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Abstract

Acquisition of multi- and hyperspectral imagery imposes

significant requirements on the hardware capabilities of the

sensors involved. In order to keep costs manageable, and

due to limitations in the sensing technology, tradeoffs be-

tween the spectral and the spatial resolution of hyperspec-

tral images are usually made. Such tradeoffs are usually

not necessary when considering acquisition of traditional

RGB imagery. We investigate the use of statistical learn-

ing, and in particular, of conditional generative adversarial

networks (cGANs) to estimate mappings from three-channel

RGB to 31-band multispectral imagery. We demonstrate

the application of the proposed approach to (i) RGB-to-

multispectral image mapping, (ii) spectral super-resolution

of image data, and (iii) recovery of RGB imagery from mul-

tispectral data.

1. Introduction

Hyperspectral image acquisition involves the use of spe-

cialized sensors to collect information across the electro-

magnetic spectrum. Hyperspectral imaging is widely used

for various applications ranging from precision agriculture

and biotechnology [15], environmental monitoring and re-

mote sensing [8, 21], to manufacturing of pharmaceutical

products and production of thin-films [24, 9]. Hyper- and

multispectral image analysis techniques have demonstrated

significant success in identifying signatures of interest to aid

vision-based decision-making processes.

However, due to the complexity and cost of hyperspec-

tral sensors, tradeoffs between spectral and spatial resolu-

tion capabilities of the sensors are usually made. Acqui-

sition of hyperspectral data, in addition to involving long

reconstruction time, also requires significant storage space

resources and high-speed data transmission infrastructures

which can make the technology prohibitively costly or in-

feasible in certain applications. The full potential of hyper-

spectral imaging has yet to be realized due to the aforemen-

tioned technical challenges.

Significant effort has been devoted to addressing these

challenges, which are not as prevalent in acquistion of tra-

ditional RGB imagery. In this paper, we focus on leveraging

inexpensive and readily available RGB images to estimate

the corresponding hyperspectral imagery of a scene via sta-

tistically learned mappings. Some authors have applied ma-

chine learning models to learn direct mappings from RGB

images to hyperspectral data based on statistical learning

approaches; related work includes [17, 2, 12] where the au-

thors proposed to fuse low-dimensional hyperspectral im-

ages with high-resolution RGB images to reconstruct high-

resolution hyperspectral images.

In this paper, we explore the use of conditional genera-

tive adversarial networks (cGAN) to learn a mapping from

three-channel RGB images to 31-band multispectral im-

ages. cGANs are a popular architecture within the broader

category of deep learning, which encompasses a set of ma-

chine learning algorithms that are able to learn hierarchies

of abstract representation of data. Currently, cGANs are

capable of producing state-of-the-art results in a range of

conditional image generation tasks such as image spatial

super-resolution, edge mapping and automatic grayscale

colorization. While RGB data is virtually inexhaustible due

to the ubiquity and low cost of the sensors involved, hy-

perspectral data is relatively limited. We propose to use

cGANs to tackle an image translation task. Specifically,

we demonstrate the application of cGANs for (i) RGB-to-

multispectral image mapping, (ii) spectral super-resolution

of image data, and (iii) recovery of RGB imagery from mul-

tispectral data. A high-level overview of the first two tasks

is provided in Fig. 1.

The paper is organized as follows. In Sec. 2, related

work on mapping from RGB to multispectral imagery is

discussed. Specific details on the proposed approach, in-
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cluding the the description of the algorithms, the problem

formulation, and the data preparation procedure are pre-

sented in Sec. 3. Evaluation metrics are outlined in Sec. 4

along with discussions on the experimental results. Lastly,

we conclude the paper in Sec. 5.

2. Related work

As mentioned, acquisition, processing and storage of hy-

perspectral imagery imposes significant demands on the in-

volved hardware. A common workaround to address these

limitations is to make a trade off between spectral and spa-

tial resolution, inevitably incurring a loss in the amount of

available information. Methods to infer missing spectral

and spatial information from low-resolution imagery are be-

ing actively researched.

A number of papers in the literature address the task

of infering spectral information from low-fidelity imagery.

Spectral super-resolution can be thought of as a spectral

upsampling problem. Consider the task of automatic col-

orization of grayscale images [20, 30, 6, 13] where a single-

channel grayscale image is used to infer the red, green, and

blue components of the image. In a more general setting,

different color spaces or spectral bands can be reconstructed

from a given set of available data.

Early methods of spectral super-resolution investigated

and formulated upsampling functions to convert low

spectral-resolution images to high spectral-resolution spec-

tral images by leveraging image statistics [5, 1]. This trend

gradually shifted in favor of dictionary learning of image

patches leveraging sparsity priors [26, 27, 29]. Some au-

thors have introduced model-based methods that rely on

characterization of the spectral response of an RGB camera

to estimate muti- and hyperspectral information [2, 3, 17].

