
Deep Graph Laplacian Regularization for Robust Denoising of Real Images

Jin Zeng1∗ Jiahao Pang1∗ Wenxiu Sun1 Gene Cheung2

1SenseTime Research 2Department of EECS, York University

{zengjin, pangjiahao, sunwenxiu}@sensetime.com, genec@yorku.ca

Abstract

Recent developments in deep learning have revolution-

ized the paradigm of image restoration. However, its ap-

plications on real image denoising are still limited, due

to its sensitivity to training data and the complex nature

of real image noise. In this work, we combine the ro-

bustness merit of model-based approaches and the learn-

ing power of data-driven approaches for real image denois-

ing. Specifically, by integrating graph Laplacian regular-

ization as a trainable module into a deep learning frame-

work, we are less susceptible to overfitting than pure CNN-

based approaches, achieving higher robustness to small

datasets and cross-domain denoising. First, a sparse neigh-

borhood graph is built from the output of a convolutional

neural network (CNN). Then the image is restored by solv-

ing an unconstrained quadratic programming problem, us-

ing a corresponding graph Laplacian regularizer as a prior

term. The proposed restoration pipeline is fully differen-

tiable and hence can be end-to-end trained. Experimen-

tal results demonstrate that our work is less prone to over-

fitting given small training data. It is also endowed with

strong cross-domain generalization power, outperforming

the state-of-the-art approaches by a remarkable margin.

1. Introduction

Image denoising is the most fundamental image restora-

tion problem, which has been studied for decades. In or-

der to regularize its ill-posed nature, a large body of works

adopt signal priors. By adopting a certain image model,

one assumes that the original image should induce a small

value for a given model-based signal prior. Representative

priors in the literature include non-local self-similarity [5],

total variation (TV) prior [37], sparsity prior [15], graph

Laplacian regularizer [33], etc. However, these works place

their emphases to the removal of additive white Gaussian

noise (AWGN), which is unrealistic and limits their appli-

cations in practice. In the real world, image noise stems

from multiple sources, e.g., thermal noise, shot noise, dark

∗Both authors contributed equally to this work. Jiahao Pang is the cor-

responding author.

(a) Noise Clinic. (b) CDnCNN. (c) DeepGLR.

Figure 1. Results of real image denoising. (a) Noise Clinic (model-

based); (b) CDnCNN (data-driven); (c) DeepGLR (proposed). Our

method and CDnCNN are trained for Gaussian denoising.

current noise, making it much more sophisticated than the

ideal AWGN.

Recent developments in deep learning have revolution-

ized the aforementioned model-based paradigm in image

restoration. Thanks to the strong learning capacity of

convolutional neural networks (CNN) to capture image

characteristics, CNN-based approaches have achieved the

state-of-the-art performance in Gaussian denoising, e.g.,

[48, 43, 40]. However, the application of deep learning

models on real noise removal remains quite challenging.

Unlike model-based approaches, CNN-based approaches

are data-driven. To learn a CNN for real image noise re-

moval, thousands of real noisy images and their noise-free

versions are necessary to characterize the correspondence

between the corrupted images and the ground-truths [50].

Unfortunately, acquiring the noise-free images is non-trivial

[46, 7], leading to limited amount of training data. In this

case, a purely data-driven approach is prone to overfit to

the particular characteristics of the training data. It fails on

test images with statistics different from the training images

[29], e.g., Figure 1b showcases the result of a pure data-

driven approach trained for a different domain.

Differently, model-based denoising approaches rely on

basic assumptions about the original images, which “en-

code” assumed image characteristics. Without the notion of

training, the performance of model-based denoising is gen-

erally more robust than data-driven approaches when fac-

ing the heterogeneity of natural images [13]. However, the

assumed characteristics may not perfectly hold in the real

world, hindering their performance and flexibility in prac-

tice [30], e.g., the denoising result of Figure 1a.

To achieve robust denoising of real images, in this pa-

per we combine the robustness merit of model-based ap-

proaches and the powerful learning capacity of data-driven

approaches. We achieve this goal by incorporating the

graph Laplacian regularizer—a simple yet effective im-

age prior for image restoration tasks—into a deep learning

framework. Specifically, we train a CNN which takes as

input a real noisy image and outputs a set of feature maps.

