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Abstract

There are three levels for indoor scene understanding,
pixel level labeling, object level recognition and scene level
holistic understanding. The three levels provide comple-
mentary bottom-up scene representation. Traditional re-
search often addresses these three tasks separately where
the three levels of semantic data are seldom jointly con-
sidered. We propose a new method to bridge the three se-
mantic levels by using dual graphical models for relational
modeling of object categories in indoor scenes. The verti-
cal placement model captures top-down object configura-
tion by which the visible pixels of some accessory objects
could be used to infer the presence of a supportive object
underneath. The horizontal placement model reveals how
multiple object categories are related to each other on the
ground in different indoor scenes. The experimental results
show improvements on the bounding box accuracy using
both vertical and horizontal placement models from pixel
level labeling.

1. Introduction

Indoor scene understanding has been a challenging prob-
lem in computer vision because of large variation in ob-
ject shapes and placement, and heavy occlusion and clut-
ter. There exist three main schemes in scene understanding:
per-pixel semantic labeling [20, 16, 22, 7, 14], bounding
box generation [16, 32, 27, 24], and scene level holistic un-
derstanding [1, 19, 30, 2, 28, 18, 17, 4, 12, 24, 23, 11]. The
first scheme provides the contours and spatial areas of dif-
ferent objects and structures in an image. The second shows
a set of cuboid-shaped boxes to represent different objects
with certain size and orientation in . The third scheme in-
cludes various scene level tasks, including room type recog-
nition [1, 19], scene structure classification [30, 2, 28] or
other methods that incorporates high level knowledge from
human understanding [18, 17, 4, 12]. There are two kinds of
ground truth data used for training and validation, bounding
boxes or pixel labeling. Usually, the former can be used to

-
Vertical placement relation

Figure 1. Given a cluttered scene with many objects (left), the ob-
ject relationships are encoded by two graphical models, called the
vertical and horizontal placement models (VPM and HPM).

represent objects with relatively well-defined shapes, while
the latter is more general and suitable for various objects or
structures. Thus, more object categories are normally con-
sidered in pixel level labeling than those used for bound-
ing box generation. On the other hand, there is a trend to
combine both of them for scene understanding [24, 23, 11].
However, there are some gaps between 2D pixel labels and
3D bounding boxes, both spatially and relationally.

With the rapid development of deep learning [15, 9] and
a vast amount of indoor RGB-D data, the performance of
pixel level scene analysis has been improved significantly
in recent years. On the other hand, 3D bounding boxes
provide object level understanding that may be preferred in
practice. We are interested in creating reliable and accurate
3D bounding boxes from the depth data with pixel level la-
bels. In this paper, we propose dual graphical models to
bridge the gap between two descriptors by capturing ob-
ject placement dependency both horizontally and vertically.
As shown in Fig. 1, the vertical placement model (VPM)
captures co-existence of major and accessory objects from
the top-down view, while the horizontal placement model
(HPM) represents ground level spatial configuration of dif-
ferent objects. Specifically, VPM improves bounding box
generation for major objects from accessories, such as a
pillow on a bed, and HPM is applied to enhance bound-
ing boxes for surrounding small objects, like a nightstand
beside a bed. The sequential application of VPM and HPM
allows us to fully utilize pixel level labels to produce reli-
able 3D bounding boxes in a local-to-holistic way.



2. Related work

We will briefly review indoor scene understanding from
three perspectives, pixel level labeling, bounding box gen-
eration, scene level representation.

Per-pixel semantic labeling is widely studied [20, 16, 22,
7, 14] for its convenience and efficiency in working with
each pixel in RGB images. Due to the limited information
contained in each single pixel, efforts have been made to
add holistic knowledge for pixel level labeling. For exam-
ple, an image is segmented into equal-sized cells for label-
ing [25]. The norm distribution of RGB-D data at the pixel
level is used for object recognition [29]. The distribution
along the gravity direction is considered during pixel level
labeling in 3D space [17].

