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Abstract

We develop a novel deep learning architecture for natu-

rally complex-valued data, which is often subject to complex

scaling ambiguity. We treat each sample as a field in the

space of complex numbers. With the polar form of a complex-

valued number, the general group that acts in this space is

the product of planar rotation and non-zero scaling. This

perspective allows us to develop not only a novel convo-

lution operator using weighted Fréchet mean (wFM) on a

Riemannian manifold, but also to a novel fully connected

layer operator using the distance to the wFM, with natu-

ral equivariant properties to non-zero scaling and planar

rotations for the former and invariance properties for the

latter.

We demonstrate our method on two widely used complex-

valued datasets: SAR dataset MSTAR and RadioML dataset.

On MSTAR data, without any preprocessing, our network

can achieve 98% classification accuracy on this highly im-

balanced dataset using only 44, 000 parameters, as opposed

to 94% accuracy with more than 500, 000 parameters with

a baseline real-valued network on the two-channel real rep-

resentation of the complex-valued data. On RadioML data,

we get comparable classification accuracy with the baseline

with only using 10% of the parameters as the baseline model.

1. Introduction

We study the task of extending deep learning to natu-

rally complex-valued data, where useful information is in-

tertwined in both magnitudes and phases. For example,

synthetic aperture radar (SAR), magnetic resonance (MR)

images and radio frequency (RF) signals are acquired in

complex numbers, with the magnitude often encoding the

amount of energy and the phase indicating boundaries or

geometrical shapes. Even for real-valued images, there are

complex representations that are known to be successful for

many pattern recognition tasks; the most notable examples

are the Fourier transforms and spectrum-based computer vi-

sion techniques ranging from steerable filters [10] to spectral

graph embedding [15, 22].

A straightforward solution is to treat the complex-valued

data as two-channel real-valued data, and apply real-valued

deep learning. Such an Euclidean space embedding would

not respect the intrinsic geometric property of complex-

valued data. For example, in both MR and SAR images,

the pixel intensity value often has an ambiguity of complex-

valued scaling. Of course, one can get around such an am-

biguity by training data augmentation [14, 7], but such ex-

trinsic data manipulation is time-consuming and ineffective.

Ideally, deep learning on such images should be invariant

to the group of non-zero scaling and planar rotations in the

complex plane.

We treat each complex-valued data sample as a field in the

space of complex numbers – a special non-Euclidean space.

This perspective allows us to develop novel convoluational

and fully connected layer functions that provide such an

invariant characterization.

The major hurdle in extending the definition of convo-

lution in the Euclidean space to a non-Euclidean space is

the lack of vector space structure. Given a point on the non-

Euclidean space, a translation of the point may not remain on

that space. The translation equivariance property thus does

not make sense on these spaces. On the other hand, in the

Euclidean space, the group of translation is the group that

transitively acts. Given two points in the Euclidean space,

there exists a translation to go from one point to another.

However, in a non-Euclidean space, this is not true, e.g., on

a sphere, one can go from one point to another by rotation,

not by translation.

There is a long line of works that propose definitions of

convolutions in a non-Euclidean space by treating each data

sample as a function in that space [21, 5, 6, 9, 3, 13].



Our key insight is that with the polar form of a complex

number, the general group that acts on this space is the

product of planar rotation and non-zero scaling. Essentially,

we want to define a convolution operator that is equivariant

to the action of this product group. When each sample is a

field on a Riemannian manifold, [4] shows that:

• The convolution operator defined by weighted Fréchet

mean (wFM) [17] (wFM) is equivariant to the group

that naturally acts on that manifold.

• Non-linear activation functions such as ReLU may not

needed. Since wFM is non-linear and acts like a con-

traction mapping [16] analogous to ReLU or sigmoid

function. We could still use tangent ReLU for better

accuracy.

Such a neural network equipped with wFM filtering on

complex-valued data has a group invariant property similar

to the standard CNN on real-valued data. There are some re-

search on developing a CNN in the complex-valued domain

[2, 20], but none of these works study the properties of the

convolution operator, e.g., equivariance, linearity etc. Our

definition of convolution has all the desired properties and is

a theoretically justified analog of the real-valued CNN.