Subsequently, a neighborhood graph is built from the out-

put features. The image is then denoised by solving an un-

constrained quadratic programming (QP) problem, assum-

ing that the underlying true image induces a small value of

graph Laplacian regularizer. Figure 1c shows the denoising

result of our approach, one may clearly see its superiority to

the competing methods.

The contributions of our work are as follows:

(i) We are the first in literature to incorporate the widely

used graph Laplacian regularizer into deep neural net-

works as a fully-differentiable layer, extracting under-

lying features of the input noisy images and boosting

the performance of the subsequent restoration.

(ii) Our architecture couples the strong graph Laplacian

regularization layer—an adaptive low-pass linear fil-

ter regardless of the training data—with a light-weight

CNN for pre-filtering, making our approach less sus-

ceptible to overfitting. Moreover, by constraining the

regularization weight to prevent steep local minimum,

our pipeline is provably numerical stable.

(iii) Experimentation shows that, our approach achieves

robust real noise removal in terms of two perspectives.

Given small amount of training data, our proposal out-

performs CNN-based approaches by avoiding overfit-

ting. Secondly, it exhibits strong cross-domain gen-

eralization ability, e.g., our framework training for

Gaussian denoising performs reasonably well on real

image denoising.

We call our proposal deep graph Laplacian regulariza-

tion, or DeepGLR for short. This paper is organized as

follows. Related works are reviewed in Section 2. We

then present our DeepGLR denoising framework combin-

ing CNN and a differentiable graph Laplacian regulariza-

tion layer in Section 3. Section 4 presents the experimenta-

tion and Section 5 concludes our work.

2. Related Works

We first review several deep learning models for image

restoration while focusing on image denoising. We then

turn to the review of several representative signal priors,

with a focus on graph Laplacian regularization. We also

briefly review a few works on graph learning.

CNN-based image denoising: CNN-based approaches

were first popularized in high-level vision tasks, e.g., classi-

fication [24] and detection [32], then gradually penetrated

into low-level restoration tasks such as image denoising

[48], super-resolution [12], and non-blind deblurring [47].

To address the problem of Gaussian noise removal with

CNN, Zhang et al. [48] utilize residual learning and batch

normalization to build a deep architecture, which provides

state-of-the-art results. In [21], Jain et al. propose a sim-

ple network for natural image denoising and relate it to

Markov random field (MRF) methods. To build a CNN ca-

pable of handling several noise levels, Vemulapalli et al.

[43] employ conditional random field (CRF) for regulariza-

tion. Other related works on denoising with CNN includes

[28, 40, 49, 26, 8], etc. Despite their good performance,

these approaches focuses on Gaussian denoising and have

strong dependency on the training data. For effective real

image denoising and enhancing, Chen et al. [7] train a CNN

to directly perform restoration on raw image data. Differ-

ently, our DeepGLR enhances the robustness of the denois-

ing pipeline, so as to achieve effective real noise removal.

Image denoising with signal priors: We hereby review

a few representative works on image denoising using sig-

nal priors. For a more complete review, we refer the read-

ers to [30]. In [5], Buades et al. assume that similar im-

age patches recur non-locally throughout an image. Such a

self-similarity assumption has been adopted in many subse-

quent proposals. One notable method, block-matching 3-D

(BM3D) [10], performs 3-D transform and Wiener filtering

on the grouped similar patches. Elad et al. [15] propose K-

SVD denoising, which seeks sparse representations to de-

scribe noiseless patches with a learned dictionary. A very

recent work [45] extents this notion for real image denois-

ing, though its complexity is too high for practical usage.

Graph Laplacian regularization is a recent popular im-

age prior in the literature, e.g., [33, 16, 17]. Despite its

simplicity, graph Laplacian regularization performs reason-

ably well for many restoration tasks [30]. It assumes that

the original image, denoted as x ∈ R
m, is smooth with re-

spect to an appropriately chosen graph G. Specifically, it

imposes that the value of xTLx, i.e., the graph Laplacian

regularizer, should be small for the original image x, where

L ∈ R
m×m is the Laplacian matrix of graph G. Typically,

a graph Laplacian regularizer is employed for a quadratic

programming (QP) formulation [33, 20, 27]. Nevertheless,

choosing a proper graph for image restoration remains an

open question. In [16, 27], the authors build their graphs

from the corrupted image with simple ad-hoc rules; while

in [33], Pang et al. derive sophisticated principles for build-

ing graphs under strict conditions. Different from exist-

ing works, our DeepGLR framework constructs neighbor-

hood graphs from the CNN outputs, i.e., our graphs are

built in a data-driven manner, which learns the appropri-

ate graph connectivity for restoration directly. In [38, 4],

the authors also formulate graph Laplacian regularization

in a deep learning pipeline; yet unlike ours, their graph con-

structions are fixed functions, i.e., they are not data-driven.

