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Terrain imagery collected by satellite remote sensing or
by rover on-board sensors is the primary source for terrain
classification used in determining terrain traversibility and
mission plans for planetary rovers. Mapping models be-
tween RGB and IR for terrain classes are learned from real
RGB and IR data examples in the same or similar terrain.
This paper adds a new class of deep learning architectures
called MU-Net (Multiple U-Net) and shows its efficiency in
deriving better RGB-to-IR mapping models, improving over
past work the estimation of thermal IR images from incom-
ing RGB images and learned RGB-IR mappings. '
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1. Introduction Figure 1. (a) RGB image, (b) ground truth thermal IR image, (c)
estimated thermal IR [3], and (d) estimated thermal IR with the
Terrain classification is one of the key components for proposed network. (a) and (b) were captured at 5 pm on Nov 17th.

autonomous navigation for Mars rovers. A terrain classi-
fication system that uses both RGB and thermal infrared
(IR) images to improve the performance of terrain classi-
fication compared to using RGB was proposed in [1]. How-
ever, while future rovers may have IR cameras, neither the
Mars Science Laboratory (MSL) nor Mars 2020 [2] have
IR cameras, relying solely on RGB cameras. A possible
way to circumvent this absence is by using, instead of real
IR, estimates of IR learned from examples of images seen
both in RGB and IR. Learning from these examples was
shown with a new deep learning technique demonstrated in
[3]. Figures 1 (a) and (b) show an example of images with
RGB and IR cameras respectively, and Fig. 1 (c) shows an
estimated IR image from Fig. 1 (a) based on a UNet-based
method proposed in [3]. A new learning architecture set

introduced in this paper leads to better learned models and bsorbed. which is ab h Aected .
improved IR estimation as shown in Figure 1 (d) (derived absorbed, which is about the same as refiected (assuming

from learned mapping and input RGB as in for the Fig. 1 opaque objects). The emitted energy dgpep@s on the emis-
(@), sivity and temperature of material. Emissivity depends on

the type of material and wavelength. In daytime, temper-
ature is determined mainly by how much energy hits the

at least for the limited and constrained conditions of terrains
similar to planetary surfaces with relatively low diversity
of components (various rocks and sands), the estimation of
the IR domain from the RGB domain appears possible (and
could be very useful for autonomous driving and for sci-
ence).

One possible explanation of this first set of encouraging
results of estimation of IR from RGB, in given conditions,
could be related to the balance of energy exchange at the
imaged object. Over a short duration of time, the energy
emitted by a surface object is approximately equivalent to
the absorbed energy. In daytime, incoming energy is from
the sun with known spectrum, some of it reflected, which
includes the part observable in RGB/visual, and some is

The experimental results, albeit limited so far, show that,

! Copyright 2019. All rights reserved. surface normally (i.e., angle of the surface to the Sun) and
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thermal inertia (which shows a measure of material’s ability
to resist a change in temperature). In the case that slope an-
gle difference among different types of terrains is small, the
temperature of each terrain is dominated by its thermal in-
ertia. Terrain type, through thermal inertia, thus influences
temperature of the terrain and hence provides thermal IR
information.

While the earlier work indicated the feasibility of esti-
mating IR from RGB, the performance was moderate [3].
No possible theoretical interpretation was attempted and no
integration of terrain type information in the model was at-
tempted.

This paper first attempts a theoretical explanation that
may support the results of estimation of IR images from
RGB images. A new set of deep learning architectures tak-
ing into account the terrain type information is introduced.
The new set of architectures, named MU-Net (from Multi-
ple U-Net), is based on U-Net [4], which is popularly used
in medical image segmentation [5] and also was used by the
winner of a satellite image segmentation competition (Kag-
gle competition [6]). MU-Net is designed to estimate terrain
type information in addition to thermal IR information. This
allows us to both tmplicitly and explicitly include ter-
rain type information to estimate thermal IR information,
which results in improvement of the estimation of thermal
IR images from a single sensor input (RGB camera).