Most excitingly, on the publicly available SAR dataset

MSTAR, we demonstrate the effectiveness of our approach

by significant accuracy improvement with substantially

fewer parameters, over the real-valued baseline model ap-

plied to two-channel real valued representation of complex-

valued data. Furthermore, we apply our proposed method

to radio frequency data, RadioML and shown comparable

performance with fewer parameters.

To summarize, we make the following major contribu-

tions.

1. We develop a novel CNN architecture in the complex-

valued domain.

2. We prove in theory that our proposed method has equiv-

ariance and invariance properties.

3. We validate our method on MSTAR, a widely used

complex-valued image classification dataset. Without

any preprocessing, we achieve ∼ 98% classification

accuracy on this highly imbalanced dataset using only

10% of parameters of the baseline model. We hypoth-

esize that the improvement in performance is due to

the usage of intrinsic definition of convolution in the

complex space as opposed to the standard CNN on 2D

Euclidean embedding of complex numbers.

4. We also extend our wFM convolution on popularly used

radio frequency data. We showed that we can achieve

comparable performance with fewer parameters.

2. A Convolutional Neural Network on

Complex-Valued Data

We start this section by first present the geometry of the

manifold of complex numbers, denoted by C. Then, we

develop a convolutional neural network (CNN) framework

for complex-valued data. Before developing this framework,

we will talk about key properties of a CNN architecture,

specifically, (a) the equivariance property of a convolution

operator (b) the invariance property of a CNN . We will also

point out the implications of these key properties.

Space of complex numbers: A (smooth) manifold of

complex numbers, C consists of elements of the form a+ ib,

where a, b ∈ R. This manifold is a Riemannian manifold

[1] and the distance induced by the canonical Riemannian

metric is given by:

d(a+ ib, c+ id) =
√

(a− c)2 + (b− d)2 (1)

Now, we talk about the identification of C with it’s polar

form. As expected, we can show that this identification is a

bijection. In the rest of the paper, we will use this polar form

to represent a complex number. Now, we formally define

this polar representation as:

Definition 1. We identify each complex number, a+ ib, with

it’s polar form, i.e., r exp iθ, where r and θ are the absolute

value/ magnitude (abs) and argument (arg) of a+ib. Hence,

we can identify C as R
+ × SO(2), where SO(2) is the

manifold of planar rotations. Let F : C→ R
+ ×SO(2) be

the mapping which is given by

a+ ib 7→

(

r,

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

])

,

where, r = abs(a+ ib) and θ = arg(a+ ib).

Observe that F is a bijection mapping. The induced

distance from Eq. (1) is given as follows. Given, z1, z2 ∈ C,

let, (r1, R1) = F (z1) and (r2, R2) = F (z2). Then,

d (z1, z2) =

√

log

(

r1

r2

)2

+ ‖logm
(

R−1

1 R2

)

‖2F , (2)

where, logm is the matrix logarithm. Furthermore with

the above identification, C is a Riemannian homogeneous

space [11]. The next two propositions is crucial for the

construction of convolution operator. Before proving the

next proposition, we restate some definition borrowed from

group theory literature.

Definition 2. [8]

1. Given a (Riemannian) manifold M and a group G,

we say that G acts on M (from left) if there exists

a mapping L : M × G → M given by (X, g) 7→
g.X satisfies (a) L (X, e) = e.X = X (b) (gh).X =
g.(h.X) .



2. An action is called a transitive action iff given X,Y ∈
M, ∃g ∈ G, such that Y = g.X .

Proposition 1. Using the identification in Def. (1), the

group, G := {R \ {0}}×SO(2) transitively acts on C and

the action is given by ((r,R) , (rg, Rg)) 7→ (rgrRg, RgR).

Proof. The proof follows from the definition of a Rieman-

nian homogeneous space [11].

Now that we know the group G that acts on C, we show

that the group G is the set of isometries on C as stated in the

following proposition.

Proposition 2. Given z1 = (r1, R1), z2 = (r2, R2) ∈ C

and g = (rg, Rg) ∈ G, d (g.z1, g.z2) = d (z1, z2).

Proof. The proof follows from Eq. (2) as

d (g.z1, g.z2) =

(

log

(

rgr1rg

rgr2rg

)2

+

‖logm
(

R−1

1 R−1
g RgR2

)

‖2F
)0.5

= d (z1, z2)

With the setup of basic properties of complex numbers

needed to define convolution operator and in turn define

a CNN on C, we first illustrate the aforementioned two

properties of a CNN. We first show that our definition of

convolution and CNN satisfy the above two properties and

then show the similarity of the definition with the standard

Euclidean convolution operator.

