the ColorCapsNet

(psnr=23.74,ssim=0.91).

orization with no guidance, automatic colorization algo-

rithms are considered with excluding user intervention. The

latter approach is harder to get satisfactory colorization re-

sults because fully automatic methods may fail to decide for

the proper colors when the alternative colors are possible for

the object in interest.

In recent years, with the advancements in deep learning,

many convolutional and generative deep models have arised

to tackle down the challenging image analysis problems

varying from object classification and detection to enhance-

ment (denoising, colorization etc.). Especially, the problem

of automatic image colorization is massively investigated

by leveraging successful deep models and promising re-

sults are obtained quantitatively and qualitatively with these

models.

A recent study, which proposes a deep architecture

named as Capsule Network (CapsNet) [14], introduces a

network capable both of image classification and genera-

tion. The experimental results of proposed method in [14]

show that state-of-the-art (SOTA) performance may be ob-

tained on image classification task by using a shallow Cap-

sNet architecture. On the other hand, the image genera-

tion/latent space representation capability remains an open

research area for further investigation.

In this paper, the generative characteristic of the CapsNet



model is considered for the image colorization problem.

The original architecture proposed in [14] consists of one

feature detection layer (convolutional layer), one feature

representation layer (primary capsule layer) and one clas-

sification layer (capsule layer), and is trained for the digit

classification task. Here, first, the capacity of the feature

detector is increased by adding more convolutional layers.

The resulting feature detector is same as the first two con-

volutional layers of VGG-19 model [15]. For these layers,

the weights from VGG-19 model pre-trained on ILSVRC

2012 [5] are also transferred before training in order to ini-

tialize the network with prior low-level feature represen-

tation. This may be regarded as a transfer learning strat-

egy. Then, the network is adapted to generate the image

in CIE Lab colospace from its grayscale counterpart. Fi-

nally, the margin loss, which is defined for the classification

task, is changed to Mean Squared Error (MSE) loss in or-

der to minimize the difference between real and generated

color images. The resulting colorization model is named as

Colorizer Capsule Network (ColorCapsNet). A colorization

example by ColorCapsNet can be examined in Figure 1.

ColorCapsNet is trained on two different datasets. First,

it’s trained on ILSVRC 2012 dataset [5] in order to learn

the general color distribution of the objects. Then, DIV2K

dataset [1] is used to obtain final colorization model. In both

cases, the datasets are pre-processed for proper colorspace

conversion and data size. Proposed method is patch-based

so that a pre-defined patch size must be determined before

training. The patch-based mapping exploits the informa-

tion in local neighborhood so that the pixel in interest is

colorized according to the color distribution in its neighbor-

hood [2].

The organization of the paper is as follows: In Section 2,

the literature is reviewed for both image colorization with

guidance and no guidance. In Section 3, the ColorCap-

sNet model is explained in detail. The performance of the

method is discussed in Section 4 and the paper is concluded

in Section 5 with possible future directions.

2. Related Work

In the literature, the image colorization problem is

mainly considered in two categories as follows.

Colorization With Guidance. In this approach, a user

interaction or a set of guidance pixels are asked to pro-

vide a prior information to the colorization system in or-

der to obtain realistic results. In [13], user provided scrib-

bles are used to colorize the neighboring pixels that have

similar intensity values. This method eliminates the need

of the object segmentation and considers the problem as

an optimization procedure that minimizes a quadratic cost

function. The method proposed in [10] uses example im-

age segments and transfers the colors from segments into

the grayscale areas by keeping the spatial coherency high.

An interactive colorization algorithm, which is proposed in

[16], assigns weights for user scribbles and combines them

for final colorization. In [4], the user is asked to provide the

localization and labelling for the salient foreground object

to be colorized and then the object is colorized by using

reference images retrieved from internet. And [7] trans-

fers the color information into the grayscale images from

semantically similar reference images by using superpixel

representation to speed up the colorization and to have bet-

ter spatial consistency. The main drawback of the guided

colorization algorithms is that they are highly dependent to

user feedback or reference example images and this causes

the algorithms to fail generalizing well for all type of col-

orizations.