There is a resemblance between the estimation of IR
from RGB (for which we are not aware of any other work
except [3]) and colorization of gray scale images, for which
a body of work exists [7] [8] [9]. In general these methods
require estimation of chrominance, since the luminance is
given in the grayscale images. lizuka et al. proposed a deep
convolutional neural networks (deep CNN) to directly esti-
mate chrominance values in gray-scale images [11]. Lars-
son et al. [12] and Zhang et al. [13] initialized their net-
works with pre-trained networks. Limmer et al. proposed
a CNN-based method to colorize near IR images, which re-
quires estimation of chrominance and luminance [10].

Deep neural network learning requires huge datasets;
e.g. in just cited [10] almost 38,495 image pairs are used. If
not enough training data is available one can work with pre-
trained parameters with public datasets, such as ImageNet
[14]. However, since public datasets usually include im-
ages with huge inter-class variations, such as cars, human,
balls, etc, the pre-trained parameters do not efficiently de-
scribe features of terrain types, where inter-class variations
are much smaller than in public datasets. On the other hand,
training using smaller datasets may be feasible via U-net.

2. Methodology

This section first provides a possible theoretical expla-
nation of why one can potentially estimate IR images from
RGB images. The U-net method to estimate thermal IR in-
formation [3] is then explained, followed by the proposed
MU-Net.

RGB cameras respond to wavelengths from about 390 to
700 [nm] while thermal cameras respond to different wave-
lengths, such as 7-14 [um] for long-wave IR. In general in-
formation in one spectral domain cannot be definitely deter-
mined by information in a different spectral domain. How-
ever, under certain assumptions, specifically, (i) the mate-
rial is opaque, (ii) the event happens instantaneously, and
(iii) the radiating source is only the Sun, we can estimate a
representation of IR domain from RGB domain.

In the case of an opaque material, incident energy I is de-
fined with reflection energy R and absorbed energy A as I =
R + A. For the material to stay in equilibrium, absorbed en-
ergy A should be equal to emission energy F (F=A). (More
correctly, we refer the energy for a short duration of time,
so effectively the power). Thus, the first equation becomes
I = R + E. Here, we can assume the RGB images capture
reflection R from the material and the IR images capture
emission E from it. The emission energy E observed in IR
images, is now defined as £ = [ - R. A main parameter
of the incident I is the angle to the Sun, and the parameter
can be calibrated based on the Sun’s angle and geometric
information. In a simplifying assumption one can assume
the angle to the Sun is uniform (i.e., the incident [ is con-
stant in the whole area) (meaning also the angle of the re-
ceiving/reflecting surface is the same in all area of interest).
These assumptions are too strong and do not hold except
for rare cases, so there is no quality However, some rela-
tionships exist and hence estimates limited, but potentially
useful.

The architecture of U-Net [4] is shown in Fig. 2 and
consists of a contracting path (left) and an expansive path
(right). Each path has repeated units. The unit on the con-
tracting path (contracting unit), as shown with light blue
rectangles, consists of two 3 x 3 convolutions, each fol-
lowed by a rectified linear unit (ReLU) and 2 x 2 max-
pooling. There are two different units on the expansive path.
The first one (expansive unit 1) as shown with red rectan-
gles consists of two 3 x 3 convolutions, each followed by
ReLU, 2 x 2 deconvolution, and concatenation of outputs
from both deconvolution layer and convolution layer from
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FigureZ U-Net architecture. ”Cat”, ”C”, "ReLU”, ”P”, and "DC”
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mean “concatenate”, “convolution”, “rectified linear unit”, pool-
ing”, and “deconvolution”, respectively. Relatively thick arrows
between “Cat” and ”C” include “bilinear up-sample”. "N at the
final layer show the number of classes. Light blue rectangles show
units of the contracting path (contracting units). Red and orange
rectangles show two different units of expansive paths (expansive
units 1 and 2).

the contracting path. Another one (expansive unit 2) is the
last unit of the expansive path, as shown with an orange
rectangle, has two 3 x 3 convolutions, each followed by a
rectified linear unit (ReLU). Here, in the expansive unit 1,
bilinear up-sample is applied to output of the convolution
layer from the contracting path. This concatenation layer is
one of key ideas in U-Net, which enables training of the net-
work with a small number of datasets. At the final layer, a
1 x 1 convolution is applied to map 64 channel information
at each pixel to the number of classes (V).