Leveraging ever-increasing hardware capabilities, more

recent research has exploited high-performance GPU com-

puting to implement statistical learning frameworks that

perform spectral super-resolution. Galliani et al. [10] em-

ployed deep CNNs to map between RGB and multispec-

tral images. More recently, generative adversarial net-

works (GANs), a deep architecture largely based on CNNs,

have been shown to generate high quality, high spatial

resolution images from low spatial resolution counterparts

[22, 18, 23, 16]. While GANs are noted for their success in

spatial super-resolution task, there has not been much focus

on spectral super-resolution.

With regards to RGB estimation from multi- and hy-

perspectral data, previous work has leveraged visualization

techniques of imagery with high spectral resolution on RGB

displays such as minimum estimated abundance covariance

(MEAC) [25]. Other approaches have attempted to pre-

serve the maximal amount of information within the re-

duced spectral space but ultimately the image had to be dis-

played in false color. To overcome the limitations, mani-

fold learning and alignment has been proposed [19]. In this

work, we demonstrate a direct mapping from multispectral

imagery to RGB images using conditional generative adver-

sarial networks.

3. Methods

This section outlines the proposed data-driven approach

for estimation of missing spectral data; training methods

and data preprocessing steps are described in detail.

3.1. Conditional GANs

Tne introduction of Generative Adversarial Networks

(GAN) [11] represented a significant breakthrough in the

field of unsupervised learning. A GAN consists of two

modules, a generator and a discriminator, which are usu-

ally implemented in the form of neural networks. The gen-

erative module captures the distribution of the data, while

the discriminative module performs probability estimation

on whether a sample to which it is exposed comes from

the training data or is synthetically generated. Specifically,

generator G(z; θg) builds a mapping function from a noise

distribution pz(z) to the data space, while discriminator

D(x; θd) produces a single scalar output representing the

probability that observed sample x comes from the actual

training data distribution rather than from the learned pg .

G and D are trained simultaneously. The parameters for

G are learned through gradient descent and error backprop-

agation to minimize loss function log(1−D(G(z))). At the

same time, the parameters for D are learned by minimizing

logD(X). Optimizing both networks can be posed as a

two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G)

= Ex∼pdata(x) [logD(x)] + Ez∼px(z) [1−D(G(z))]
(1)

The GAN framework can be naturally extended to learn

conditional distributions by conditioning the generator and

discriminator on additional information y, rather than on

the noise vector z; the networks that result by following

this formulation are known as conditional generative adver-

sarial networks (cGANs). Conditioning input y can be any

auxiliary information such as class labels, actual images, or

any data from other modalities. In cGANs, the prior input

noise pz(z) is combined with y to form joint hidden layer

representations, which results in a generative model that is

capable of transforming samples from one domain into an-

other domain. Applications of such domain transformations

include image-to-image translation [16].
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Figure 1. An illustration of the problem formulation. The first approach involves learning a mapping directly from the RGB to the high

spectral-resolution image domain. The second approach learns a mapping between the downsampled multispectral images (MSI) and the

full multispectral images. The former operates on pixel intensities while the latter operates on spectral reflectance values.
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Figure 2. Reconstruction of five selected spectral bands using an RGB input. The Error maps are pseudo colored with the jet colormap,

with red, green and blue indicating negative, zero, and positive errors respectively.

The objective function of the conditional two-player

minimax game is:

min
G

max
D

V (D,G)

= Ex∼pdata(x|y) [logD(x)]+Ez∼px(z) [1−D(G(z|y))]
(2)

3.2. Problem formulation

In this paper, we propose a framework to perform learn-

ing of a spectral mapping function from an input image with

Ci channels to an output image with Co channels using

cGANs. Our framework supports an arbitrary number of

input and output channels, in practice limited only by the



available computational resources.

Spectral super-resolution from RGB data. This task

involves mapping a three-channel (Ci = 3) RGB pixel im-

age to a 31-band multispectral image (Co = 31). RGB

intensity values are the post-processed result from what has

been captured by the camera sensor. On the other hand,

multispectral image data usually corresponds to the spec-

tral reflectance measured by the sensor. Therefore, the rela-

tionship between the two domains is expected to be highly

non-linear.

Spectral super-resolution from downsampled bands.

In this task, the 31 bands are downsampled to Ci < Co

bands for training; we consider scenarios where Ci ∈
{6, 7, 11, 16, 31}. We keep the first and last channels fixed

across the different scenarios, while the intermediate chan-

nels are uniformly sampled in order to yield the desired

number of bands.

Inverse mapping from multispectral to RGB images.

Traditionally, rendering RGB images from multispectral

images is not a trivial task. Oftentimes, such operations

have high complexity and may involve complicated non-

linear transformations that leverage domain knowledge. In

this task, a function that maps multispectral data to RGB

imagery is learned.