Learning with graphs: there exist a few works combin-

ing tools of graph theory with data-driven approaches. In

[23, 11] and subsequent works, the authors study the notion

of convolution on graphs, which enables CNNs to be ap-

plied on irregular graph kernels. In [41], Turaga et al. let a

CNN to directly output edge weights for fixed graphs; while

Egilmez et al. [14] learn the graph Laplacian matrices with

a maximum a posteriori (MAP) formulation. Our work also

learns the graph structure. Different from the methodology

of existing works, we build the graphs from the learned fea-

tures of CNN for subsequent regularizations.

3. Deep Graph Laplacian Regularization

We now present our DeepGLR framework integrating

graph Laplacian regularization into CNN for real noise re-

moval. A graph Laplacian regularization layer is composed

of two modules: a graph construction module [33] and a QP

solver [2]. We first present the details of graph Laplacian

regularization [33, 16, 20] as an image prior, then introduce

its encapsulation as a layer in a CNN.

3.1. Formulation

We start our illustration with a simple AWGN denois-

ing formulation, which will be extended to take account for

more complex cases (Section 3.3). Consider the following

image corruption model:

y = x+ n, (1)

Here x ∈ R
m is the original image or image patch (in vec-

tor form) with m pixels, while n is an additive Gaussian

noise term and y is the noisy observation. Given an appro-

priate neighborhood graph G with m vertices representing

the pixels, graph Laplacian regularization assumes the orig-

inal image x is smooth with respect to G [39]. Denoting the

edge weight connecting pixels i and j as wij , the adjacency

matrix A of graph G is an m-by-m matrix, whose (i, j)-th
entry is wij . The degree matrix of G is a diagonal matrix D

whose i-th diagonal entry is
∑m

j=1 wij . Then the (combi-

natorial) graph Laplacian matrix L is a positive semidefinite

(PSD) matrix given by L = D−A, which induces the graph

Laplacian regularizer xTLx ≥ 0 [39].

To recover x ∈ R
m with graph Laplacian regularization,

one can formulate a maximum a posteriori (MAP) problem

as follows:

x⋆ = argmin
x

‖y − x‖
2
2 + µ · xTLx, (2)

where the first term is a fidelity term (negative log likeli-

hood) computing the difference between the observation y

and the recovered signal x, and the second term is the graph

Laplacian regularizer (negative log signal prior). µ ≥ 0
is a weighting parameter. For effective regularization, one

needs an appropriate graph G reflecting the image structure

of ground-truth x. In most works such as [33, 20, 31], it is

derived from the noisy y or a pre-filtered version of y.

For illustration, we define a matrix-valued function

F(y) : Rm 7→ R
m×N , where its n-th column is denoted

as fn where fn ∈ R
m, 1 ≤ n ≤ N . Hence, applying F

to observation y maps it to a set of N length-m vectors

{fn}
N
n=1. Using the same terminology in [33], the fn’s are

called exemplars. Then the edge weight wij (1 ≤ i, j ≤ m)

is computed by:

wij = exp

(
−
dist(i, j)

2ǫ2

)
, (3)

where

dist(i, j) =

N∑

n=1

(fn(i)− fn(j))
2
. (4)

Here fn(i) denotes the i-th element of fn. (4) is the Eu-

clidean distance between pixels i and j in the N -dimension

feature space defined by {fn}
N
n=1. In practice, the fn’s

should reflect the characteristics of the ground-truth image

x for effective restoration. Though different works use dif-

ferent schemes to build a similarity graph G, most of them

differ only in the choice of exemplars F(y) (or the fn’s).

