
MU-Net: Deep Learning-based Thermal IR Image Estimation from RGB Image

Yumi Iwashita1, Kazuto Nakashima2, Sir Rafol1, Adrian Stoica1, Ryo Kurazume2

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2Kyushu Universeity, Fukuoka, Japan

Yumi.Iwashita, Sir.B.Rafol, Adrian.Stoica@jpl.nasa.gov

k nakashima, kurazume@irvs.ait.kyushu-u.ac.jp

Abstract

Terrain imagery collected by satellite remote sensing or

by rover on-board sensors is the primary source for terrain

classification used in determining terrain traversibility and

mission plans for planetary rovers. Mapping models be-

tween RGB and IR for terrain classes are learned from real

RGB and IR data examples in the same or similar terrain.

This paper adds a new class of deep learning architectures

called MU-Net (Multiple U-Net) and shows its efficiency in

deriving better RGB-to-IR mapping models, improving over

past work the estimation of thermal IR images from incom-

ing RGB images and learned RGB-IR mappings. 1

1. Introduction

Terrain classification is one of the key components for

autonomous navigation for Mars rovers. A terrain classi-

fication system that uses both RGB and thermal infrared

(IR) images to improve the performance of terrain classi-

fication compared to using RGB was proposed in [1]. How-

ever, while future rovers may have IR cameras, neither the

Mars Science Laboratory (MSL) nor Mars 2020 [2] have

IR cameras, relying solely on RGB cameras. A possible

way to circumvent this absence is by using, instead of real

IR, estimates of IR learned from examples of images seen

both in RGB and IR. Learning from these examples was

shown with a new deep learning technique demonstrated in

[3]. Figures 1 (a) and (b) show an example of images with

RGB and IR cameras respectively, and Fig. 1 (c) shows an

estimated IR image from Fig. 1 (a) based on a UNet-based

method proposed in [3]. A new learning architecture set

introduced in this paper leads to better learned models and

improved IR estimation as shown in Figure 1 (d) (derived

from learned mapping and input RGB as in for the Fig. 1

(a).

The experimental results, albeit limited so far, show that,

1 Copyright 2019. All rights reserved.

(d)(c)

(b)(a)

0 50 [C]

Figure 1. (a) RGB image, (b) ground truth thermal IR image, (c)

estimated thermal IR [3], and (d) estimated thermal IR with the

proposed network. (a) and (b) were captured at 5 pm on Nov 17th.

at least for the limited and constrained conditions of terrains

similar to planetary surfaces with relatively low diversity

of components (various rocks and sands), the estimation of

the IR domain from the RGB domain appears possible (and

could be very useful for autonomous driving and for sci-

ence).

One possible explanation of this first set of encouraging

results of estimation of IR from RGB, in given conditions,

could be related to the balance of energy exchange at the

imaged object. Over a short duration of time, the energy

emitted by a surface object is approximately equivalent to

the absorbed energy. In daytime, incoming energy is from

the sun with known spectrum, some of it reflected, which

includes the part observable in RGB/visual, and some is

absorbed, which is about the same as reflected (assuming

opaque objects). The emitted energy depends on the emis-

sivity and temperature of material. Emissivity depends on

the type of material and wavelength. In daytime, temper-

ature is determined mainly by how much energy hits the

surface normally (i.e., angle of the surface to the Sun) and

4321



thermal inertia (which shows a measure of material’s ability

to resist a change in temperature). In the case that slope an-

gle difference among different types of terrains is small, the

temperature of each terrain is dominated by its thermal in-

ertia. Terrain type, through thermal inertia, thus influences

temperature of the terrain and hence provides thermal IR

information.

While the earlier work indicated the feasibility of esti-

mating IR from RGB, the performance was moderate [3].

No possible theoretical interpretation was attempted and no

integration of terrain type information in the model was at-

tempted.

This paper first attempts a theoretical explanation that

may support the results of estimation of IR images from

RGB images. A new set of deep learning architectures tak-

ing into account the terrain type information is introduced.