Bounding boxes are effective and intuitive to show the
2D or 3D range for cach object [16, 32, 24], but they also
lack of details. Researchers have been trying to use a
cuboid-shaped boxes to represent objects and preserve the
detailed object shape information at the same time [27, 23].
A two-step approach was proposed in [27] that combines
objectness estimation and object recognition for bounding
box generation. Some approaches [23] generate 3D bound-
ing boxes by cutting out irrelevant 3D points according to
re-projected 2D bounding boxes. The ground truth data
of bounding boxes are provided independently with that of
pixel level labeling, making them lack consistency and com-
patibility. Some studies tried to find an intermediate rep-
resentation to present the scene both holistically and in a
detailed way. Approaches include using planes [31, 3, 28],
cuboid [11, 8] or other geometry primitives [21] as prior
shapes to represent indoor objects. However, the geomet-
rical representation is applied to the whole scene without
indicating object categories or instance level segmentation.
Bounding boxes were created from pixel level labeling for
a fully registered 3D point cloud [32] with little occlusion.

Scene level understanding usually involves holistic prior
knowledge about the scene. For example, some methods
focus on the perpendicular aspects of indoor rooms and fur-
niture [33, 28]. Some algorithms extract indoor structures to
find the general room configuration [10, 31, 3]. To find and
localize all the objects in the whole scene, some pre-defined
scene templates were used as prior knowledge for directed
local search [13]. Using a graphical model, the spatial oc-
currence pattern among objects in 2D images is captured to
improve the object detection rate collectively [4, 5].

In this work, we investigate in the object placement and
relationship in 3D space at both the object level and scene
level with the help of two complementary graphical models.
Specifically, VPM works locally at the object level to im-
prove bounding box generation by inferring invisible parts
from visible ones, while HPM is used at the scene level
holistically and collectively to improve bounding boxes for
all objects in a scene-specific group.

3. Dual Graphical Models

Our objective is to integrate the three-level scene seman-
tics in a bottom-up information flow where the two models,
VPM and HPM, play complementary roles to bridge the gap
among three semantic levels. VPM serves as a bridge from
pixel level labeling to bounding box initialization, and HPM
plays as a propagator to use scene-level holistic configura-
tion for collective bounding box generation .

3.1. Challenges and approaches

There are two challenges in this research. The first one is
about the placement between objects that often leads to oc-
clusion and overlap problems, complicating bounding box
generation. For example, a chair under a table is only par-
tially visible and a pillow or sheet will cover part of the
bed unlabeled. The second one is about the ambiguity and
inconsistency of ground-truth data used for pixel labeling.
There are two often-seen cases. The first is that different ob-
jects share the same label, for example, the nightstand and
end-table were often considered to belong to the same cate-
gory. The second is the same object was labeled differently.
For example, some beds were labeled with a bed board, and
some only include the mattress. Therefore, we involve two
graphical models that capture the objective placement de-
pendency to cope with those challenges with the aim to cre-
ate reliable and accurate bounding boxes from inconsistent
and ambiguous pixel-level labels. Traditionally a graphical
model is generated considering the co-existence probability
of objects as the edge weight .S, as shown below.

p(ni,..ng) = H S(n;, M;), (1)

i=1,2...k

where

where n; is the node for object ¢ in the graph, M, is the set of
parents of node n;, k is the total node number, and .S stands
for the edge weight calculated by the co-occurrence joint
probability. In the following, we introduce the dual graph-
ical models, VPM and HPM, that involve different weights
as the closeness measure and similar training data.

3.2. Vertical placement model (VPM)

Given the ground-truth pixel labels and bounding boxes,
we study vertical placement modeling by projecting all ob-
jects onto the ground plane from the top-down view. Then
a 2D room layout is obtained by aligning all objects with
gravity. Small ones are often placed on top of the bigger
ones. Due to the fact that some small objects could be
placed on different objects, we learn VPM with strong pair-
wise connections by trimming off the weak ones [4, 5]. In
VPM, the nodes are object categories from pixel level label-
ing and the edges’ weights are determined by the closeness
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Figure 2. lustration of VPM and HPM. (a) A bedroom image. (b) Ground-truth pixel level labeling of (a) where the bed is labeled as
multiple items. (c) The vertical placement relationship of the bed set. (d) VPM for the bed set. (e) The cropped portion of the nightstand in
(a). (f) Ground-truth bounding boxes in 3D space. (g) The horizontal object placement from the top-down view. (h) HPM for the bedroom.

