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Abstract

Due to the object motion during the camera exposure

time, latent pixel information appears scattered in a blurred

image. A large dataset of dynamic motion blur and blur-

free frame pairs enables deep neural networks to learn de-

blurring operations directly in end-to-end manners. In this

paper, we propose a novel motion deblurring kernel learn-

ing network that predicts the per-pixel deblur kernel and a

residual image. The learned deblur kernel filters and lin-

early combines neighboring pixels to restore the clean pix-

els in its corresponding location. The per-pixel adaptive

convolution with the learned deblur kernel can effectively

handle non-uniform blur. At the same time, the generated

residual image is added to the adaptive convolution result

to compensate for the limited receptive field of the learned

deblur kernel. That is, the adaptive convolution and the

residual image play different but complementary roles each

other to reconstruct the latent clean images in a collabo-

rative manner. We also propose residual down-up (RDU)

and residual up-down (RUD) blocks that help improve the

motion deblurring performance. The RDU and RUD blocks

are designed to adjust the spatial size and the number of

channels of the intermediate feature within the blocks. We

demonstrate the effectiveness of our motion deblurring ker-

nel learning network by showing intensive experimental re-

sults compared to those of the state-of-the-art methods.

1. Introduction

An image enhancement aims to restore the latent image

of the observed image with degradation. Unlike the high-

level vision task which requires annotation efforts from hu-

man resource, relatively abundant data in a manageable im-

age format are available in low-level image enhancement

task.

Nevertheless, for some self-supervised tasks such as

super-resolution, frame interpolation, it is easy to obtain
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Figure 1. Examples of deblurring results on GOPRO dataset [14]:

(a) Input blurry image; (b) Result of Tao et al. [27]; (c) Result of

our proposed network; (d) Clean image.

training data, but relatively difficult to have clean-hazy im-

age pairs and clean-blurry image pairs in dehazing and de-

blurring problems, respectively. Therefore, the availabil-

ity of several large datasets such as O-HAZE, I-HAZE [3,

2, 1], GOPRO deblurring dataset [14], and REDS [13]

dataset have encouraged the researchers to study data-

driven methodologies for dehazing and motion deblurring

problems.

This paper studies an end-to-end deblurring method

given multiple blur and blur-free frame pairs. In this study,

we challenge deblurring problems for the images with non-

uniform blurs synthesized by the accumulation of multiple

consecutive sharp frames. The accumulation process ap-

proximates that a fast-moving object appears over several

pixels during the camera exposure time. So the amount

of motion blur varies depending on the pixel locations due
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to the speeds, depths and motion types of moving objects

and camera shakes. To handle non-uniform blur, we pro-

pose a deblurring kernel learning network that learns input-

adaptive per-pixel deblur kernels at each pixel location for

the input blurry frames. Our kernel learning network is

trained to restore each clean pixel by combining the cor-

responding surrounding pixels in the blurry images. The

adaptive convolution of the blurry frame and the generated

deblur kernels act as blind deconvolution [29, 31] without

explicit estimation of blur kernels. This process collects

scattered latent pixel information and filters the disturbing

information.

Sometimes the movement of an object is so large that

the pixels are scattered too far apart and most of the infor-

mation is lost in the blurred image. In this case, it may be

better to create the pixels directly rather than combining the

surrounding pixels. This can be achieved by training deep

neural networks to predict the RGB pixels directly. Hence,

we incorporate a direct pixel estimation branch and com-

bine it with an adaptive convolution branch in our network.

The two branches share most of the parameters through the

mainstream which is then separated into two branches with

several convolution layers. This enables both the adaptive

convolution and the direct pixel estimation in a collabo-

rative manner to produce the reliable final output. Fig. 1

shows the motion deblurred results in comparison between

our proposed network and Tao et al. [27].

Our deep motion deblurring network is based on the

U-Net [21] structure where the convolution layers in the

encoder and decoder parts are replaced with novel resid-

ual down-up (RDU) blocks and residual up-down (RUD)

blocks, respectively. The RDU blocks and RUD blocks in-

herit the properties of the encoder and decoder structures,

respectively, as simplified building blocks of two layers.