The new set of architectures, named MU-Net (from Multi-

ple U-Net), is based on U-Net [4], which is popularly used

in medical image segmentation [5] and also was used by the

winner of a satellite image segmentation competition (Kag-

gle competition [6]). MU-Net is designed to estimate terrain

type information in addition to thermal IR information. This

allows us to both implicitly and explicitly include ter-

rain type information to estimate thermal IR information,

which results in improvement of the estimation of thermal

IR images from a single sensor input (RGB camera).

There is a resemblance between the estimation of IR

from RGB (for which we are not aware of any other work

except [3]) and colorization of gray scale images, for which

a body of work exists [7] [8] [9]. In general these methods

require estimation of chrominance, since the luminance is

given in the grayscale images. Iizuka et al. proposed a deep

convolutional neural networks (deep CNN) to directly esti-

mate chrominance values in gray-scale images [11]. Lars-

son et al. [12] and Zhang et al. [13] initialized their net-

works with pre-trained networks. Limmer et al. proposed

a CNN-based method to colorize near IR images, which re-

quires estimation of chrominance and luminance [10].

Deep neural network learning requires huge datasets;

e.g. in just cited [10] almost 38,495 image pairs are used. If

not enough training data is available one can work with pre-

trained parameters with public datasets, such as ImageNet

[14]. However, since public datasets usually include im-

ages with huge inter-class variations, such as cars, human,

balls, etc, the pre-trained parameters do not efficiently de-

scribe features of terrain types, where inter-class variations

are much smaller than in public datasets. On the other hand,

training using smaller datasets may be feasible via U-net.

2. Methodology

This section first provides a possible theoretical expla-

nation of why one can potentially estimate IR images from

RGB images. The U-net method to estimate thermal IR in-

formation [3] is then explained, followed by the proposed

MU-Net.

RGB cameras respond to wavelengths from about 390 to

700 [nm] while thermal cameras respond to different wave-

lengths, such as 7-14 [µm] for long-wave IR. In general in-

formation in one spectral domain cannot be definitely deter-

mined by information in a different spectral domain. How-

ever, under certain assumptions, specifically, (i) the mate-

rial is opaque, (ii) the event happens instantaneously, and

(iii) the radiating source is only the Sun, we can estimate a

representation of IR domain from RGB domain.

In the case of an opaque material, incident energy I is de-

fined with reflection energy R and absorbed energy A as I =

R + A. For the material to stay in equilibrium, absorbed en-

ergy A should be equal to emission energy E (E=A). (More

correctly, we refer the energy for a short duration of time,

so effectively the power). Thus, the first equation becomes

I = R + E. Here, we can assume the RGB images capture

reflection R from the material and the IR images capture

emission E from it. The emission energy E observed in IR

images, is now defined as E = I - R. A main parameter

of the incident I is the angle to the Sun, and the parameter

can be calibrated based on the Sun’s angle and geometric

information. In a simplifying assumption one can assume

the angle to the Sun is uniform (i.e., the incident I is con-

stant in the whole area) (meaning also the angle of the re-

ceiving/reflecting surface is the same in all area of interest).

These assumptions are too strong and do not hold except

for rare cases, so there is no quality However, some rela-

tionships exist and hence estimates limited, but potentially

useful.

The architecture of U-Net [4] is shown in Fig. 2 and

consists of a contracting path (left) and an expansive path

(right). Each path has repeated units. The unit on the con-

tracting path (contracting unit), as shown with light blue

rectangles, consists of two 3 × 3 convolutions, each fol-

lowed by a rectified linear unit (ReLU) and 2 × 2 max-

pooling. There are two different units on the expansive path.

The first one (expansive unit 1) as shown with red rectan-

gles consists of two 3 × 3 convolutions, each followed by

ReLU, 2 × 2 deconvolution, and concatenation of outputs

from both deconvolution layer and convolution layer from
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Figure 2. U-Net architecture. ”Cat”, ”C”, ”ReLU”, ”P”, and ”DC”

mean ”concatenate”, ”convolution”, ”rectified linear unit”, ”pool-

ing”, and ”deconvolution”, respectively. Relatively thick arrows

between ”Cat” and ”C” include ”bilinear up-sample”. ”N” at the

final layer show the number of classes. Light blue rectangles show

units of the contracting path (contracting units). Red and orange

rectangles show two different units of expansive paths (expansive

units 1 and 2).

the contracting path. Another one (expansive unit 2) is the

last unit of the expansive path, as shown with an orange

rectangle, has two 3 × 3 convolutions, each followed by a

rectified linear unit (ReLU). Here, in the expansive unit 1,

bilinear up-sample is applied to output of the convolution

layer from the contracting path. This concatenation layer is

one of key ideas in U-Net, which enables training of the net-

work with a small number of datasets. At the final layer, a

1 × 1 convolution is applied to map 64 channel information

at each pixel to the number of classes (N ).