Colorization With No Guidance. The methods that ap-

ply colorization without any feedback fall into this cate-

gory and they colorize the given grayscale images automat-

ically in an end-to-end fashion. In [2], the grayscale pixels

are considered at local and global levels by estimating the

multimodal color distribution and applying graph-cut algo-

rithm respectively. The method in [3] proposes a deep col-

orization model combined with adaptive image clustering

and joint bilateral filter for global consideration and col-

orization enhancement respectively. In [12], as similar to

[2, 3], a deep model is trained to generate the per-pixel

color histogram that represents the multimodal color dis-

tribution. The method in [8] proposes an end-to-end CNN

model that combines the local features with global informa-

tion. In [17], as similar to [8], a CNN model is constructed

with the class-rebalancing mechanism in order to provide

the color diversity for the ill-posed nature of the coloriza-

tion problem. The automatic colorization methods provide

end-to-end fully colorization mechanisms while they may

be lack of solving the ambiguity in case of multiple choice

of colorization.

3. Proposed Method

In this section, the design of the ColorCapsNet model

is explained in detail. First, the pre-processing steps such

as colorspace selection and data preparation are explained.

Then, the modifications on topology and optimization pro-

cedures are presented. Finally, the selection of critical pa-

rameters, which affects the colorization performance, are

discussed.

3.1. Data Pre-processing

Colorspace. In this study, as in [2, 7, 12, 17], CIE Lab

colorspace is used to represent the color images. CIE Lab

is made of three channels as L, a an b. L represents the

lightness/luminance whereas a and b are the chrominance.

CIE Lab is a perceptually linear colorspace as it establishes

a mapping between the colors in Euclidean space and the

colors in human perception. Therefore, it’s more suitable



than other colorspaces for colorization task and preferred to

represent the colors in this study as well.

Data Representation. The ColorCapsNet maps a

grayscale image patch to the corresponding color image

patch in CIE Lab colorspace. Therefore, during both train-

ing and testing phases, the data must be fed into the Col-

orCapsNet accordingly. For training phase, first, each

color image given in RGB colorspace is converted into CIE

Lab colorspace. Then, both the color and corresponding

grayscale images are sliced into the nxn square patches,

where n is a pre-defined value (see Section 3.4), and stacked

as image patch pairs. In testing phase, the test image in

grayscale is sliced as same in training and fed into the

trained model for colorization. The result is a stack of

the predicted color patches in CIE Lab colorspace and the

patches are put together to make the resulting image com-

plete. Finally, the estimated image is converted from CIE

Lab into RGB for visual perception. The flow for data pre-

processing is illustrated in Figure 2.

Figure 2: Data pre-processing flow.

3.2. Network Design

The first modification is on the feature detection part of

the network. In the original CapsNet [14], this part con-

sists of one convolutional layer with 256 filters. These fil-

ters have size of 9x9 with stride of 1 and are activated with

Rectified Linear Unit (ReLU) to feed the feature representa-

tion layer named as primary capsule. In proposed method,

the feature detector is replaced with the first and the sec-

ond convolutional layers of the VGG-19 model [15] and

both layers are identical as they have 64 convolution filters

with size of 3x3, stride of 1 and ReLU activation. These

convolutional layers, on contrary to the rest of the network,

are initialized by transferring the weights of first two layers

from the pre-trained VGG-19 model without any freezing

process. Such an initialization can be regarded as a transfer

learning strategy, and, here, the purpose is to transfer the

low level feature representation capability of the VGG-19

model into the ColorCapsNet so that it may detect the low

level features (corners, edges etc.) as good as VGG-19. The

performance of detecting low level features has impact on

the object segmentation that further affects the colorization

quality. As seen in Figure 4a, such modification reduces the

train loss from 0.0035 to 0.0033 after 10 epochs training.

In this case, the total number of trainable parameters also

reduces by 720000 approximately.

The second modification is to add Batch Normalization

(BN) layer after each convolutional layer. The reason of

adding BN layer is to reduce the effect of the Internal Co-

variate Shift (ICS) problem stated in the study [9] that pro-

poses BN as a solution to this problem. There are two ben-

efits of applying BN: 1) It speeds up the training process, 2)

It regularizes the network for better generalization.