3.3. Data description

In this experiment, we used the CAVE dataset [28],

which consists of 32 scenes divided into 5 sections. Imagery

for each scene includes full spectral resolution reflectance

data from 400nm to 700nm at 10nm steps resulting in 31

total bands. Each band is stored as a 16-bit grayscale PNG

image. For training and testing, we preserve the order of the

filenames listed in the official website and split the data into

training and testing sets in alternating order. In other words,

channels 1, 3, 5, ..., 31 are used for training whereas images

2, 4, 6, ..., 32 are used for testing.

Data preprocessing. The available reflectance data has

a depth of 16 bits (i.e., ranging from 0 to 65535) while the

RGB pixel intensities have a depth of 8 bits (i.e., ranging

between 0 and 255). We find that by linearly stretching the

RGB pixel intensities to the full 16-bit range, the learning

process converged faster. In other words, the conversion

from 8-bit to 16-bit images was achieved by computing:

I16-bit = 256(I8-bit + 1)− 1

Due to the relatively small number of training images, we

performed on-the-fly data augmentation where the training

sample was scaled randomly by a factor of ±5%. Nearest-

neighbor interpolation was used as needed during the resiz-

ing process.

3.4. Training the model

In our experiments, we observed that when Ci is much

smaller than Co (e.g., when attempting to upsample 3 chan-

nels into 31 channels), training took longer to converge.

Hence, the number of training epochs was selected as a

function of input channel size; specifically, we set the num-

ber of epochs to E1 − E0Ci, where E1 = 5700, E0 = 300
are constant values chosen. The model was trained using

the ADAM optimizer with a learning rate of 0.0002 and mo-

mentum of 0.5.

4. Results and Discussion

We first provide a brief description of the choices of

evaluation metrics, and then report the performance of the

model based on these metrics.

4.1. Evaluation metrics

We employed multiple evaluation metrics to evaluate the

quality of the reconstructed data. All metrics are computed

by treating 8-bit integers as a floating point value.

Performance metrics. We measure the root mean-

squared error (RMSE) between the reconstructed spectral

map ŷ and the ground truth y according to:

RMSE(y, ŷ) =

(

1

whc

whc
∑

i=0

(ŷi − yi)
2

)1/2

We also employed the relative root mean squared error

(rRMSE) as outlined in [10]. To that end, the RMSE is

divided by the mean value of the ground truth according to:

rRMSE(y, ŷ) =
RMSE(y, ŷ)

whc

whc
∑

i=0

yi

Some authors [10] choose to clip values beyond the 8-

bit 0-255 range. However, they fail to mention how they

implement the 16-bit to 8-bit conversion. In this paper, the

conversion takes place by computing:

I8-bit =

[

1

256
(I16-bit + 1)− 1

]

where [·] is the nearest-integer function.

4.2. Model performance

Overall performance. Fig. 3 includes RMSE computed

between the ground truth imagery and the reconstructed im-

agery for different reconstruction tasks. Generally speak-

ing, our framework was able to reconstruct pixel values in

missing spectral bands within approximately 3% of their
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Figure 3. Reconstruction RMSE with respect to the ground truth. Labels are formatted as MSI-Ci-Co, where Ci and Co are the number of

input and output channels, respectively. The vertical colored lines indicate the center of the red, green, and blue channels.
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Figure 4. Spectral signatures of six examples from the test set computed by taking the mean of reflectance values for each channel. RGB

to MSI approach (cross domain) struggled more compared to direct spectral super-resolution (same domain).

original value. As illustrated in the plots, the reconstruction

error has a tendency to increase as the wavelength of the

reconstructed band increases. This trend is observed across

all cases investigated. Inspection of the data set revealed

that pixel values tend to have larger variance in bands with

longer wavelengths, which is likely an effect of noise. Fur-

thermore, the effect of the increasing reconstruction error

is more pronounced in RGB to MSI reconstruction, and is

less obvious in MSI to MSI spectral super-resolution. We

hypothesize that this is due to the fact that RGB pixel inten-

sities have different physical meaning than the target val-

ues which effectively represent spectral reflectance. In con-

trast, input-output values for the spectral super-resolution

approach lie within the same domain and there is less dis-
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Figure 5. Visual evaluation of the MSI-to-RGB approach.

parity between the physical meaning of the values. Con-

sequently, the reconstruction performance is better in the

latter case.

Table 1. Resulting RMSE and rRMSE for the three-channel RGB

to 31-band Multispectral reconstruction task.