In [27, 22], the authors restrict the graph structure to be a

4-connected grid graph and let dist(i, j) = (y(i)− y(j))
2
,

which is equivalent to let F(y) = y. In [20], Hu et al. oper-

ate on overlapping patches and let F(y) be the noisy patches

similar to y. Pang et al. [33] interpret the {fn}
N
n=1 as sam-

ples on a high-dimensional Riemannian manifold and de-

rive the optimal F under certain assumptions.

3.2. Graph Laplacian Regularization Layer

In contrast to existing works, we deploy graph Lapla-

cian regularization as a layer in a deep learning pipeline, by

implementing the function F with a CNN. In other words,

the corrupted observation y is fed to a CNN (denoted

as CNNF) which outputs N exemplars (or feature maps)

{fn}
N
n=1.

Specifically, we perform denoising on a patch-by-patch

basis, similarly done in [33, 20, 27]. Suppose the observed

noisy image, denoted as Y , is divided into K overlapping

patches {yk}
K
k=1. Instead of naı̈vely feeding each patch to

CNNF individually then performing optimization, we feed

the whole noisy image Y to it, leading to N exemplars im-

ages of the same size as Y , denoted as {Fn}
N
n=1. By do-

ing so, for the CNNF with receptive field size as r, each

pixel i on Fn is influenced by all the pixels j on image Y

if j is in the r × r neighborhood of i. As a result, for a

larger receptive field r, the exemplar Fn effectively takes

into account more non-local information for denoising, re-

sembling the notion of non-local means (NLM) in the clas-

sic works [5, 10].

With the exemplar images, we simply divide each of

them, say, Fn, into K overlapping patches f
(k)
n ∈ R

m,

1 ≤ k ≤ K. To denoise a patch yk, we build a graph Gk

with its corresponding N exemplars {f
(k)
n }Nn=1 in the way

described in Section 3.1, leading to the graph Laplacian ma-

trix Lk. Rather than a fully connected graph, we choose

the 8-connected pixel adjacency graph structure, i.e., in the

graph Gk, every pixel i is only connected to its 8 neigh-

boring pixels. Hence, the graph Laplacian Lk is sparse

with fixed sparsity pattern. The graph Laplacian Lk, to-

gether with patch yk, are passed to the QP solver, which

resolves the problem (2) and outputs the denoised patch

x⋆
k. By equally aggregating the denoised image patches x⋆

k

(1 ≤ k ≤ K), we arrive at the denoised image (denoted by

X ⋆). From spectral graph theory [9], the graph Laplacian

regularization layer is always an adaptive linear low-pass

filter, regardless of the training data.

Apart from the aforementioned procedure, for practical

restoration with the graph Laplacian regularization layer,

the following ingredients are also adopted.

(i) Generation of µ: in (2), µ trades off the importance

between the fidelity term and the graph Laplacian reg-

ularizer. To generate the appropriate µ’s for regu-

larization, we build a light-weight CNN (denoted as

CNNµ). Particularly, based on the corrupted image

Y , it produces a set of {µk}
K
k=1 corresponding to the

patches {yk}
K
k=1.

(ii) Pre-filtering: in many denoising literature (e.g., [30, 6,

34]), it is popular to perform a pre-filtering operation

to the noisy image Y before optimization. We bor-

row this idea and implement a pre-filtering step with

a light-weight CNN (denoted as CNN
Ŷ

). It operates

on image Y and outputs the filtered image Ŷ . Hence,

instead of {yk}
K
k=1, we employ the patches of Ŷ , i.e.,

{ŷk}
K
k=1, in the data term of problem (2).

We call the presented architecture which performs

restoration with a graph Laplacian regularization layer

GLRNet. Figure 2 shows its block diagram, where the graph

Laplacian regularization layer is composed of a graph con-

struction module generating graph Laplacian matrices, and

a QP solver producing denoised patches. The denoised im-

age X ⋆ is obtained by aggregating the denoised patches.

We see that, to achieve denoising, a noisy image first goes

through the pre-filtering network CNN
Ŷ

. It is then pro-

cessed by the graph Laplacian regularization layer, a linear

low-pass filter. As a result, our denoising framework is less

sensitive to the training data. Moreover, it is less affected by

the chosen structure of CNN
Ŷ

, as to be seen in Section 4.2.