The loss function Lo g of all architectures is defined as
a pixel-wise soft-max over the final map, followed by the
cross-entropy loss function, as defined as follows.

ZZ%; log pij, (1)

ZGS] 1

where N, |S], Yij> Di;j are the number of classes, the to-
tal number of pixels over images S, ground-truth distribu-
tion at each pixel, and outputted probability distribution at
each pixel, respectively. The loss function is minimized by
a stochastic gradient descent method.

To synthesize thermal IR images from RGB images, we
replaced the output annotation in Fig. 2 with a thermal IR
image. We used a mean squared error (MSE) Ly/sg as a
loss function, which is defined as
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Lyse =

where C' is the number of channels, and a;; and b;; are the
thermal value at each pixel (i, j) of a ground-truth thermal
image a and an output thermal image b, respectively.

This model directly trains the network with RGB im-
ages and does not take into account terrain-type informa-
tion, which has a potential to improve the estimation of ther-
mal IR images.

To take into account terrain-type information, we pro-
pose MU-Net (Multiple U-Net). The proposed MU-Net has
two categories: (i) MU-Netl, implicitly including terrain-
type information into the model and (ii) MU-Net2, explic-
itly including terrain type information into the model.

MU-Netl is designed to output both IR thermal and an-
notation images, so that the trained model includes both IR
and annotation information. MU-Net1 has two architectures
as shown in Fig. 3. The first one, MU-Netl-a is the same
architecture with U-Net, but MU-Net1-a has two outputs of
annotation and IR thermal images. Thus, in this model we
have two loss functions, Lo g and £,/5g, and have com-
bined them as a weighted loss function as

L=Lcr+MNymsE- 3)

Here, )\ is empirically assigned the value of 200. The model
of MU-Netl-a is trained in a way that both loss functions of
IR thermal and annotation images are minimized. The sec-
ond architecture is MU-Net1-b as shown in Fig. 3 (b), and
this architecture has expansive units for each IR thermal and
annotation images. This is because of the following reason.
IR thermal and annotation images show fundamentally dif-
ferent images; thus MU-Netl-a may not be able to model
these two images in the common expansive units. In MU-
Netl-b also uses the weighted loss function Eq. 3.
MU-Net2 is designed to explicitly include terrain type
information into the architectures (Figs. 4 and 5). MU-
Net2 has an independent architecture for annotation images
as shown in dotted gray rectangles in Figs. 4 and 5. The
model for annotation images is trained first, and trained
parameters are then copied to architectures for IR thermal
images. We also have two different architectures for MU-
Net2. The first one, MU-Net2-a (Fig .4), has two different
contracting units (a) and (b), and contracting units (b) are
copies from the model for annotation images. Outputs from
both contracting units are concatenated and used as input to
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Figure 3. (a) MU-Netl-a and (b) MU-Net1-b.
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Figure 4. MU-Net2-a.

the expansive units 1(a). There is no back-propagation to
contracting units (b). The second architecture, MU-Net2-
b (Fig. 5), copies parameters of contracting units (b), and
expansive units 1(b) and 2(b) of the model for annotation
images in the dotted gray rectangle in Fig. 5. The output of
expansive units 2(b) is downscaled with a pixel-shuffle tech-
nique, and it is concatenated with the output of contracting
units (a). Finally, it is used as input to the expansive units
1(a). For both MU-Net2-a and MU-Net2-b, we use only
L sk as the loss function of IR images.

3. Experiments

In this section, we first explain a dataset which includes
visible and thermal images, followed by experimental re-
sults with the dataset.
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Figure 6. (a) Examples of RGB images and (b) IR image corre-
sponding to (a).