CAVE RGB - MSI 31 Arad [4] Galliani [10] Ours

RMSE 5.40 4.76 8.06

rRMSE - 0.2804 0.3210

RGB to multispectral reconstruction. The reconstruc-

tion of spectral bands using RGB inputs is visualized in

Fig. 2. The proposed approach is compared with the algo-

rithms introduced by Arad et al. [4] and Galliani et al. [10]

in terms of RMSE and rRMSE (see Table 1). Our method

did not fare too well with the RGB-to-Multispectral super-

resolution formulation and is largely attributed to the chal-

lenge of GANs “hallucinating” the spectral bands instead

of learning a good mapping function between the two do-

mains, as mentioned in prior work [7, 16, 14]. In addi-

tion, [10] performed 8-bit clipping before computation of

the metric; while we performed computation on our 16-bit

model output (0-65536) rescaled to 8-bit (0-255) without

clipping.

For visualization purposes, spectral signatures of six ex-

amples from the test set are shown in Fig. 4. For Food,

Strawberries, and Beads, the reconstructed reflectance (blue

dotted lines) accurately reflects the ground truth reflectance

(green solid lines). As before, reconstruction errors are rela-

tively small in shorter wavelengths of Superballs and tend to

increase at higher wavelengths. An almost constant bias of

mapped values is observed in Sponges and Chart & Stuffed

Toy, potentially due to the scene having visual clutter in the

foreground, in addition to the 2D chart in the background.

Spectral super-resolution. We compare our approach

with the spectral interpolation (SpctInt) approach where

missing bands are filled with interpolated values between

the two neighboring available channels. Formally, the ma-

trix for the i-th channel between two channels Dstart and

Dend is described by:

Di = Dstart +
(Dend −Dstart)(i− 1)

c+ 1

where c is the number of missing channels in between. For

example, c = 5 when a 6-channel input is upsampled to 31

channels (i.e., 31 = 1+5+1+5+1+5+1+5+1+5+1
where 1s are channels that are retained, and 5s in between

indicate the number of missing channels.) Results for spec-

tral super-resolution (i.e., from low spectral resolution to

high spectral resolution) are shown in Table 2. As hypoth-

esized, the general observation is that as the number of dis-

carded bands, the performance of the model improves. It is

also observed that the proposed approach has lower RMSE

compared to naive spectral interpolation.

Table 2. Resulting RMSE and rRMSE for competing spectral

super-resolution formulations. Labels are formatted as MSI-Ci-

Co, where Ci and Co are the number of input and output channels

respectively.

SpctInt SpctInt Ours Ours

CAVE Dataset RMSE rRMSE RMSE rRMSE

RGB to MSI-31 - - 8.0622 0.2062

MSI-6-31 7.2942 0.4236 5.9907 0.1664

MSI-7-31 5.9417 0.3514 5.3824 0.1420

MSI-11-31 4.8440 0.2881 4.7001 0.1293

MSI-16-31 5.0178 0.3074 4.8740 0.1326



Multispectral to RGB. Quantitative results for this task

are shown in Fig. 3. The outputs are visualized in Fig. 5.

From inspection of the examples provided, we conclude the

model can accurately reconstruct RGB color values. How-

ever, the model appears to have introduced some blur to the

generated outputs. Since the framework accepts the full di-

mension of the image as the input, it relies on the global

image statistics while reconstructing the output. With this

in mind, the framework could be extended to learn finer lo-

cal features to produce crisper and sharper images. This can

be achieved by training a local model that processes over-

lapping subimages from the original input and averaged at

the output.

Table 3. Resulting RMSE and rRMSE for the MSI to RGB map-

ping task.

CAVE Dataset RMSE rRMSE

MSI 31 - RGB 5.6490 0.1389

5. Conclusion

We proposed a framework to super-resolve images in

the spectral domain using conditional generative adversar-

ial networks. We demonstrated via experimental validation

that such framework is not only able to learn the mapping

between two domains having distinct physical meaning, but

that it can also learn to effectively map between low- and

high-dimensional features in the same domain. We com-

pared our forward-mapping approach with competing state-

of-art methods, in addition to proposing the same frame-

work to solve the inverse mapping problem which tradition-

ally has been solved using high complexity band-selection

methods. Our framework was able to learn global image

statistics from a limited number of training data and achieve

good performance. We surmise that as mapping methods

such as the ones proposed increase in capabilities, many ap-

plications where performance is affected by the expense of

hyperspectral sensing will benefit. The downside of relying

on purely data-driven generative model such as GANs is

their susceptibilty to hallucination as shown in our RGB-to-

Spectral translation and also in prior work. Future research

directions are delineated below:

1. Extend the framework to operate on a patch basis so

that high-frequency local image structures can be bet-

ter reconstructed and appear sharper.

2. Investigate multi-scale framework to enhance perfor-

mance by leveraging statistics extracted from hierar-

chical multi-resolution image structures.

3. Devise methods to reduce susceptibility to hallucina-

tions.
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