Equivariance property of convolution: In the Eu-

clidean convolution definition, i.e., defined on R
n, the con-

volution operator is equivariant to translation, i.e., fixing the

kernel of convolution if the input signal is translated by t,

the convolution output is going to be translated by t as well.

This is a desirable property for standard convolution as it

enables to share weights across the entire domain (image for

most computer vision applications). But a natural question

to ask is What so special about translation? Observe that the

group of translations is the group of isometries for Rn and

moreover transitively acts on R
n (as defined in Def. (2)).

From Props. (1), (2), we know that on C, G =
{R \ {0}} × SO(2) transitively acts and is the group of

isometries, hence in order the generalization of the Euclidean

convolution operator on C, we need to define an operator

which is equivariant to the action of G. This motivates us

to explore a definition of convolution operator suitable for

C. Recently in [4], the authors proposed a CNN frame-

work on manifold valued data. They defined a convolu-

tion operator on a manifoldM which is equivariant to the

group, G, that acts on M. In this setting, M = C and

G = SO(2)×R \ {0} and hence we will define the convo-

lution operator on C as follows.

Convolution operator: We will use weighted Fréchet

mean (FM) (wFM) [17] to define convolution layer. Given

{zi}
K

i=1
⊂ C and {wi}

K

i=1
⊂ (0, 1] with

∑

i wi = 1, (the)

weighted Fréchet mean (FM) (wFM) is defined as:

wFM ({zi} , {wi}) = argmin
m∈C

K
∑

i=1

wid
2 (zi,m) , (3)

Here, d is the distance defined in Eq. (2). In the above

definition wFM can be regarded as the minimizer of the

weighted variance. Though it is posed as a optimization

problem, we will use a provably convergent “cheap” alter-

native as proposed in [4]. Notice that in the above defined

convolution operator, {wi} is the filter which we will learn

and wFM ({zi} , {wi}) ∈ C is the convolution output. The

filter {wi} will be learned through stochastic gradient de-

scent. As wi is real valued, one can use the standard SGD,

but additionally we need to ensure the convexity constraint

on {wi}.
Now, we will formally state the equivariance property

of the convolution operator and then justify the choice of

wFM by drawing some analogy from standard convolution

operator.

Proposition 3 ([4]). The convolution definition as given in

Eq. (3) is equivariant to the action of G = {R \ {0}} ×
SO(2).

Proof. The proof is a consequence of Prop. (2).

In Fig (1), we have shown the equivariance property with

respect to rotation and scaling.

Why wFM?: To justify the choice of wFM as convolu-

tion operator in Eq. (3), we first remind the readers to the

definition of standard convolution operator. Notice that the

standard convolution operator can be written as
∑

i wixi,

where {wi} is the filter and {xi} is the signal. Now notice

that with the convexity constraint on {wi},
∑

i wixi is the

wFM on the Euclidean space as it is the minimizer of the

weighted variance as defined in Eq. (3). Now, observe that

the convexity constraint is to ensure that the resultant stays

on the space C. Thus the choice of wFM as the convolution

operator though looks arbitrary at first, is an obvious choice

if we look at the Euclidean convolution operator as the mini-

mizer of weighted variance. Now that we have a definition

of convolution on hand, we will define a non-linear activa-

tion function. Though in [4], the authors argued that as the

convolution operator defined in Eq. (3) is non-linear and is

a contraction mapping[4], we found out that using a ReLU

like activation helps with the learning. We call this activation

function tangent ReLU which we will define next.

tangent ReLU (tReLU): Similar to the ReLU opera-

tor on R
n, tReLU is a function from C to C as is de-



Rotation

wFM(z1; z2; w)

z1

z2

g:z1
g:z2

g:wFM(z
1; z

2; w)

wFM(z1; z2; w)

z1

z2

g:z1

g:z2
g:wFM(z1; z2; w)

Scaling

Figure 1: Equivariance with respect to (a) rotation (b) scaling

in the complex plane

fined as: (r,R) 7→ Exp (ReLU (log(r), logm(R))), where,

Exp (a,B) = (exp(a), expm(B)). expm is the matrix ex-

ponential operator.