Since the graph construction involves only elementary

functions such as exponentials, powers and arithmetic op-

erations, it is differentiable. Furthermore, from [2] the QP

solver is also differentiable with respect to its inputs. Hence,

the graph Laplacian regularization layer is fully differen-

tiable, and our denoising pipeline can be end-to-end trained.

The backward computation of the graph Laplacian regular-

ization layer, including both the graph construction and the

QP solver, is provided in the supplementary material.

3.3. Iterative Filtering

To handle the non-Gaussian property of real image noise,

we cascade T blocks of GLRNet (each block has a graph

Laplacian regularization layer) for effective restoration,

leading to our DeepGLR framework. Suppose each noise

component removed by a GLRNet follows Gaussian dis-

tribution, then the overall noise that is removed forms a

mixture of Gaussian. Ideally, it can approximate any dis-

tribution arbitrarily well [35]. Moreover, classic literature,

e.g., [15, 30, 10], also filter the noisy image iteratively to

gradually enhance the image quality. Similar to [43], all

the GLRNets in our work have the same structure and share

the same parameters. Figure 3 shows the block diagram of

DeepGLR. In Figure 3 and the following presentation, we

have removed the superscript “⋆” from X ⋆ for simplicity.

To effectively train the proposed DeepGLR framework,

we adopt a loss penalizing differences between the recov-

ered image and the ground-truth. Given the noisy image Y ,

its corresponding ground-truth image X (gt) and the restora-

tion result XT , our loss function is defined as the mean-

square-error (MSE) between X (gt) and XT , i.e.,

Lres

(
X (gt),XT

)
=

1

HW

H∑

i=1

W∑

j=1

(
X (gt)(i, j)−XT (i, j)

)
2,

(5)

where H and W are the height and width of the images,

respectively. X (gt)(i, j) is the (i, j)-th pixel of X (gt), the

same for XT (i, j). Note that in our experiments, the restora-

tion loss is only applied to the output of the last cascade XT ,

i.e., only the final restoration result is supervised.

For simplicity, we have presented our framework for de-

noising of 1-channel images. To adapt it for denoising of

color images, the first layers of the CNNs are changed to

take 3-channel inputs, and CNN
Ŷ

should output 3 chan-

nels. Moreover, in the graph Laplacian regularization layer,

the 3 channels share the same graph for utilizing inter-color

correlation; while the QP solver solves for three separate

systems of linear equations then outputs a color image. We

choose to work in the YUV color space. During training,

the loss function of the 3 channels are computed. We then

take the average as the total loss.

Figure 2. Block diagram of the proposed GLRNet which employs a graph Laplacian regularization layer for image denoising.

Figure 3. Block diagram of the overall DeepGLR framework.

3.4. Numerical Stability

We hereby analyze the stability of the proposed GLR

layer which is indispensable for the stability of the entire

framework. Our denoising approach embedding the QP

solver into the processing pipeline have numerical stability

guarantee. Firstly, the problem (2) essentially boils down to

solving a system of linear equations

(I+ µL)x⋆ = y, (6)

where I is an identity matrix. It admits a closed-form solu-

tion x⋆ = (I+ µL)
−1

y. Thus, one can interpret x⋆ as a fil-

tered version of noisy input y with linear filter (I+ µL)
−1

.

As a combinatorial graph Laplacian, L is positive semidef-

inite and its smallest eigenvalue is 0 [39]. Therefore, with

µ ≥ 0, the matrix I + µL is always invertible, with the

smallest eigenvalue as λmin = 1. However, the linear sys-

tem becomes unstable for a numerical solver if I + µL has

a large condition number κ—the ratio between the largest

and the smallest eigenvalues λmax/λmin for a normal ma-

trix, assuming an l2-norm [19]. Using eigen-analysis, we

have the following theorem regarding κ.

Theorem 1. The condition number κ of I+ µL satisfies

κ ≤ 1 + 2µdmax, (7)

where dmax is the maximum degree of the vertices in G.

Proof. As discussed, we know λmin = 1. By applying

the Gershgorin circle theorem [42], λmax can be upper-

bounded as follows. First, the i-th Gershgorin disc of L

has radius ri =
∑

j 6=i |wij | ≤ dmax, and the center of the

disc i for I+µL is 1+µri. From the Gershgorin circle the-

orem, the eigenvalues of I+ µL have to reside in the union

of all Gershgorin discs. Hence, λmax ≤ maxi{1 + 2µ ri},

leading to κ = λmax ≤ 1 + 2µdmax.