BN normalizes the training instance, xi, in the mini-

batch B = {x1, .., xb}, which is a small representation of

train set with the size of b, so that it has zero mean with

unit variance (µ = 0,σ2 = 1). In order to make the Color-

CapsNet ICS-reduced, first, the mean is calculated for the

mini-batch B of the patch pairs as below:

µB =
1

b

b
∑

i=1

xi (1)

Then, the variance of B, σ2

B , is calculated:

σ2

B =
1

b

b
∑

i=1

(xi − µB)
2 (2)

Finaly, B is normalized to zero mean with unit variance to

reduce the ICS:

x̂i =
xi − µB
√

σ2

B

(3)

BN is applied to the first two convolutional layers of the

feature detection part and the right after the convolutional

layer in the primary capsule part. The effect of applying

BN can be examined in Figure 4a.

The third modification is for the number of capsule in the

classification layer (capsule layer). In the original CapsNet

topology, the number of capsule is selected as 10 to address

the 10-class digit classification task. Here, because the col-

orization is an image generation task rather than classifi-

cation, the parameter of the capsule number in the capsule

layer should be adapted to this problem. For this parame-

ter, moving from 10 to 6 doesn’t change the loss so much

as seen in Figure 4a but it dramatically reduces the number

of trainable parameters by 2390000 approximately. There-

fore, the number of the capsule is selected as 6 in the capsule

layer.

The resulting topology is illustrated in Figure 3. As seen

in the figure, the topology resembles an autoencoder that is

made of an encoder and decoder network. There is a vec-

tor representation, which is defined in latent space, between



Figure 3: The ColorCapsNet topology.

encoder and decoder networks and it represents the hidden

variables related with colorization task.

3.3. Optimization Procedure

In the original CapsNet model, the margin loss is used

to minimize the loss during training. The margin loss is

defined for each capsule in the classification layer (capsule

layer) as below:

Lc = Tcmax(0, 0.9−‖vc‖)
2+λ(1−Tc)max(0, ‖vc‖−0.1)2

(4)

where λ = 0.5, vc is the output of the capsule c and Tc = 1
when the capsule representing the class is activated. The

total loss over all class capsules are as follows:

L =

C
∑

c=1

Lc (5)

In the ColorCapsNet mode, because the optimization is

to minimize the difference between real and generated color

images, the objective function for loss is defined as Mean

Squared Error (MSE) as below:

MSE =
1

Y X

Y
∑

y=1

X
∑

x=1

[I(x, y)− Î(x, y)]2 (6)

where I(x, y) and Î(x, y) are the corresponding real and

generated color image pixel values respectively. As stated

in [17], L2/MSE is the proper loss function for CIE Lab

colorspace because it defines the chroma in the Euclidean

space and it’s effective to minimize MSE in this space.

As in the CapsNet, the Adam optimizer [11] is leveraged

as the optimization method during forward-backward pass

with the learning rate of 0.001, β1 of 0.9 and β2 of 0.999.

3.4. Parameter Selection

Number of Routings. The routing is one of the most

critical hyperparameters in the CapsNet topology. The rout-

ing is an iterative procedure for information transfer be-

tween the capsules in different layers. In the routing mech-

anism, the capsule in the lower layer is connected to the ac-

tivated capsule in the upper layer for transferring its output.

This mechanism is called as ”routing-by-agreement”. Ac-

cording to [14], the ”routing-by-agreement” leverages the

information about the shape of the object in pixel level so

that the segmentation could be achieved while moving from

locality to global extent. The ColorCapsNet also exploits

the idea of routing in order to segment objects internally

and to colorize them. The number of the iterations during

routing agreement should be selected carefully in order to

achieve proper information transfer between capsules in dif-

ferent layers. In [14], the best performance is obtained by

routing 3 times. In Figure 4b, it can be observed that the

change in the number of routing doesn’t effect the coloriza-

tion performance. The drawback of using iterative routing

is that it increases the time complexity of training as the

number of routing goes up. By considering this fact, the

number of routings is selected as 1 in order to accelerate the

training process.

Patch Size. The size of patch is another critical parame-

ter for successful colorization because it defines the bound-

ary of the local structures and leads to better understanding

of exposing them. In this study, three different patch sizes

are considered for colorization task: 9x9, 16x16 and 32x32.

9x9 and 32x32 are selected as the minimum and the maxi-

mum patch sizes respectively because 9x9 is the theoretical

lower bound as input and the patch sizes bigger than 32x32

cause visual discontinuities at border of adjacent patches.

In Figure 4c, it’s obviously seen that the train loss decreases

with the patch size goes down exponentially. Therefore, the

patch size is selected as 9x9 for this problem.