With the convolution operator and a non-linear operator

in our hand, we are now ready to define a deep convolu-

tional network. Notice that analogous to standard CNN, we

want our complex-valued CNN to be invariant (the remain-

ing desired property of a CNN) which is our next topic of

discussion.

Invariance property of CNN: In standard Euclidean

CNN, the entire network is invariant to the action of the

group of translations. This ensures that the output does not

change if the input is translated. This invariance is achieved

by the last softmax fully connected (FC) layer. It is easy

to show that the standard softmax FC layer is invariant to

translation. Similar to our earlier discussion, on C we want

the CNN to be invariant to the action of G. We will now

define the invariant last layer and will show that this layer is

invariant to the action of G.

Invariant last layer: Let {ti}
d

i=1
⊂ C be the output of

the last convolution layer, where d is the number of chan-

nels of the last convolution layer. Then, we define the

last layer with inputs {t}
d

i=1
and outputs {yi}

c

i=1
, where,

{yi}
c

i=1
= FC

(

{ui,j}
d,l

i=1,j=1

)

. Here, FC is the standard

fully connected + softmax layer and

ui,j = d(ti, t
j
u), (4)

where, tju = wFM
(

{ti} ,
{

v
j
i

})

. We will learn the filter
{

v
j
i

}

as before. Essentially in this last layer, we will learn

l number of wFMs of the input {ti}
d

i=1
and look at the

distance from each ti to the wFMs. This essentially gives us

a cluster structure/ topology of {ti}
d

i=1
which is the input

of the standard fully connected + softmax layer. As obvious

from the construction itself, we can show that this layer

is invariant to the action of G = {R \ {0}} × SO(2) as

formally stated next.

Proposition 4 ([4]). The above defined last layer is invariant

to the action of G.

In Fig (2), we have shown the invariance property with

respect to G of our proposed ComplexNet.
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Figure 2: Invariance with respect to action of G

ComplexNet: With the above building blocks, we have a

complex-valued CNN framework (dubbed as ComplexNet)

which is invariant to the action of G. A schematic description

of this network is given in Fig. (3). A basic building block

of ComplexNet with two convolution layers is presented in

Alg. (1).

3. Experimental Results

In this section, we present a proof of concept experiments

on a widely used complex-valued dataset, MSTAR dataset

[12] and a radio frequency data, RadioML [18, 19]. While,

MSTAR is a data suitable for classification task and con-

sists of complex-valued 2D images, RadioML is a complex-

valued 1D signal appropriate for classification. For MSTAR,

as a baseline, we will use the baseline architecture (with

batch normalization) (as shown in Fig. (8)) with the follow-

ing data embedding 1. embed a complex-valued image as a

R
2 valued image 2. take absolute value of a complex-valued
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Algorithm 1: A basic ComplexNet building block with

two convolution layers

function COMPLEXNET

VARIABLES(c1in, c
1
out, k1, c

2
out, k2, l, c)

x← Input(c1in, h, w)
x← Conv(x, c1out, k1)
x← tReLU(x)
x← Conv(x, c2out, k2)
x← tReLU(x)
x← Inv(x, l, c)

end function

image to make a R valued image. 3. R3 embedding with

magnitude and R
2 4. polar (r, θ) embedding We perform a

30-70 random train test split and report the average classi-

fication accuracy over 10 runs. For RadioML, we used the

baseline architecture proposed in [18, 19]. Below, we first

give a brief description of the MSTAR data and then give

the details of the experimental setup.

Figure 4: Baseline model MSTAR data (CRBP denoted

Conv, ReLU, Batch-Normalization, Pooling)

MSTAR dataset: This dataset consists of X-band SAR

image chips with 0.3m× 0.3m resolution of 10 target classes

bmp2 btr70 t72 btr60 2s1 brmd2 d7 t62 zil131 zsu23-4

bmp2 1257 1 24 0 2 1 0 0 0 0

btr70 6 418 1 3 1 0 0 0 0 0

t72 24 1 6624 2 9 8 0 1 1 24

btr60 19 8 5 407 7 5 0 0 0 0

2s1 0 2 21 0 1122 12 0 0 0 7

brmd2 0 0 6 0 2 1399 1 0 0 7

d7 0 0 0 0 0 0 573 0 0 0

t62 0 0 28 0 0 0 1 540 3 0

zil131 0 0 7 0 0 0 3 0 563 0

zsu23-4 0 0 12 0 2 1 0 0 0 1386

Table 1: Confusion matrix for proposed ComplexNet (classi-

fication accuracy 98.16%)