Each RDU block halves the spatial size of its input fea-

ture and doubles the number of channels through the first

convolution layer, and yields its output back to the orig-

inal spatial size and channel number through the second

layer for residual learning. On the other hand, each RUD

block doubles the spatial size of its input and reduces the

number of channels through the first transposed convolu-

tion layer, and returns the intermediate feature back to the

original shape. Peng et al. [20] used the RDU blocks with-

out increased channels for a classification network to speed

up while maintaining the classification performance. Be-

sides, Yu et al. [30] reported that even if the total number

of parameter is the same, increasing and decreasing the in-

termediate feature channels in a block helps improve per-

formance in super-resolution. Our RDU block is basically a

combination of the two methods [20, 30]. Additionally, we

extended the idea of the RDU block to the RUD block for

improved restoration performance.

We demonstrate the effects of our proposed network with

the adaptive convolution and the residual RDU and RUD

blocks in Experiment Section 4.

2. Related Works

2.1. Deblurring Approaches

The image blur is generally defined as follows :

B = L⊗Kb +N, (1)

where B represents blurred patch, L latent patch, Kb blur

kernel, N additive observation noise.

Some previous methods predict the underlying blur ker-

nels and then deconvolve the kernels with the blurred im-

age to generate latent image satisfying Eq. 1 and additional

regularization or image prior information [23, 5]. Some re-

searchers have tried to estimate blur kernels using deep neu-

ral networks in uniform [22] or non-uniform setting [26].

Xu et al. [29] developed a convolutional neural network

(CNN) based method that serves as the deconvolution. They

analyzed that convolutional filters should have large-sized

receptive fields to reliably approximate the deconvolution.

Thanks to the availability of high-frame-rate cameras, it

becomes easier to have many clean images and to gener-

ate synthesized motion blurred images [14, 25]. As a re-

sult, end-to-end deblurring methods to predict a blur-free

image without kernel prediction have been developed by

learning the mapping functions from blur to blur-free im-

ages. Nah et al. [14] proposed a coarse-to-fine deblurring

network consisting of residual blocks [11] using multi-scale

blur inputs. Tao et al. [27] improved Nah’s work [14] with

encoder-decoder residual blocks. Their network shares the

parameters across the scales to reduce the model size and

stabilize the training. Zhang et al. [31] analyzed that re-

current neural networks (RNN) can be trained for the de-

convolution [29] in a feature domain. They incorporated a

sub-network that predicts the spatially variant per-pixel ker-

nels of the RNNs. The blur input is deblurred gradually as

it passes through the RNNs. In our case, the generated per-

pixel kernel is applied directly to the input blurry image and

complemented by adding the residual image. The deblur-

ring network proposed by Chen et al. [4] first predicts three

blur-free frames from three blurred frames. Then bidirec-

tional optical flows are computed by a pre-trained network

to approximate a blur kernel with the optical flows. The ap-

proximated blur kernel reblurs the predicted sharp frame to

reconstruct blurry input again. The cycle consistency loss

between the blur input and the reblurred image is addition-

ally used to improve the deblurring performance.

2.2. Adaptive Convolution

Jia et al. [9] introduced a novel network that output a sin-

gle filter or location-specific filters. The generated single fil-
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Figure 2. The architecture of the proposed motion deblurring network. The encoder and decoder parts consist of our proposed RDU and

RUD blocks, respectively. The encoder of the network takes as input the three consecutive frames concatenated along channel axis where

the middle frame is the target frame, and the decoder outputs 25-channel per-pixel kernels, a residual image and a blending weight map.

The target frame is locally filtered by the generated kernels. The final output is the weighted sum of the locally convolved output and the

residual image defined by Eq. 2.

ter is applied to an image and the generated location-specific

filters (or dynamic filter) are applied to pixel locations. The

location-specific filtering is also studied in frame interpola-

tion by Niklaus et al. [16, 17]. In [16], a latent intermediate

frame is predicted from adjacent frames. Their network pro-

duces spatially-adaptive filters and the filters are applied to

both of the previous and next frames. Nikalus et al. [17]

replace the square-shape dynamic filters with two separable

1-dimensional filters. By doing so, they can enlarge the re-

ceptive fields of the kernels since the kernel sizes could be

reduced from N2 to 2N when the receptive field size is N .