(a) Topology (b) Number of routings (c) Patch size

Figure 4: Comparative analysis for network design of the ColorCapsNet.

4. Experimental Analysis

In this section, the performance of the ColorCapsNet is

quantitatively evaluated by testing with validation and test

sets from DIV2K dataset. The results are reported with

well-known evaluation metrics, PSNR and SSIM. Some

perceptual results are also shown from validation and test

sets to demonstrate the effectiveness of the ColorCapsNet

on the fully automatic colorization task.

4.1. Datasets

ILSVRC 2012 [5] and DIV2K [1] are two datasets used

in this study to model the colorization. The reason of us-

ing ILSVRC 2012 is to supervise the ColorCapsNet with

general color distribution of the objects in the dataset. This

helps the network to have prior information about object

colors before trained on DIV2K. Once, the ColorCapsNet

is trained on ILSVRC 2012, as next step, DIV2K dataset is

used for training to get the final colorization model. Both

datasets are pre-processed to have colorized-grayscaled im-

age pairs in pre-defined patch size.

The validation and test sets of the ILSVRC 2012 dataset

are used in this study as follows: First, both sets are merged

with ending up 150000 RGB images. Then, these 150000

images are converted into the images in grayscale and CIE

Lab. Finally, the corresponding grayscale and CIE Lab im-

ages are divided into the 9x9x3 patches to train the network.

The total number of patches is 26536446.

DIV2K dataset has 794 grayscale and 800 RGB images

in the train set, and it has 100 grayscale/RGB pairs in the

validation set. First, 794 out of 800 images in the train

set are used for consistency and there is only RGB to CIE

Lab conversion because corresponding grayscale images

are provided. Grayscale/CIE Lab image pairs are again di-

vided into 9x9x3 patches with the total number of 6788644

image pairs. The pre-trained network on ILSVRC 2012 is

trained on this dataset for estimating the images from vali-

dation set (The estimations of the validation images in Fig-

ure 6 are based on this model). Then, 100 grayscale/RGB

pairs from validation set are considered in same manner

with ending up 869196 image pairs as 9x9x3 patches. The

pre-trained network on train set of DIV2K is finally trained

on this validation set to colorize the test images (The test

images in Figure 6 are colorized with this model).

4.2. Evaluation Metrics

In image colorization domain, the Peak Signal to Noise

Ratio (PSNR) and the Structural Similarity Index Measure

(SSIM) are two widely used evaluation metrics to show the

effectiveness of the colorization operation. In this study,

the colorization performance is also evaluated with these

metrics.

PSNR is the ratio between the power of the peak signal

and the power of the noisy signal in terms of the logarithmic

scale. It’s formulated as below:

PSNR = 10 log
10
(
peak

MSE
) (7)

where peak is the power of the peak signal and MSE is

the mean squared error between the original and the noise

signals. The bigger PSNR values mean to the better quality

and the lower noise in the image. Similarly, in the domain

of the image colorization, the bigger PSNR indicates the

better colorization performance.

SSIM is another image quality metric and used to mea-

sure the similarity between real and estimated images based

on luminance, contrast and structure. It’s formulated as be-

low:

SSIM(I, Î) =
(2µIµÎ

+ C1)(2σIÎ
+ C2)

(µ2

I + µ2

Î
+ C1)(σ2

I + σ2

Î
+ C2)

(8)

where µ is the mean, σ is the standard deviation, σ
IÎ

is the

covariance and C1 and C2 are the contrast related parame-

ters. The bigger SSIM indicates the better reconstruction of

the real image by the estimated one. For the image coloriza-

tion, the bigger SSIM value means to the better colorization

result.



(a) Train loss on ILSVRC 2012 (b) Train loss on DIV2K train set (c) Train loss on DIV2K validation set

Figure 5: The train loss performance of the ColorCapsNet.

4.3. Results

The loss performance during training on ILSVRC 2012,

DIV2K train and validation sets is shown in Figure 5. Al-

though the training on ILSVRC 2012 is saturated in 50

epochs (see Figure 5a), there is still chance to decrease the

loss after 50 epochs for the training on DIV2K dataset (Fig-

ure 5b, Figure 5c).