bmp2 btr70 t72 btr60 2s1 brmd2 d7 t62 zil131 zsu23-4

bmp2 1086 27 11 150 0 8 0 2 1 0

btr70 1 336 0 91 0 0 0 1 0 0

t72 33 3 6304 60 13 10 0 255 3 13

btr60 0 3 0 448 0 0 0 0 0 0

2s1 9 19 5 53 951 72 0 53 1 1

brmd2 2 0 0 75 1 1332 0 0 5 0

d7 0 0 24 2 0 7 507 12 11 10

t62 0 0 44 25 1 1 0 501 0 0

zil131 0 0 24 7 3 3 0 3 533 0

zsu23-4 2 0 125 33 0 115 8 43 5 1070

Table 2: Confusion matrix for baseline on the embedding in

R
2 (classification accuracy 89.77%)

including BMP2 (infantry combat vehicle), BTR70 (armored

personnel carrier) etc.. We cropped 100× 100 region from

the center of each sample image. This dataset is highly

unbalanced with the number of samples per class varies in

the range of 429 - 6694. Some sample images are shown

in Fig. (5). Because of the highly imbalance nature of this

dataset, the classification task becomes hard. We use two

complex convolution layers with kernel size 5× 5 and stride

5 followed by one complex convolution layer with kernel

size 4×4 and stride 4, then we use an invariant last layer with

a softmax layer at the end for classification. For the three

complex convolution layers, the number of output channels

are 50, 100 and 200 respectively. We use Adam optimizer

with learning rate 0.005 and mini-batch size of 100. The

confusion matrices with overall classification accuracies are

given in Tables (1)-(3).

Figure 5: Sample MSTAR images

From these tables, we can see that our proposed Com-

plexNet performs a 3.6% performance improvement over



bmp2 btr70 t72 btr60 2s1 brmd2 d7 t62 zil131 zsu23-4

bmp2 1224 51 7 0 3 0 0 0 0 0

btr70 0 423 3 0 3 0 0 0 0 0

t72 26 6 6643 0 3 4 0 6 1 5

btr60 4 295 21 100 8 2 0 21 0 0

2s1 1 40 13 0 1094 12 0 1 0 3

brmd2 41 8 4 0 5 1336 1 2 14 4

d7 0 0 1 0 0 0 566 0 1 5

t62 0 0 123 0 14 0 0 432 1 2

zil131 0 0 17 0 6 0 2 0 544 4

zsu23-4 0 0 9 0 0 0 3 0 0 1389

Table 3: Confusion matrix for baseline on the magnitude

(classification accuracy 94.46%)

the baseline. We claim that this is because of the group

equivariant property of convolution and the group invariant

proposed network architecture. Note that, the group that

acts on complex numbers is SO(2) × R \ {0}. This es-

sentially means that our learned ComplexNet is invariant to

scaling and planar rotations. This is unlike to any traditional

CNN architecture. Furthermore this natural representation

is somewhat robust to the imbalanced data which can be

seen from Tables (1)-(3). We can see that for the smallest

class with number of samples to be 429 (for class ‘BTR70’),

ComplexNet correctly classifies 406 samples while VGG16

correctly classifies only 172 sample points. This result is

consistent for all the classes with small sample sizes. So, our

framework essentially gives a representation which is robust

to imbalanced class sizes.

For the baseline, we can see that just the magnitude gives

better classification accuracy than the two channels real, R2

embedding. To further investigate the usefulness of mag-

nitude, we have done an experiment with both magnitude

and R
2 in a R

3 embedding. This R3 embedding achieves

a classification accuracy of 96.87%, which is around 2%
improvement over just using the magnitude. The confusion

matrix for the R
3 embedding is given in Table (4).

As in our ComplexNet, we used magnitude and phase,

(r,R) representation, we have used the baseline model to test

on this representation as well. More specifically, as a matrix

R is represented by a θ, we use the polar (r, θ) representation

and run our baseline model taking it as two channel reals.

The confusion matrix is given in Table (5). From the table,

we can see that the result is better than two channel reals, but

still worse than the magnitude only representation. So, in one

hand we can see that just magnitude gives very good result

and can help to increase the performance of R2 embedding.