In video super-resolution task, Jo et al. [10] achieved supe-

rior results using the adaptive convolution and the residual

images. For each location, 16 kernels are predicted for an

up-scaling factor of 4. They designed their network to share

the parameters until two branches are separated. The con-

cept of their work is somewhat similar to ours in the sense

that adaptive kernel learning, residual learning and param-

eter sharing, but their work solves video super-resolution

based on a densely-connected CNN structure while our net-

work is based on a U-NET with RDU and RUD blocks to

solve the motion deblurring problems.

3. Proposed Methods

Our deblurring network takes a target frame and its pre-

vious and next frames as a concatenated input. Then the

network generates three outputs with per-pixel 5×5-sized

(25-length in the channel depth) adaptive kernels, a residual

image of three channels and a blending weight map. The

generated kernel at each location locally filters the target

frame with its corresponding 5×5 windows. This local fil-

tering is also referred to as adaptive convolution [16, 17]

or dynamic filtering [9, 10]. However, this operation is of-

ten denoted as a dot product (element-wise multiplication

followed by summation) since the convolution kernel is not

shared entirely. The second output is a 3-channel image

called a residual image [10], since it is added to the locally

filtered output. The third output, blending weight map, has

a single channel and determines how to blend two preced-

ing outputs. Therefore, the final output can be represented

as follows:

L̂ = w ·B ⊗Kd + (1− w) ·R, (2)

where B represents the input blurred image, Kd the per-

pixel kernel, R the residual image, w the blending weight

map, ⊗ the adaptive convolution.

3.1. APPK Branch for small/medium Motion Blur
and BWMR Branch for Large Motion Blur

As shown in Fig. 2, our motion deblurring network has

two branches in its decoder part: one is an adaptive per-

pixel kernel based motion deblurring (APP-K) branch and

the other is a blending weight map and residual image esti-

mation (BWM-R) branch. Since the APP-K branch learns

adaptive per-pixel kernels of 5×5 size, it is more capable

of deblurring small and medium motion blur images and is

less effective for large motion blur. On the other hand, the

BWM-R branch learns both the residual images and blend-

ing weight map with large receptive fields, which is benefi-

cial for large motion deblurring.

For the APP-K branch, the values of each 5×5-sized

adaptive per-pixel deblur kernel are linearly combined with



a corresponding input blurry pixel and its square neigh-

bor pixels via the dot product operation to generate a clean

pixel. Due to the one-to-one correspondence between the

kernels and the pixel locations, the motion of individual

pixel can be handled appropriately. The deblur kernel fil-

ters only the information that is important in restoring the

original clean pixel and excludes other noisy pixels. The

output pixel lies in a range of the surrounding pixel values

within a 5×5-sized region. Therefore, this adaptive convo-

lution based on the estimated per-pixel deblur kernels is less

effective for large motion blur since the pixel information

of a clean image is heavily scattered or spread. In this case,

the BWM-R branch compensates the coarse output of the

APP-K branch by adding the residual images by the blend-

ing weight maps. This is because the residual images can

be robustly created directly from the feature maps, which is

beneficial for large motion blur. It should be noted that the

added BWM-R branch focuses on the restoration of sharp

edges that are severely blurred due to large motion rather

than smooth image structures.