measure that considers their co-occurrences and the overlap
ratio in the layout view. Therefore, VPM is specified as,

gV(nla“'nk) = H S’U(ni,Mi>7 (2)
i=1,2..k
where the edge weight is
A(ny
Se(ni,mi) = p(ngm;) x %n;)ymi €M;, (3

where A(n;) is the mean area of object n; in the layout
view. Thus, the edge weight S, is calculated using the prod-
uct of conditional probability and the 2D overlapping ratio
between the two objects in layout view, which indicates the
significance in the bounding box.

3.3. Horizontal placement model (HPM)

Similar to VPM, HPM is also learned from the top-down
layout view of the projected 3D objects which embraces
all object categories. The edge weight .S}, is based on the
co-occurrence probability of a pair of objects and the ra-
tio of their center distance D with reference to their non-
overlapping minimum distance B. For the objects without
bounding boxes, the distance ratio is set to be one. HPM is
defined as

1T S ), “4)

i=1,2..k

gu(ni,..ng) =

where the edge weight

D(n;)

S, mi) = pnilmi) x gro=rs

m; € My, (5)

which is the product of conditional probability and the 2D
distance ratio in layout view between the center distance D
and B. The non-overlapping minimum distance B is given
by the summation of bounding box half size on the short
side. Long distanced objects are encouraged due to the fact
that distanced objects may exist in the scene outside of the
image vision range, which lowers their presence probability.

3.4. Model Learning

We learn the two models from the fully labeled dataset
including two kinds of ground-truth data, i.e., pixel-level
labeling and 3D bounding boxes. Specifically, the VPM
learning involves both ground-truth data, whereas the HPM
learning only uses bounding box ground-truth. We follow
the framework in [5] and use the Chow-Liu algorithm [6]
to maximize the likelihood of the training data (i.e., gy (-)
for VPM and g3 (-) for HPM). Firstly, the algorithm com-
putes edge weights (5, and Sp) as the mutual information
for each object pair. Then, it finds the maximum weight
spanning tree with the calculated edge weights. This algo-
rithm only keeps strong pairwise information to generate an
undirected graphical model.



3.5. Applications of Dual Models

Figures 3 and 4 illustrate VPM and HPM, respectively,
which are learned from the ground-truth data (pixel labeling
and bounding boxes) in the SUNRGBD dataset [26]. The
two models are versatile for different scene analysis tasks.
(1) According to VPM, indoor objects can be classified into
three groups, ground-level base objects, accessory objects
placed on a base object, and stand-alone individual objects.
(2) We can find the co-existence and exclusiveness between
every object pair in both VPM and HPM. (3) The grouping
effect in two models indicate different object sets and room
types (denoted by dash ovals). (4) VPM and HPM can be
used to refine and rectify ground truth data where the incon-
sistency and ambiguity may impede training and testing.

4. Bounding box generation from pixel labeling

As a case study in this work, we will apply VPM and
HPM to create 3D bounding boxes for all objects from
pixel-level labeling results obtained from any deep learn-
ing algorithm. The VPM and HPM work together to bridge
the gap between pixel-level labels and object-level bound-
ing boxes in a sequential manner.

4.1. Bounding box initialization

Given a pixel-level segmentation map, we transfer the
class label to the RGB-depth data points and then the la-
beled 3D points are projected from a top-down view to form
a layout map, represented by L, similar to the way we cre-
ated training data for VPM and HPM. For a specific given
object, the size of the bounding box is obtained from the
range of data points labeled as that object. Thus, we need
only to find the bounding box orientation. We simply gen-
erate the bounding boxes for all directions with a step size
of 5 degrees. Then, the bounding box with least points from
other categories is considered to be the tightest and is se-
lected as our initial bounding box. Given the layout view
points set L, the 2D bounding box X, is generated as:

X, = argmin{E(X,(r) | L)}, (6)
re{0,7}

where X, (r) is the bounding box parameter set for object 4
with orientation 7 in the layout view L. The bounding box
evaluatino function E gets the total point number that falls
within X;(r) but not classified as object category i in the
layout view L. To get the 3D bounding box, we add the
height to X; using the highest (along the gravity) labeled
data point in X;. Here we consider three kinds of objects,
base objects, accessory objects and individual objects as de-
fined before. Although pixel level labeling provides more
object categories, we only consider the objects with ground
truth bounding boxes.