We used the same dataset in [3] for training and we added
more dataset for performance evaluation. The images were
collected at an area (the JPL Mars Yard) with a RGB cam-
era (FLIR Grasshopper 5SM) and a thermal camera (FLIR
AX65) from 10am to Spm on Nov 17th, 2017. RGB and IR
images were collected every | hour, with 52 images images
collected each time by changing the position of the cameras
(totalling 416 image pairs over the 8 hours). Figure 6 shows
examples of captured image pairs. Sandy areas tend to show
lower temperature due to the fact of its lower thermal iner-
tia. On the other hand, rocky areas show higher tempera-
tures since they have higher thermal inertia. Since the vis-
ible and thermal images were taken by different cameras,



Table 1. Mean absolute error (MAE) of thermal IR images estimated from RGB images taken at 5 pm with normalized estimated IR and
normalized ground truth IR images (i.e. E. and E;). Comparison of 5 methodologies ((a) U-Net [3], (b) MU-Netl-a, (¢) MU-Net1-b, (d)

MU-Net2-a, and (e) MU-Net2-b).

(a) U-Net [3] | (b) MU-Netl-a

(c) MU-Netl-b

(d) MU-Net2-a | (e) MU-Net2-b

MAE 0.69 0.61

0.59 0.70 0.71

. Rocks . Bedrock . Rocky terrain ‘

Terrain types: . Soil |:| Sand . Ballast

Figure 7. (a) Examples of RGB images in test dataset, (b) manually annotated images corresponding to (a), (c) estimated terrain types by
MU-Netl-a, (d) estimated terrain types by MU-Netl1-b, and (e) estimated terrain type by MU-Net2.

a registration process between cameras is necessary. After
we removed distortion with estimated camera inner param-
eters, we applied an affine transformation with an estimated
homography matrix.

In the following experiments, we used 50% of RGB and
IR images at 5 pm as gallery data and 25 % at 5 pm for eval-
uation to determine parameters. There are two settings for
performance evaluation: (i) the rest 25% at 5 pm for the test,
and (ii) images taken at every 1 hour from 10 am to 5 pm
for test. As for the terrain classification, we categorized the
area into 6 terrain types (soil, sand, rocks, bedrocks, rocky
terrain, and ballast). The data size of each terrain type is not
balanced, so we introduced weights to the MSE and cross-
entropy losses. Here, the assumption is that each terrain has
aunique temperature on IR images, and we ignore other fac-
tors which change temperature, such as shades and slopes.
The weight of each terrain type is defined as the squared
root of the ratio of number of pixels in the training dataset.
Annotation images as shown in Fig. 7 (a) are set in advance
manually.

In the first experiments, we applied the proposed MU-
Netl, which implicitly utilizes terrain type information into

the model, and the proposed MU-Net2, which explicitly uti-
lizes terrain type information into the model, to the dataset.
Figures 7 (a) ~ (e) show examples of captured images, man-
ually annotated images, estimated annotation images by
MU-Netl-a, those by MU-Netl-b, and those by MU-Net2,
respectively. Estimated terrain types by MU-Netl-a tends
to include more false positives than those by MU-Netl-b.
For example rocks estimated by MU-Netl-a (Fig. 7 (c)) are
misclassified as soil. This suggests that expansive units for
each thermal IR images and annotation images works effec-
tively. The estimated terrain types by MU-Net2 in Fig. 7 (e)
include more false positives than MU-Netl (Figs 7 (c) and
(d)). The bottom figures in Figs. 7 (c) ~ (e) show that bal-
last area (red area) is misclassified as soil area (brown area),
but this area is a mixed area of soil and ballast area, which
is difficult even for people to classify it.

As for the IR images estimated from RGB images, first
we show quantitative evaluations as shown in Table 1. As
we mentioned in section 2, the estimated IR values are
scaled values of actual values. Since we cannot directly
compare ground truth IR values E,(z, y) and estimated IR
values F.(x,y), we normalize the values based on standard
deviation and mean as Ey (z,y) = (Ey(z,y) - j1g) / 04 and
El(z,y) = (Ec(z,y) - fte) | 0c, Where pg, 0g, fic, and o,
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Figure 8. (a) Examples of RGB images in test dataset, (b) ground
truth thermal IR images corresponding to (a), (c) estimated ther-
mal IR images by U-Net [3], (d) estimated thermal IR images by
MU-Netl-a, and (e) estimated thermal IR images by MU-Net1-b,
(f) estimated thermal IR images by MU-Net2-a, and (g) estimated
thermal IR images by MU-Net2-b.

are mean and standard deviation of the ground truth IR and
the estimated IR images. From the normalized ground truth
IR images and the normalized estimated IR images, a mean
absolute error (MAE) is calculated for each approach. MU-
Netl-b shows the smallest error among the all models.