3.2. Residual DownUp and UpDown Blocks

Our motion deblurring network is designed based on

building blocks, denoted as residual down-up (RDU) blocks

and residual up-down (RUD) blocks. We change the spatial

size and the number of channels of the intermediate feature

in the RDU and RUD blocks. As shown in Fig. 2, our mo-

tion deblurring network is based on the U-Net structure with

two parts: encoder and decoder. The encoder extracts the

feature of the input, and the decoder plays the reconstruc-

tion process. For the low-level features close to the input

images, their neighboring pixels tend to be highly correlated

with each other with much redundant information. There-

fore, in general classification [24, 7] or auto-encoder based

regression models [18], the spatial sizes of feature maps are

reduced while the numbers of feature map channels are in-

creased in order to extract more various feature informa-

tion [28]. The U-Net architecture [21, 8, 12, 6] adds skip

connections between the encoder and the decoder to pre-

vent loss of information caused by reducing spatial size. By

taking the advantage of the U-Net architecture, we design a

RDU block having two back-to-back layers of convolution

and transposed convolution as a base block of the encoder.

In the RDU block, an input tensor is fed into the convolution

layer with stride 2 followed by the transposed convolution

layer with stride 2. The convolution layer halves the spa-

tial size while doubling the number of channels of the input

tensor. The transposed convolution layer, reversely, doubles

the spatial size and reduce the number of channels back to

the original size. At the end of the block, input tensor is

added for the purpose of residual learning to preserve detail

information.

The proposed RUD block is also designed as the base

Table 1. Configuration of our proposed network in Fig. 2. For each

‘RDU’ or ‘RUD’ block, the number in parenthesis indicates the

repetition number of the same blocks in a cascade. ‘*’ indicates

concatenation of input tensors along the channel axis. The size of

each estimated per-pixel kernel is 5×5, so ‘conv8’ layer has 25

channels.

Input Output

Layer H,W C Layer H,W C

Input 1 9 conv1 1 32

conv1 1 32 RDU1 (×9) 1 32

RDU1 1 32 avg pool1 1/2 32

avg pool1 1/2 32 1×1conv1 1/2 64

1×1conv1 1/2 64 RDU2 (×9) 1/2 64

RDU2 1/2 64 avg pool2 1/4 64

avg pool2 1/4 64 1×1conv2 1/4 128

1×1conv2 1/4 128 RDU3 (×4) 1/4 128

RDU3 1/4 128 RUD1 (×4) 1/4 128

RUD1 1/4 128 NN1 1/2 128

NN1, RDU2 1/2 192* 1×1conv3 1/2 64

1×1conv3 1/2 64 RUD2 (×9) 1/2 64

RUD2 1/2 64 conv2 1/2 64

conv2 1/2 64 NN2 1 64

NN2, RDU1 1 96* 1×1conv4 1 32

1×1conv4 1 32 conv3 1 32

conv3 1 32 conv4 1 3

conv3 1 32 conv5 1 1

RUD2 1/2 64 conv6 1/2 64

conv6 1/2 64 NN3 1 64

NN3 1 64 conv7 1 32

conv7 1 32 conv8 1 25

block of the decoder by having the two back-to-back layers

of transposed convolution and convolution. The decoder

should restore a clean image by increasing a spatial size

gradually from bottleneck feature of the network. In the

RUD block, the transposed convolution layer with stride 2

enlarges the spatial size of input but reduces the number of

channels to alleviate the computational burden. The con-

volution layer with stride 2 returns the tensor back to the

original size and the identity addition is performed. Since

the convolution is operated in the zoomed-in feature maps,

fine reconstruction can be possible.

3.3. Proposed Network Architecture

Fig. 2 shows the overall architecture of our motion de-

blurring network. Table 1 shows the detailed configuration

of our motion deblurring network. The concept of our net-

work is somewhat similar to the structure of Jo et al. [10]

in the sense that both the per-pixel kernels and the resid-

ual images are generated to construct the final output. Our

network is based on the U-Net structure to reduce the input

image size by a factor of 4 similar to Tao et al. [27]. The fi-

nal output is the weighted sum of adaptive convolution out-

put and the residual image (Eq. 2), and L1 loss function is



Table 2. Results of ablation study on our proposed motion deblurring network.