4.2. VPM for base objects

VPM is used to re-label each given base objectby finding
its accessory objects to get a re-labeled layout view map.
Following the baseline method in Section 4.1, the bounding
box X ; is generated as:

Xy = argmin{E(X?(r) | LY)}, @)
re{0,7}

where L} is generated from L after relabeling it with re-
spect to the object ¢. LY is obtained from VPM represented
by gy (...) defined in (2) by relabeling all accessory objects
to be the base object underneath. The final bounding box
heights are determined from initial labeled 3D points.

4.3. HPM for individual objects

In order to create bounding box generation for individual
objects, we need to minimize the penalty from two kinds of
uncertain 3D points during optimization. The first includes
those with exclusive object labels as specified by HPM. The
second corresponds to those with a low confidence sore as
indicated by the segmentation map from the deep learning
network. In other words, these two kinds of 3D points could
be in a bounding box for any category. Hence, individ-
ual objects could have more flexibility in rotation r and di-
mension d during optimization, resulting in more accurate
bounding box generation as:

X! = argmin{ B(X](r,d) | L")}, ®)
r,d

where L" is created from L by suppressing the two types of
uncertain points. Note that HPM is used at the scene level,
which means L" is generated for each image while L? is
generated for each base object.

5. Experimental results

Although VPM and HPM could be applied to various
scene analysis tasks, we tested them for bounding box gen-
eration from pixel level labeling (Section 4). We used the
SUNRGBD [26] dataset that provides 5285 training images
and 5050 testing images. The ground truth labeling pro-
vides a 37 classes set for pixel level labeling.

5.1. Experimental setting

To generate the baseline bounding boxes, we use the
pixel level labeling map from a recent deep learning method
[17] as the input for the algorithm described in Section 4.1.
The widely used evaluation measures mean average preci-
sion (mAP) under certain IoU threshold. We expect this
evaluation could show more details about the real object
area detection. We use two metrics to evaluate our method:
the bounding box intersection over union (BB-IoU) and the
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Figure 3. The vertical placement model of dataset SUNRGBD [26]: on the left is the full model, the right side shows the object sets in
the model. The blue links shows the closeness while the red ones refer to exclusiveness. The thickness of links indicates the relation
strength. The on-ground objects with bounding box tags are shown in rectangles while other objects are shown in ovals. The object set
are rectangle-oval connections which stands for the base-accessory object relation. Note that the object relations are learned from training

data. The dashed ovals are added only for illustration.
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= === Restroom scene

====Living room scene

Figure 4. The horizontal placement model of dataset SUNRGBD[26]: the full model is shown on the left. The right side defines the
scene groups in the model. The blue links shows the closeness while the red ones refer to exclusiveness. The thickness of links indicates
the relation strength. The accessory objects are contained in the sets found using VPM as shown in Figure.3. The model automatically
generates three object groups for bedroom, restroom and living room scenes.

visible point intersection over union (VP-IoU). The BB-
ToU measures if the bounding box could be correctly found.
In indoor scenes with heavy occlusion and sparse 3D data
points, some of the bounding box ground-truth are inferred
from the visible area. Thus, we use the VP-IoU measure to
show if the visible point of the target object could be found.
Note that the in VP-IoU, all the points in the target object
bounding box are regarded as the same label as the bound-
ing box, regardless their ground-truth pixel level labeling.

5.2. Performance evaluation

In Table 1, we quantitatively show that our method can
improve the bounding box accuracy in both BB-IoU and
VP-IoU compared with the baseline algorithm denoted as
Base (Section 4.1). In these experiments, not all base ob-
jects have related accessory objects. Thus, some results in
VPM are about the same as in the Base column. Significant
improvements in VPM can be found in object categories



“bed” and “sofa” because of the prevalent co-existence of
bed-pillow and sofa-pillow, as shown in Figure 3. The
scores for bookshelf are also improved thanks to the help of
the inclusion of the book category. The bounding scores in-
crease in general after we apply dual models because HPM
provides more rotation flexibility for all objects. It is worth
mentioning that the baseline method cannot correctly detect
the nightstand class. After applying the dual models, part
of the nightstand is recovered with the help of its related
objects (mostly the bed).