The loss function LCE of all architectures is defined as

a pixel-wise soft-max over the final map, followed by the

cross-entropy loss function, as defined as follows.

LCE = −
1

|S|

∑

i∈S

N∑

j=1

yij log pij , (1)

where N , |S|, yij , pij are the number of classes, the to-

tal number of pixels over images S, ground-truth distribu-

tion at each pixel, and outputted probability distribution at

each pixel, respectively. The loss function is minimized by

a stochastic gradient descent method.

To synthesize thermal IR images from RGB images, we

replaced the output annotation in Fig. 2 with a thermal IR

image. We used a mean squared error (MSE) LMSE as a

loss function, which is defined as

LMSE =
1

|S| × C

∑

i∈S

C∑

j=1

(aij − bij)
2, (2)

where C is the number of channels, and aij and bij are the

thermal value at each pixel (i, j) of a ground-truth thermal

image a and an output thermal image b, respectively.

This model directly trains the network with RGB im-

ages and does not take into account terrain-type informa-

tion, which has a potential to improve the estimation of ther-

mal IR images.

To take into account terrain-type information, we pro-

pose MU-Net (Multiple U-Net). The proposed MU-Net has

two categories: (i) MU-Net1, implicitly including terrain-

type information into the model and (ii) MU-Net2, explic-

itly including terrain type information into the model.

MU-Net1 is designed to output both IR thermal and an-

notation images, so that the trained model includes both IR

and annotation information. MU-Net1 has two architectures

as shown in Fig. 3. The first one, MU-Net1-a is the same

architecture with U-Net, but MU-Net1-a has two outputs of

annotation and IR thermal images. Thus, in this model we

have two loss functions, LCE and LMSE , and have com-

bined them as a weighted loss function as

L = LCE + λLMSE . (3)

Here, λ is empirically assigned the value of 200. The model

of MU-Net1-a is trained in a way that both loss functions of

IR thermal and annotation images are minimized. The sec-

ond architecture is MU-Net1-b as shown in Fig. 3 (b), and

this architecture has expansive units for each IR thermal and

annotation images. This is because of the following reason.

IR thermal and annotation images show fundamentally dif-

ferent images; thus MU-Net1-a may not be able to model

these two images in the common expansive units. In MU-

Net1-b also uses the weighted loss function Eq. 3.

MU-Net2 is designed to explicitly include terrain type

information into the architectures (Figs. 4 and 5). MU-

Net2 has an independent architecture for annotation images

as shown in dotted gray rectangles in Figs. 4 and 5. The

model for annotation images is trained first, and trained

parameters are then copied to architectures for IR thermal

images. We also have two different architectures for MU-

Net2. The first one, MU-Net2-a (Fig .4), has two different

contracting units (a) and (b), and contracting units (b) are

copies from the model for annotation images. Outputs from

both contracting units are concatenated and used as input to
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Figure 3. (a) MU-Net1-a and (b) MU-Net1-b.
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Figure 4. MU-Net2-a.

the expansive units 1(a). There is no back-propagation to

contracting units (b). The second architecture, MU-Net2-

b (Fig. 5), copies parameters of contracting units (b), and

expansive units 1(b) and 2(b) of the model for annotation

images in the dotted gray rectangle in Fig. 5. The output of

expansive units 2(b) is downscaled with a pixel-shuffle tech-

nique, and it is concatenated with the output of contracting

units (a). Finally, it is used as input to the expansive units

1(a). For both MU-Net2-a and MU-Net2-b, we use only

LMSE as the loss function of IR images.

3. Experiments

In this section, we first explain a dataset which includes

visible and thermal images, followed by experimental re-

sults with the dataset.
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Figure 5. MU-Net2-b.
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Figure 6. (a) Examples of RGB images and (b) IR image corre-

sponding to (a).