Variations Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

RDU and RUD block X X X X

BWM-R X X X X X

APP-K X X X X X

Multi-frame X X X X X X

PSNR(dB) 31.03 31.24 31.33 31.36 31.43 31.86 31.55

Runtime(s) 0.86 0.76 0.95 0.63 0.43 0.59 0.62

applied to the final output only. Hence the parameters are

shared along the mainstream until two branches are sepa-

rated as shown in Fig. 2. Since the kernel has a different

characteristic compared to images, the skip connection is

only connected to the BWM-R branch. Leaky ReLU is used

as an activation function except for the output layers in our

network. Nearest neighbor and average pooling are selected

as up- and down-sampling methods, respectively, between

different scale levels. All convolutional layers have 5×5 fil-

ters and all transposed convolution layers have 4×4 to avoid

the checkerboard artifact [19].

4. Experiments

4.1. Dataset

We trained our network on REDS [13] training dataset,

which is provided by NTIRE2019 Video Deblurring Chal-

lenge [15]. It consists of blur and blur-free frame pairs

of size 720×1280. Blurry images are synthesized from

multiple sharp frames captured by high-frame-rate cameras.

There are 240 video sequences, 100 frames per each video

sequence, totally 24,000 blur and blur-free frame pairs in

the training set. The REDS validation set contains 30 video

sequences, total 3,000 image pairs. But we evaluate the

motion deblurring methods on every 10 deblurred frames

of each sequence (frame number 09,19,. . . ) as the devel-

opment phase of the NTIRE2019 Video Deblurring Chal-

lenge. The quantitative and qualitative results on the partial

of REDS validation dataset are reported in Section 4.3 and

4.4.

4.2. Training Details

In order to provide useful information of adjacent frames

in learning the motion deblurring, the previous and next

frames are concatenated to the target frame along the chan-

nel axis. The previous and next frames are shifted up to 2

pixels to the opposite directions respectively for the purpose

of robust training. This augmentation strategy gives a small

amount of random motion to stationary scenes. Training

patches are cropped to a 160×160 size and then are ran-

domly flipped and rotated. Batch size is set to 4, and the

initial learning rate is set to 1e-4 with a linear decrease to

zero after 10% of training. We trained the network for about

1.5 million iterations. A L1 loss and the Adam optimizer

are selected as training options. Implementation was done

with tensorflow library. Training and testing are operated

on the machine with intel core i7-7700k@4.20GHz CPU,

NVIDIA TITAN Xp GPU. The training takes about 3 days.

4.3. NTIRE 2019 Video Deblurring Challenge

Our full model trained with entire training set has yielded

average 33.38dB PSNR for 300 validation frames without

using the simple geometric self-ensemble [11] which can

further improve the PSNR performance by augmenting the

input frames to 8 combinations (2 flips, 4 rotations). The

augmented 8 combinations are fed into the network, aligned

back to the original shape, respectively. Then we take the

mean of the 8 combinations. The simple ensemble has

increased the average PSNR value to 33.86dB (+0.48dB).

This indicates that there is room for the performance im-

provement with longer training iterations. Fig. 5 shows

some examples of deblurring results for the REDS valida-

tion images. Our proposed network model was ranked 3rd

in the NTIRE2019 Video Deblurring Challenge [15] for the

REDS test data.

4.4. Ablation Study

To compare the effectiveness of our proposed method,

we performed ablation study. Due to limited time and a

computation resource for the experiments of ablation study,

we used 128×128-size training patches and utilized only

the first 20% of each video sequence of the REDS training

dataset. The numbers of training iterations were also lim-

ited to the 20% of the total iteration number to train our

full model in Section 4.3. Table 2 summarizes the ablation

study results. If the ‘RDU and RUD block’ is unchecked in

Table 2, the RDU and RUD blocks are replaced with gen-

eral residual blocks which consist of two convolution layers

of fixed spatial size and the number of channels. When the

‘BWM-R‘ is used alone without the APP-K, the network di-

rectly predict clean images without APP-K and the blending

maps. If ‘Multi-frame’ is checked, the input is constituted

with a concatenation of three consecutive frames along the

channel axis where the middle frame is the target frame. If

not, only the target frame is fed into the networks. All the

seven variations in this ablation study are adjusted to have a
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Figure 3. Subjective comparison of motion deblurring examples for the ablation study on two models (Model 4 and Model 6 in Table 2) :

(a) Input blur image; (b) Output of Model 4 that only contains adaptive convolution (APP-K branch) without the residual images (BWM-R

branch); (c) Adaptive convolution output of Model 6 that has both APP-K and BWM-R branches; (d) Residual image output of Model 6;

(e) Final output of Model 6 according to Eq. 2; and (f) Ground truth clean image.