Some qualitative results are shown in Figure 5 where
we show the effect from VPM and the dual models
(VPM+HPM). It is shown that VPM is able to help the in-
clusion of accessory objects to the base object, leading to
improved bounding boxes generation of base objects. Also,
the dual models can assist bounding boxes for individual
objects by including more uncertain points according to co-
existence and exclusiveness encoded in VPM and HPM.

BB-IoU VP-IoU
Category Base | VPM | Dual | Base | VPM | Dual
Cabinet 7.43 7.43 7.66 | 21.53 | 21.53 | 21.76
Bed 24.81 27.67 | 2881 | 52.13 | 52.79 | 54.29
Sofa 15.35 16.07 16.67 | 40.12 | 38.86 40.2
Table 13.7 13.7 14.7 28.79 | 28.79 | 3043
Desk 7.78 9.74 10.14 | 18.09 19.02 19.68
Nightstand 0 0 4.8 0.04 0.04 10.4

Bathtub 12.57 13.14 13.46 | 28.33 28.63 29.22
Bookshelf 11.27 11.68 12.55 | 40.34 37.52 40.95
Toilet 27.35 27.35 27.85 | 44.96 44.96 44.78
Fridge 4.48 4.48 6.53 19.15 19.15 22

Dresser 6.6 6.6 7.86 20.12 20.12 20.1
Mean 11.94 12.53 13.73 28.5 28.31 30.35

Table 1. The quantitative results (%) in terms of both BB-IoU and
VP-IoU for 11 indoor objects, where the baseline (Base) is com-
pared against VPM and the dual models.

5.3. Discussion

It is worth noting that the ground-truth data of pixel-
level labeling and bounding boxes still have some incon-
sistency and ambiguity which may complicate quantitative
analysis. Thus the major bottleneck is the pixel-level deep
learning algorithm that provides the input for our bottom-up
flow. There are three possible directions that would enhance
the strengths of VPM and HPM to improve the quality of
bounding box generation. First, in stead of using the clas-
sification map, confidence maps for each object offer more
potential to improve the quality of bounding boxes. Second,
we could enhance two models by incorporating more prior
regarding the size and shape to improve the inference and
optimization of (7) and (8). Third, VPM and HPM can be
jointly used to improve the quality of ground-truth data in
both training and testing data which consequentially mani-
fest the contribution from two graphical models.
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Figure 5. From the results of VMP (top), from left to right, the
figures are: (1) Two RGB images, (2) classified bed points from
the deep network [17], (3) the bed set points after using VPM, (4)
the generated bounding boxes (blue: ground truth, green: baseline,
red: ours). From the results of dual models (VPM+HPM, bottom),
from left to right, the figures are: (1) two RGB images, (2) white
pixels classified dresser (the third row) and nightstand (the fourth
row) from [17], (3) the uncertain points added to dresser (the third
row) and the uncertain points that are exclusive with bed and added
to nightstand (the fourth row), (4) the generated bounding boxes
(blue: ground truth, green: baseline, red: ours).

6. Conclusion

We have presented dual graphical models for relational
modeling of indoor object categories, i.e., the vertical
placement model (VPM) and horizontal placement model
(HPM). Specifically, the former captures the co-existence
of major and accessory objects, while the latter encodes
ground level spatial configuration of different individual ob-
jects. The two models allow us to bridge the gap among
the three levels of semantic scene understanding. As a case
study, we apply the two models in a bottom-up flow to
create object-specific bounding boxes in 3D space that are
more informative and intuitive where the input is the pixel-
level label result from any deep neural network. Experi-
mental results show the promise of dual graphical models
to improve the quality of bounding box generation. It is
foreseeable the two graphical models can be used in other
holistic object-level and scene-level analysis tasks.
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