We used the same dataset in [3] for training and we added

more dataset for performance evaluation. The images were

collected at an area (the JPL Mars Yard) with a RGB cam-

era (FLIR Grasshopper 5M) and a thermal camera (FLIR

AX65) from 10am to 5pm on Nov 17th, 2017. RGB and IR

images were collected every 1 hour, with 52 images images

collected each time by changing the position of the cameras

(totalling 416 image pairs over the 8 hours). Figure 6 shows

examples of captured image pairs. Sandy areas tend to show

lower temperature due to the fact of its lower thermal iner-

tia. On the other hand, rocky areas show higher tempera-

tures since they have higher thermal inertia. Since the vis-

ible and thermal images were taken by different cameras,



Table 1. Mean absolute error (MAE) of thermal IR images estimated from RGB images taken at 5 pm with normalized estimated IR and

normalized ground truth IR images (i.e. E′

e and E
′

g). Comparison of 5 methodologies ((a) U-Net [3], (b) MU-Net1-a, (c) MU-Net1-b, (d)

MU-Net2-a, and (e) MU-Net2-b).

(a) U-Net [3] (b) MU-Net1-a (c) MU-Net1-b (d) MU-Net2-a (e) MU-Net2-b

MAE 0.69 0.61 0.59 0.70 0.71

(a) (d)(c)(b)

SoilTerrain types: Sand Ballast Rocks Bedrock Rocky terrain

(e)

Figure 7. (a) Examples of RGB images in test dataset, (b) manually annotated images corresponding to (a), (c) estimated terrain types by

MU-Net1-a, (d) estimated terrain types by MU-Net1-b, and (e) estimated terrain type by MU-Net2.

a registration process between cameras is necessary. After

we removed distortion with estimated camera inner param-

eters, we applied an affine transformation with an estimated

homography matrix.

In the following experiments, we used 50% of RGB and

IR images at 5 pm as gallery data and 25 % at 5 pm for eval-

uation to determine parameters. There are two settings for

performance evaluation: (i) the rest 25% at 5 pm for the test,

and (ii) images taken at every 1 hour from 10 am to 5 pm

for test. As for the terrain classification, we categorized the

area into 6 terrain types (soil, sand, rocks, bedrocks, rocky

terrain, and ballast). The data size of each terrain type is not

balanced, so we introduced weights to the MSE and cross-

entropy losses. Here, the assumption is that each terrain has

a unique temperature on IR images, and we ignore other fac-

tors which change temperature, such as shades and slopes.

The weight of each terrain type is defined as the squared

root of the ratio of number of pixels in the training dataset.

Annotation images as shown in Fig. 7 (a) are set in advance

manually.

In the first experiments, we applied the proposed MU-

Net1, which implicitly utilizes terrain type information into

the model, and the proposed MU-Net2, which explicitly uti-

lizes terrain type information into the model, to the dataset.

Figures 7 (a) ∼ (e) show examples of captured images, man-

ually annotated images, estimated annotation images by

MU-Net1-a, those by MU-Net1-b, and those by MU-Net2,

respectively. Estimated terrain types by MU-Net1-a tends

to include more false positives than those by MU-Net1-b.

For example rocks estimated by MU-Net1-a (Fig. 7 (c)) are

misclassified as soil. This suggests that expansive units for

each thermal IR images and annotation images works effec-

tively. The estimated terrain types by MU-Net2 in Fig. 7 (e)

include more false positives than MU-Net1 (Figs 7 (c) and

(d)). The bottom figures in Figs. 7 (c) ∼ (e) show that bal-

last area (red area) is misclassified as soil area (brown area),

but this area is a mixed area of soil and ballast area, which

is difficult even for people to classify it.