Thus, by constraining the value of the weighting param-

eter µ, we can suppress the condition number κ and ensure

a stable denoising filter. Denote the maximum allowable

condition number as κmax where we impose 1+2µdmax ≤
κmax, leading to

µ ≤
κmax − 1

2dmax
= µmax. (8)

Hence, if CNNµ generates a value µ no greater than µmax,

then µ stays unchanged, otherwise it is truncated to µmax.

We empirically set κmax = 250 for both training and testing

to guarantee the stability of our framework.

4. Experimental Results

Extensive experiments are presented in this section. We

first describe our adopted CNN architecture and experimen-

tal setup in details then apply our model on real image de-

noising and validate its robustness. First, it provides sat-

isfactory results when trained with very small amount of

data. Moreover, we demonstrate the strong generalization

power of our proposal, which outperforms the state-of-the-

art approaches by a remarkable margin. We use peak signal-

to-noise ratio (PSNR) which computes in logarithmic (dB)

scale as a measurement for objective evaluation.

4.1. Network Architectures

Our framework does not limit the choices of network ar-

chitecturesand one has the freedom in designing the speci-

fications of CNNF, CNNµ and CNN
Ŷ

. In our experiment,

we choose the networks shown in Figure 4. Specifically,

(i) CNNF: To generate exemplars {fn}
N
n=1, we adopt

the popular hour-glass structure for CNNF which has

an encoder and a decoder with skip-connections [36].

Similar to [33], we use N = 3 exemplars to build the

graphs.

(ii) CNN
Ŷ

: The pre-filtered image Ŷ is simply generated

by a light-weight CNN with 4 convolution layers us-

ing a residual learning structure [18].

(iii) CNNµ: The weighting parameter µ is estimated on a

patch-by-patch basis. Our experiments uses patch size

Figure 4. Network architectures of CNNF, CNN
Ŷ

and CNNµ in the experiments. Data produced by the decoder of CNNF is colored in

orange.

Figure 5. The 10 scenes of the RENOIR dataset [3] used for real image denoising.

of 26×26 for denoising. Hence, starting from a noisy

patch, it has undergone 4 convolution layers with 2×2
max pooling and 2 fully-connected layers, leading to

the parameter µ.

Except for the last convolution layers of CNNF and CNN
Ŷ

,

and the two deconvolution layers of CNNF, all the rest net-

work layers shown in Figure 4 are followed by a ReLU(·)
activation function. Note that the input image can have dif-

ferent sizes as long as it is a multiple of 4. For illustration,

Figure 4 shows the case when the input is of size 180×180.

4.2. Robust Denoising with Small Training Set

To see the robustness of our proposal, we begin with

experimenting DeepGLR with small data. In this experi-

ment, we employ the RENOIR [3] dataset, which consists

of real low-light noisy images with the corresponding (al-

most) noise-free versions. Specifically, its subset with 40

scenes collected with a Xiaomi Mi3 smart-phone are used

in our experiments. Since some of the scenes have very low

intensities while some of the given ground-truth images are

still noisy, we remove the scenes whose ground-truths have:

(a) average intensities lower than 0.3 (assuming the inten-

sity ranges from 0 to 1); and (b) estimated PSNRs (provided

by [3]) lower than 36 dB, leading to 10 valid image pairs.

Thumbnails of the images are shown in Figure 5.

We adopt a two-fold cross validation scheme to evalu-

ate the performance of our approach on small dataset. In

each of the two trials, we perform training on one fold—

only five images—and testing on the other, then measure

the performance by the averaging of the results of both tri-

als. The 10 images are randomly split into two folds and

we repeat such two-fold cross validation process for five

times then the results are averaged. For objective evalua-

tion, peak signal-to-noise ratio (PSNR) and structural simi-

larity (SSIM) [44] are employed. During the training phase,

the noisy images, accompanied with their noise-free ver-

sions, are fed to the network for training. For both training

and testing, the overlapping patches are of size 26 × 26,

i.e., m = 262 = 676, where neighboring patches are of a

stride 22 apart. We let the batch size be 4 and the model is

trained for 200 epochs. A multi-step learning rate decay

policy, with values [1, 0.5, 0.1, 0.05, 0.01, 0.005] × 10−3,

are used, where the learning rate decreases at the begin-

ning of epochs [2, 5, 20, 50, 150]. We implement the net-

work with TensorFlow [1] on an Nvidia GeForce GTX Ti-

tan X GPU. Note that the QP solver is implemented with the

TensorFlow layer, i.e., matrix solve ls, for solving a

system of linear equations in the least squares sense.