But, with both magnitude and phase (in (r, θ) embedding),

we get better accuracy than R
2 embedding. This analysis

raises the following question :is phase information really

necessary?, which we will answer next.

What just phase can achieve: Having established the

fact that the proposed ComplexNet performs well over the

standard CNN architecture, now we focus on how much gain

our proposed framework can achieve just from the phase in-

bmp2 btr70 t72 btr60 2s1 brmd2 d7 t62 zil131 zsu23-4

bmp2 1246 1 11 6 7 13 0 0 1 0

btr70 15 388 0 19 4 3 0 0 0 0

t72 9 0 6592 0 8 4 0 16 7 58

btr60 7 1 1 437 1 3 1 0 0 0

2s1 1 0 4 4 1132 15 0 2 5 1

brmd2 3 0 0 0 0 1407 1 0 13 1

d7 1 0 0 0 0 0 567 0 1 4

t62 1 0 45 0 2 0 2 496 19 7

zil131 0 0 0 0 1 1 13 0 558 0

zsu23-4 4 0 8 0 6 1 81 0 1 1300

Table 4: Confusion matrix for baseline on the R3 embedding

(classification accuracy 96.87%)

bmp2 btr70 t72 btr60 2s1 brmd2 d7 t62 zil131 zsu23-4

bmp2 1178 2 23 0 56 6 1 15 3 0

btr70 22 370 1 3 33 0 0 0 0 0

t72 14 0 6478 0 36 0 0 124 21 21

btr60 43 61 0 253 76 8 3 6 1 0

2s1 1 1 15 0 1125 1 0 13 7 1

brmd2 2 2 8 0 46 1331 2 0 19 5

d7 0 0 0 0 0 0 571 0 1 1

t62 0 0 63 0 2 0 0 492 14 1

zil131 0 0 0 0 0 0 6 1 565 1

zsu23-4 0 0 94 0 2 1 26 8 20 1250

Table 5: Confusion matrix for baseline on the (r, θ) embed-

ding (classification accuracy 93.51%)

bmp2 btr70 t72 btr60 2s1 brmd2 d7 t62 zil131 zsu23-4

bmp2 1229 4 37 10 2 3 0 0 0 0

btr70 11 405 1 10 2 0 0 0 0 0

t72 43 1 6556 1 30 18 1 3 11 30

btr60 13 9 7 409 9 4 0 0 0 0

2s1 0 3 17 3 1103 30 0 1 3 4

brmd2 0 0 8 0 7 1392 1 0 2 5

d7 0 0 0 0 0 0 571 0 2 10

t62 0 0 39 0 4 1 0 521 5 2

zil131 0 1 4 0 0 0 2 0 566 0

zsu23-4 0 0 21 0 5 4 1 1 1 1368

Table 6: Confusion matrix for proposed ComplexNet us-

ing normalized complex numbers (classification accuracy

97.00%)

formation of the data. In order to see the effect, we normalize

each complex number to magnitude 1 and look at the perfor-

mance of ComplexNet compared to our baseline CNN using

R
2 embedding. The confusion matrix using ComplexNet is

shown in Table (6). The baseline CNN using R
2 embedding

of the normalized complex numbers results 45.98% classi-

fication accuracy. A closed investigation of the confusion

matrix (shown in Table (7)) reveals that all the points have

been classified in the largest class which consists of 45.98%
samples of the entire dataset. Recall that this result is using

30 − 70% train test split. We experiment with increasing

the training partition without any significant improvement.

Thus, we conclude that with R
2 embedding, using just phase

information gives very poor classification accuracy. On the

other hand, the performance of ComplexNet using just phase

information is significant and indicate that effectiveness of

ComplexNet is because of the G invariance property.

A summary classification accuracy of different variants

of methods has been shown in Fig. (6).



Figure 6: Barplot of classification accuracies for different

variants on MSTAR

bmp2 btr70 t72 btr60 2s1 brmd2 d7 t62 zil131 zsu23-4

bmp2 0 0 1285 0 0 0 0 0 0 0

btr70 0 0 429 0 0 0 0 0 0 0

t72 0 0 6694 0 0 0 0 0 0 0

btr60 0 0 451 0 0 0 0 0 0 0

2s1 0 0 1164 0 0 0 0 0 0 0

brmd2 0 0 1415 0 0 0 0 0 0 0

d7 0 0 573 0 0 0 0 0 0 0

t62 0 0 572 0 0 0 0 0 0 0

zil131 0 0 573 0 0 0 0 0 0 0

zsu23-4 0 0 1401 0 0 0 0 0 0 0

Table 7: Confusion matrix for baseline method using nor-

malized complex numbers (classification accuracy 45.98%)

Model domain # params.