We also visualized examples of ground truth IR images
and corresponding estimated IR images as shown in Fig.
8 using the normalized images, as Ej(z,y) = (Ey(z,y)
* o4+ 128) and E (z,y) = (EL(z,y) * 04 + 128). Fig-
ures 8 (a), (b), (d), and (e) show examples of captured im-
ages, ground truth IR thermal images corresponding to (a),
estimated IR thermal images by MU-Netl-a, and those by
MU-Netl-b, respectively. We also compared the proposed
MU-Netl with [3], whose results are shown in Fig. 8 (c).
Results by MU-Netl-b show smoother results than those

1.05
—o— U-Net

0.95 MU-Netl-a
0.85 MU-Netl-b

MU-Net2-a
0.75 —— MU-Net2-b
0.65
0.55 time

10 11 12 13 14 15 16 17

Figure 9. MAEs (mean absolute error) of MU-Netl-a, MU-Net1-
b, MU-Net2-a, and MU-Net2-b. Models are trained with images
at 5 pm and tested with images from 10 am to 5 pm. MU-Netl-b
shows the smallest MAE.

by [3]. These results also suggest that the performance of
MU-Netl-b is better than that of U-Net and MU-Netl-a.
Figures 8 (f) and (g) show estimated thermal IR images by
MU-Net2-a and MU-Net2-b, and these results show more
false positives than the results of MU-Netl-b. MAE of MU-
Netl-a based on E} and £ is 2.30 degree.

From the above results, MU-Net1-a and MU-Net1-b per-
form better than MU-Net2-a and MU-Net2-b. One of the
reasons why MU-Netl is better is as follows. In MU-Net2,
the model for the annotation images is trained with only an-
notation images. On the other hand, MU-Netl trains the
network with both annotation and thermal IR images. The
use of IR images in MU-Netl gives additional constrains
which improve the performance of the classification of an-
notation images. This results in improving the estimation of
thermal IR images in MU-Net1.

In our next experiments, we used images taken at every
1 hour from 10 am to 5 pm as a probe dataset, to see if the
models trained with images at 5 pm are robust in time vari-
ations. As for the experiment setting of images at 5 pm, we
used the same setting as with the previous section (i.e., no
overlap among gallery, evaluation, and test dataset). Fig-
ure 9 shows MAEs of MU-Netl-a, MU-Net1-b, MU-Net2-
a, and MU-Net2-b from 10 am to 5 pm. These results show
that MU-Netl-b is the most robust architecture among the
five architectures.

Figure 10 (a) shows captured RGB images from 10 am
to 4 pm, and Figs. 10 (b) and (c) shows ground-truth IR im-
ages corresponding to (a) and estimated thermal IR images
by MU-Netl-b. These images show that overall temperature
characteristics are predicted by the proposed method, but
we can see differences between ground-truth IR images and
estimated IR images, because the proposed method does not
take into account shadows, angle of the Sun, geological in-
formation, etc. These are left for a future work.
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Figure 10. (a) Examples of RGB images from 10 am to 4 pm, (b)
ground truth IR images corresponding to (a), (c) estimated thermal
IR images by MU-Net1-b.

4. Conclusion

In this paper we proposed the use of terrain type infor-
mation to estimate thermal IR images from RGB images.
We introduced four deep learning architectures called MU-
Netl-a, MU-Netl-b, MU-Net2-a, and MU-Net2-b. MU-
Netl-b showed the best performance, since it takes advan-
tages of using annotation images as constraints in addition
to thermal IR images to train the model. There are many
parameters to determine the temperature of terrain surface,
such as thermal inertia, direction to the Sun, geological con-
dition, etc. Future work will include these parameters in the
model.
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