(a) (b) (c) (d)

Figure 4. Comparison of Model 2 and Model 6 in Table 2 : (a)

Input blur image; (b) Output of Model 2; (c) Output of Model 6;

and (d) Ground truth clean image.

similar number of parameters for fair comparison. Our pro-

posed network with all components (Model 6 in Table 2) has

achieved the best PSNR performance among the seven mod-

els for the validation set. In addition, the multiple-frame

input improves PSNR performance over the single frame

input. We define the baseline model that uses the general

residual blocks as its base building block and directly es-

timates the latent images without the APP-K, which is de-

noted as Model 2 in Table 2. Fig. 4 compares the results

of the baseline (Model 2) and our proposed model (Model

6). It can be noted in Fig. 4 that Model 6 can restore the

severely blurred edges and strips well, yielding sharp edges

and thin shoulder straps.

Adaptive Convolution As shown in Table 2, Model 1 and

Model 4 yield relatively lower PSNR performance com-

pared to Model 2 and Model 5, respectively, due to a lim-

ited kernel size. Fig. 3-(b) shows the results of Model 4. As

shown in the middle picture of Fig. 3-(b), Model 4 fails to

restore the left-side tree whose pixel information is heavily

scattered over a large area due to fast motion. This implies

that the motion deblurring task should be assisted by hallu-

cinating the pixels from scratch.

Fig. 3-(c) shows the results of the APP-K branch output

of Model 6. The APP-K branch of Model 6 only removed

a smaller amount of motion blur shown in Fig. 3-(c), com-

pared to the results of Model 4 shown in Fig. 3-(b). This is

because, the APP-K branch of Model 6 performs a coarse

prediction and help the BWM-R branch of Model 6 focus

on restoring the details (edges) of the clean images. From a

perspective of subjective quality, the final output of Model 6

yields superior results over Model 4, as shown in Fig. 3-(e).

Also, from a perspective of the overall PSNR performance,

Model 6 outperforms Model 4 and Model 5 that directly es-

timates the clean images, as shown in Table 2.

To further analyze the effectiveness of the per-pixel

adaptive kernels, we have applied adaptive separable con-

volution [17] for Model 6 by replacing 5×5 kernels with

1-dimensional horizontal and vertical kernels of length 13,

which is denoted as Model 6-s. Form the experiments,

Model 6-s results in average 31.77dB PSNR, which is

slightly lower than that of Model 6. Although the usage of



(a) (b) (c)

Figure 5. Examples of the deblurring results by our proposed full model that was trained with the entire training dataset, called REDS

dataset [13], used for the NTIRE2019 Video Deblurring Challenge: (a) Input blur image; (b) Motion-deblurred output of our full model;

and (c) Ground truth clean image.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 6. Comparison of motion deblurred results of our proposed full model and Tao et al. [27] for a benchmark dataset: (a) Input blur

image; (b) Results of Tao et al. [27]; (c) Results of our network, and (d) Ground truth clean image.



Table 3. Quantitative performance comparison for different com-

binations of general residual, RDU and RUD blocks in the encoder

and decoder of our proposed motion deblurring network.

Encoder R RDU RUD RUD RDU

Decoder R RDU RUD RDU RUD

PSNR 31.27 31.61 31.64 31.61 31.86

the 1-dimensional horizontal and vertical kernels of length

13 has increased the receptive field (RF) to 13×13, the ef-

fect of the enlarged RF is not significant since the BWM-R

branch already enjoys a large RF in generating the residual

images of Model 6. Moreover, the 5×5 kernel has a smaller

range but can deal with neighboring pixels more densely

than the 1-d kernels.