Our DeepGLR is compared with the following ap-

proaches: (a) CBM3D dedicated for Gaussian noise re-

moval on color image [10]1; (b) MC-WNNM designed for

real image noise removal [46]; (c) Noise clinic [25] also

1For testing with CBM3D, we estimate the equivalent noise variances

using the ground-truth and the noisy images.

(a) Ground-truth (b) Noisy (c) CBM3D (d) MC-WNNM (e) Noise Clinic

(f) CDnCNN (g) GLRNet (h) DeepGLR-FR (i) DeepGLR-PR (j) DeepGLR
Figure 6. Real image noise removal for image 35 of the RENOIR dataset with different approaches.

Table 1. Evaluation of different methods for real image denoising. The best results for each metric, except for those tested on the training
set, are highlighted in boldface.

Metric Noisy
Method

CBM3D MC-WNNM Noise Clinic CDnCNN (Train) CDnCNN (Test) DeepGLR (Train) DeepGLR (Test)

PSNR 20.63 26.08 26.23 27.43 34.82 32.79 34.28 32.96
SSIM 0.3081 0.6727 0.6294 0.6040 0.8852 0.8583 0.8795 0.8634

designed for real image noise removal; and (d) CDnCNN
[48], a data-driven approach trained with the same dataset
as ours. Evaluation results are shown in Table1, where
DeepGLR outperforms competing schemes by a range of
0.17–6.88 dB. More visual results are demonstrated in Fig-
ure6, where competing schemes fail to fully remove the
noise, while DeepGLR is more satisfactory. To see the gap
between training and testing, performance on the training
set is also measured as shown in columns CDnCNN (Train)
and DeepGLR (Train) in Table1, where CDnCNN excels in
training set but not in testing set indicating a strong over�t-
ting. This is because:

(i) Only 5 imagesare available for training in this experi-
ment, letting CDnCNN stronglyover�t to the training
data. However, our DeepGLR is less sensitive to the
de�ciency of the training data.

(ii) While CDnCNN is most suitable for Gaussian noise
removal (as stated in [48]), our DeepGLR adaptively
learns the suitable graphs to low-pass �lter the real
noisy image, which weakens the impact of the com-
plex real noise statistics.

To better understand DeepGLR, we also consider sev-
eral of its variant: (a) The pre-�ltering networkCNN bY
is removed, we call the resulting method DeepGLR-PR
(“PR” stands for pre-�lter removed); (b)CNN bY is replaced

by CDnCNN, the resulting method is called DeepGLR-
PC (“PC” stands for pre-�lter with CDnCNN); (c)CNNF

is removed, and directly use the output ofCNN bY as ex-
emplars for graph construction, this scheme is referred
to as DeepGLR-FR (“FR” stands forCNNF removed);
(d) GLRNet. Evaluations are provided in Table2, where
DeepGLR-PC provides similar performance as DeepGLR,
suggesting the GLR layer can perform effective denois-
ing, and adding extra layers toCNNF is of little use.
Moreover, DeepGLR-PC (33:03dB) can be regarded as
a CDnCNN module (32:79dB) with GLR as the post-
processing, indicating that GLR boosts CDnCNN's per-
formance. Apart from DeepGLR-PC, the others provide
less satisfactory results, which is consistent with results
in Figure6. Without the module for exemplar learning
(DeepGLR-FR), DeepGLR cannot capture the underlying
image structure; without pre-�ltering, the GLR layer has
limited effect (DeepGLR-PR); without iterative �ltering,
one GLRNet alone cannot fully remove real noise with
complicated statistics. In light of this, DeepGLR stands as
a composite of modules, each playing an irreplaceable role.

4.3. Cross­Domain Generalization

We hereby evaluate the robustness of our approach in
terms of itscross-domain generalization ability. Speci�-
cally, we evaluate on the RENOIR dataset with DeepGLR
and CDnCNN trained for AWGN blind denoising.