For the validation and test phases of the NTIRE 2019

Colorization Challenge [6], the comparative performance of

the ColorCapsNet with other methods can be examined in

Table 1. Proposed method, the ColorCapsNet, has com-

parable colorization performance on both phases although

it’s just a shallow CapsNet architecture and doesn’t contain

any complex mechanism for some important problems such

as spatial coherency. The validation performance for the

ColorCapsNet trained in 50 epochs is as PSNR of 22.20

and SSIM of 0.88. The test performance in 10 epochs is as

PSNR of 21.08 and SSIM of 0.85 (The testing in 50 epochs

couldn’t be evaluated because of the unavailability of the

colorized test data). The worst and the best performances

are listed in Table 1 as well independently for PSNR and

SSIM values. In other word, these values are independently

the worst and the best values that may or may not belong to

the same participant.

As seen from Figure 5b and Figure 5c, it’s also possi-

ble to continue training on DIV2K for better fitting because

there is no elbow in the plots after 50 epochs so that it has

still capacity to converge further. The original CapsNet

model [14] is trained in 1250 epochs with the sign of the

convergence at 500 epochs for the digit classification task.

Some colorization results can be examined in Figure 6.

According to the visual results, it can be said that the Col-

orCapsNet has promising colorization capability without

any guidance. Even for some colorization results with low

PSNR and SSIM values (Figure 6f and Figure 6j), it may

generate satisfactory results. Those results in Figure 6 with

PSNR and SSIM values of ’n/a’ indicate that there was no

real color image corresponding to the estimated one and the

Method Metric Validation Test

Worst 16.39/0.55 17.96/0.84

Best
PSNR/

SSIM
22.73/0.93 22.19/0.94

ColorCapsNet 22.20/0.881 21.08/0.852

Table 1: Validation and test results in the NTIRE 2019 Col-

orization Challenge [6] (1 : 50 epochs, 2 : 10 epochs).

evaluation metrics couldn’t be calculated.

In Figure 7, the progress in the colorization during train-

ing can be examined for two instances from the DIV2K val-

idation set. As seen in the figure, although the PSNR val-

ues oscillate softly with the changing number of the epoch

(24.38±0.56 for the top row and 23.65±0.09 for the bottom

row), the SSIM values are stabilized as indicating no more

improvement on the colorization performance. The effect of

the longer training on the colorization performance should

be further investigated in order to see if it helps to the im-

provement as in [14].

5. Conclusion

In this paper, a simple Capsule Network (CapsNet) ar-

chitecture is designed for ill-posed image colorization prob-

lem. Proposed method is a fully automatic, end-to-end,

patch-based deep model named as Colorizer Capsule Net-

work (ColorCapsNet) and it exploits the generative and seg-

mentation capabilities of the CapsNets for the colorization

task. Experiments show that the ColorCapsNet has promis-

ing and comparable results on provided DIV2K dataset with

its simple design and deserves further investigation such

as designing deeper CapsNet architectures or integrating

multimodal color distribution for better colorization perfor-

mance.



(a) psnr=28.46,ssim=0.92 (b) psnr=23.26,ssim=0.94 (c) psnr=26.58,ssim=0.94 (d) psnr=26.57,ssim=0.95

(e) psnr=26.40,ssim=0.95 (f) psnr=21.98,ssim=0.89 (g) psnr=25.73,ssim=0.93 (h) psnr=28.26,ssim=0.94

(i) psnr=26.92,ssim=0.91 (j) psnr=19.52,ssim=0.86 (k) psnr=23.61,ssim=0.91 (l) psnr=23.56,ssim=0.91

(m) psnr=23.89,ssim=0.93 (n) psnr=30.07,ssim=0.94 (o) psnr=n/a,ssim=n/a (p) psnr=n/a,ssim=n/a

Figure 6: Some colorization results from DIV2K dataset.



(a) Grayscale

Epoch=5

(b) psnr=24.73,ssim=0.92

Epoch=10

(c) psnr=23.71,ssim=0.92

Epoch=15

(d) psnr=23.97,ssim=0.92

Epoch=50

(e) psnr=25.11,ssim=0.92

(f) Grayscale (g) psnr=23.60,ssim=0.92 (h) psnr=23.53,ssim=0.91 (i) psnr=23.75,ssim=0.91 (j) psnr=23.74,ssim=0.91

Figure 7: Colorization progress across training.
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