Residual Down-Up and Up-Down Blocks The PSNR

result of Table 2 shows that proposed RDU and RUD

blocks are effective compared to the residual blocks in

terms of efficiency and performance, i.e., Model 4–6 yield

higher PNSR values and smaller run-time than Model 1–3,

respectively. It is worthwhile to mention that the effi-

cient structures of the RDU and RUD blocks can com-

pensate for the increased computational burden by the

APP-K branch. Consequently, Model 6 (0.59 second per

720×1280) runs faster than our baseline, Model 2 (0.76 sec-

ond per 720×1280).

For more detailed analysis, the usage of RDU and RUD

blocks has been inspected in a perspective of their different

combinations in the encoder and decoder of Model 6. Ta-

ble 3 shows the PSNR performance for variations of Model

6. It should be noted that the numbers of parameters are not

kept the same for different combinations of RDU and RUD

blocks due to their structural differences. In Table 3, the

k-th variation model of Model 6 is denoted as VM k. VM1

has the general residual blocks (denoted as ‘R’) as it build-

ing blocks in both encoder and decoder. VM5 that has the

RDU blocks (‘RDU’) in the encoder and the RUD blocks

(‘RUD’) in the decoder is equivalent to Model 6. The VM2,

VM3, VM4 and VM5 yield higher PSNR values than VM1.

From the comparison between VM4 and VM5 in Table 3,

the RDU blocks are suitable for the encoder to extract more

features and to reduce spatial redundancy while the RUD

blocks are appropriate for the decoder to restore details.

4.5. Evaluation on Benchmark Dataset

To evaluate our network on a benchmark dataset, we

trained our model with GOPRO dataset provided by Nah

et al. [14]. The training dataset contains 720×1280-sized

2,103 blur and blur-free frame pairs. We used the blurred

images that are not gamma corrected. Our proposed net-

work is compared with the state-of-the-art methods, Nah

et al. [14], Zhang et al. [31] and Tao et al. [27]. For a

Table 4. PSNR/SSIM and run-time comparisons of our network

and the three state-of-the-art methods for the GOPRO dataset [14].

Method PSNR(dB) SSIM runtime(s)

Nah et al. [14] 28.62 0.9094 N/A

Zhang et al. [31] 29.19 0.9306 N/A

Tao et al. [27] 30.26 0.9342 0.32

Ours-shallow 31.34 0.9474 0.62

fair comparison, only a single frame without the adjacent

frames is input to our proposed network in both the training

and testing phases. Also, we did not conduct the geometric

self-ensemble described in Section 4.3. The size of training

patched is set to 128×128 and the training for our proposed

network has taken about 3 days. The other training options

are the same as those in Section 4.2. Table 4 lists the aver-

age PSNR and SSIM values of our proposed network and

the three state-of-the-art methods for the 1,111 GOPRO test

images. As shown in Table 4, our proposed network exhib-

ited the best PSNR and SSIM performances, compared to

the three state-of-the-art methods. Fig. 6 shows some de-

blurring results of GOPRO test images for subjective com-

parison. As shown in Fig. 6, our network produces much

cleaner images, especially for heavily motion-blurred im-

ages, than the method of Tao et al. [27].

5. Conclusion

We proposed a deep motion deblurring network with

novel base blocks, residual down-up (RDU) and residual

up-down (RUD) blocks. Furthermore, our network is fea-

tured with an adaptive per-pixel kernel (APP-K) module to

restore image details for small/medium motion blur images

and with a residual image estimation with blending weight

map generation (BWM-R) module to precisely restore the

latent sharp edges from heavily motion-blurred images. Our

deep motion deblurring network can effectively combine

the adaptive convolution results and the residual images.

The replacement of the residual building blocks with the

RDU and RUD blocks in the encoder and decoder of an U-

Net architecture allows for PSNR performance. From ex-

periments, it is shown that our deep motion deblurring net-

work outperformed the state-of-the-art methods in PSNR

and SSIM perspectives for the benchmark dataset. Our pro-

posed motion deblurring network has ranked the 3rd in the

NTIRE2019 Video Deblurring Challenge.
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