ComplexNet C 44826

baseline R
2 530170

baseline R (magnitude) 530026

baseline R
3 530314

Table 8: Comparative analysis of number of parameters

The parameter values in Table (8) indicates that we have

a significant parameter reduction in our model. We hypoth-

esized that this is because of the power of our model to

capture the natural equivariance/ invariance which standard

CNN fails to do in the non-Euclidean domain. This justifies

the usefulness of the proposed model on complex-valued do-

main both in terms of parameter efficiency and classification

accuracy.

In Fig. (7), we have shown the representative outputs of

three convolution layers for representative samples from each

class. We can see that after the first convolution layer, the

output is basically similar to blurry input images as shown

in Fig. (5). From the output of the second convolution layer,

we can see that 10 filters output patterns are different for

Figure 7: (Top-Bottom) Representative filter outputs after

the first, second and last conv. layer of ComplexNet

different classes. Note that, here we have shown one repre-

sentative layer output from each class, but the pattern within

each class is similar. For classes ‘D7’, ‘T62’, ‘ZIL131’, the

filter responses are higher than the other classes. Further-

more, the output of last convolution layer shows significantly

different patterns between different classes.

RadioML data In this section, we show classification

accuracy of ComplexNet on another complex-valued data,

namely RadioML data as proposed in [18, 19]. This dataset



consists of modulations which are used widely in practice

and operate on both discrete binary alphabets (digital mod-

ulations), and continuous alphabets (analog modulations).

Then over each modem the known data is modulated and

then exposed to the channel effects described above using

GNU Radio. Finally they were segmented in millions of

samples into a dataset consisting of numerous short-time

windows in a fashion similar to how a continuous acous-

tic voice signal is typically windowed for voice recognition

tasks. For a detailed data description, please see [18, 19].

This dataset consists of 220, 000 samples. We use a 50− 50
train-test split analogous to out MSTAR data experiment as

mentioned in the paper.

For baseline method, we have used the architecture pro-

posed in [18], which consists of two convolutional and two

fully connected layers. The convolution layers have kernel

of size 3 with number of channels 256 and 80 respectively.

In between convolution layers there are ReLU and dropout

layers. This network consists of 2830491 parameters.

We have used our ComplexNet with only 299117 pa-

rameters, i.e., roughly 10% of the number of parameters of

the baseline model. We have achieved 70.23% and 70.68%
testing accuracy for ComplexNet and baseline model respec-

tively. This result is consistent with out previous finding, that

with significantly less number of parameters, ComplexNet

can achieve similar result as the baseline network. Finally,

we have shown filter responses using ComplexNet in Fig.

(8). In each row, we have shown sample filter responses from

each class. We can see from the figure that filter outputs of

the convolution layers are different over different classes.

4. Conclusions and Future directions

In this paper, we have presented a novel convolutional

neural network on complex-valued data, dubbed as Com-

plexNet. We have shown theoretical properties of the pro-

posed network as well as the defined convolution operator.

More specifically, we have shown that our proposed convo-

lution operator is equivariant and the proposed ComplexNet

is invariant to the product group of planar rotations and non-

zero scaling. Experimental results on widely used MSTAR

dataset have shown that the proposed ComplexNet achieves

very high classification accuracy using a very small num-

ber of parameters. As a baseline, we have compared both

using the R
2 embedding and by taking magnitude of the

complex domain. We have shown significant improvement

over the baseline both in terms of classification accuracy

and number of parameters. Furthermore, we have shown

that using smaller number of parameters ComplexNet gives

similar accuracy to the baseline model on the popular radio

frequency data, RadioML. In future, we would like to apply

our proposed framework on other complex-valued datasets

and also explore the representation power of the filters using

the proposed convolutional operator.

Figure 8: (Let-Right, Top-Bottom) Representative filter out-

puts after the first, second, third convolution layers of Com-

plexNet on RadioML data
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