As for the IR images estimated from RGB images, first

we show quantitative evaluations as shown in Table 1. As

we mentioned in section 2, the estimated IR values are

scaled values of actual values. Since we cannot directly

compare ground truth IR values Eg(x, y) and estimated IR

values Ee(x, y), we normalize the values based on standard

deviation and mean as E′

g(x, y) = (Eg(x, y) - µg) / σg and

E′

e(x, y) = (Ee(x, y) - µe) / σe, where µg , σg, µe, and σe
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Figure 8. (a) Examples of RGB images in test dataset, (b) ground

truth thermal IR images corresponding to (a), (c) estimated ther-

mal IR images by U-Net [3], (d) estimated thermal IR images by

MU-Net1-a, and (e) estimated thermal IR images by MU-Net1-b,

(f) estimated thermal IR images by MU-Net2-a, and (g) estimated

thermal IR images by MU-Net2-b.

are mean and standard deviation of the ground truth IR and

the estimated IR images. From the normalized ground truth

IR images and the normalized estimated IR images, a mean

absolute error (MAE) is calculated for each approach. MU-

Net1-b shows the smallest error among the all models.

We also visualized examples of ground truth IR images

and corresponding estimated IR images as shown in Fig.

8 using the normalized images, as E′′

g (x, y) = (E′

g(x, y)
* σg + 128) and E′′

e (x, y) = (E′

e(x, y) * σg + 128). Fig-

ures 8 (a), (b), (d), and (e) show examples of captured im-

ages, ground truth IR thermal images corresponding to (a),

estimated IR thermal images by MU-Net1-a, and those by

MU-Net1-b, respectively. We also compared the proposed

MU-Net1 with [3], whose results are shown in Fig. 8 (c).

Results by MU-Net1-b show smoother results than those
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Figure 9. MAEs (mean absolute error) of MU-Net1-a, MU-Net1-

b, MU-Net2-a, and MU-Net2-b. Models are trained with images

at 5 pm and tested with images from 10 am to 5 pm. MU-Net1-b

shows the smallest MAE.

by [3]. These results also suggest that the performance of

MU-Net1-b is better than that of U-Net and MU-Net1-a.

Figures 8 (f) and (g) show estimated thermal IR images by

MU-Net2-a and MU-Net2-b, and these results show more

false positives than the results of MU-Net1-b. MAE of MU-

Net1-a based on E′′

g and E′′

e is 2.30 degree.

From the above results, MU-Net1-a and MU-Net1-b per-

form better than MU-Net2-a and MU-Net2-b. One of the

reasons why MU-Net1 is better is as follows. In MU-Net2,

the model for the annotation images is trained with only an-

notation images. On the other hand, MU-Net1 trains the

network with both annotation and thermal IR images. The

use of IR images in MU-Net1 gives additional constrains

which improve the performance of the classification of an-

notation images. This results in improving the estimation of

thermal IR images in MU-Net1.

In our next experiments, we used images taken at every

1 hour from 10 am to 5 pm as a probe dataset, to see if the

models trained with images at 5 pm are robust in time vari-

ations. As for the experiment setting of images at 5 pm, we

used the same setting as with the previous section (i.e., no

overlap among gallery, evaluation, and test dataset). Fig-

ure 9 shows MAEs of MU-Net1-a, MU-Net1-b, MU-Net2-

a, and MU-Net2-b from 10 am to 5 pm. These results show

that MU-Net1-b is the most robust architecture among the

five architectures.

Figure 10 (a) shows captured RGB images from 10 am

to 4 pm, and Figs. 10 (b) and (c) shows ground-truth IR im-

ages corresponding to (a) and estimated thermal IR images

by MU-Net1-b. These images show that overall temperature

characteristics are predicted by the proposed method, but

we can see differences between ground-truth IR images and

estimated IR images, because the proposed method does not

take into account shadows, angle of the Sun, geological in-

formation, etc. These are left for a future work.
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Figure 10. (a) Examples of RGB images from 10 am to 4 pm, (b)

ground truth IR images corresponding to (a), (c) estimated thermal

IR images by MU-Net1-b.

4. Conclusion

In this paper we proposed the use of terrain type infor-

mation to estimate thermal IR images from RGB images.

We introduced four deep learning architectures called MU-

Net1-a, MU-Net1-b, MU-Net2-a, and MU-Net2-b. MU-

Net1-b showed the best performance, since it takes advan-

tages of using annotation images as constraints in addition

to thermal IR images to train the model. There are many

parameters to determine the temperature of terrain surface,

such as thermal inertia, direction to the Sun, geological con-

dition, etc. Future work will include these parameters in the

model.
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