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Abstract

Acquisition of multi- and hyperspectral imagery imposes
significant requirements on the hardware capabilities of the
sensors involved. In order to keep costs manageable, and
due to limitations in the sensing technology, tradeoffs be-
tween the spectral and the spatial resolution of hyperspec-
tral images are usually made. Such tradeoffs are usually
not necessary when considering acquisition of traditional
RGB imagery. We investigate the use of statistical learn-
ing, and in particular, of conditional generative adversarial
networks (cGANs) to estimate mappings from three-channel
RGB to 31-band multispectral imagery. We demonstrate
the application of the proposed approach to (i) RGB-to-
multispectral image mapping, (ii) spectral super-resolution
of image data, and (iii) recovery of RGB imagery from mul-
tispectral data.

1. Introduction

Hyperspectral image acquisition involves the use of spe-
cialized sensors to collect information across the electro-
magnetic spectrum. Hyperspectral imaging is widely used
for various applications ranging from precision agriculture
and biotechnology [15], environmental monitoring and re-
mote sensing [8, 21], to manufacturing of pharmaceutical
products and production of thin-films [24, 9]. Hyper- and
multispectral image analysis techniques have demonstrated
significant success in identifying signatures of interest to aid
vision-based decision-making processes.

However, due to the complexity and cost of hyperspec-
tral sensors, tradeoffs between spectral and spatial resolu-
tion capabilities of the sensors are usually made. Acqui-
sition of hyperspectral data, in addition to involving long
reconstruction time, also requires significant storage space
resources and high-speed data transmission infrastructures
which can make the technology prohibitively costly or in-
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feasible in certain applications. The full potential of hyper-
spectral imaging has yet to be realized due to the aforemen-
tioned technical challenges.

Significant effort has been devoted to addressing these
challenges, which are not as prevalent in acquistion of tra-
ditional RGB imagery. In this paper, we focus on leveraging
inexpensive and readily available RGB images to estimate
the corresponding hyperspectral imagery of a scene via sta-
tistically learned mappings. Some authors have applied ma-
chine learning models to learn direct mappings from RGB
images to hyperspectral data based on statistical learning
approaches; related work includes [17, 2, 12] where the au-
thors proposed to fuse low-dimensional hyperspectral im-
ages with high-resolution RGB images to reconstruct high-
resolution hyperspectral images.

In this paper, we explore the use of conditional genera-
tive adversarial networks (cGAN) to learn a mapping from
three-channel RGB images to 31-band multispectral im-
ages. cGANSs are a popular architecture within the broader
category of deep learning, which encompasses a set of ma-
chine learning algorithms that are able to learn hierarchies
of abstract representation of data. Currently, cGANs are
capable of producing state-of-the-art results in a range of
conditional image generation tasks such as image spatial
super-resolution, edge mapping and automatic grayscale
colorization. While RGB data is virtually inexhaustible due
to the ubiquity and low cost of the sensors involved, hy-
perspectral data is relatively limited. We propose to use
cGANSs to tackle an image translation task. Specifically,
we demonstrate the application of cGANs for (i) RGB-to-
multispectral image mapping, (ii) spectral super-resolution
of image data, and (iii) recovery of RGB imagery from mul-
tispectral data. A high-level overview of the first two tasks
is provided in Fig. 1.

The paper is organized as follows. In Sec. 2, related
work on mapping from RGB to multispectral imagery is
discussed. Specific details on the proposed approach, in-



cluding the the description of the algorithms, the problem
formulation, and the data preparation procedure are pre-
sented in Sec. 3. Evaluation metrics are outlined in Sec. 4
along with discussions on the experimental results. Lastly,
we conclude the paper in Sec. 5.

2. Related work

As mentioned, acquisition, processing and storage of hy-
perspectral imagery imposes significant demands on the in-
volved hardware. A common workaround to address these
limitations is to make a trade off between spectral and spa-
tial resolution, inevitably incurring a loss in the amount of
available information. Methods to infer missing spectral
and spatial information from low-resolution imagery are be-
ing actively researched.

A number of papers in the literature address the task
of infering spectral information from low-fidelity imagery.
Spectral super-resolution can be thought of as a spectral
upsampling problem. Consider the task of automatic col-
orization of grayscale images [20, 30, 6, 13] where a single-
channel grayscale image is used to infer the red, green, and
blue components of the image. In a more general setting,
different color spaces or spectral bands can be reconstructed
from a given set of available data.

Early methods of spectral super-resolution investigated
and formulated upsampling functions to convert low
spectral-resolution images to high spectral-resolution spec-
tral images by leveraging image statistics [5, 1]. This trend
gradually shifted in favor of dictionary learning of image
patches leveraging sparsity priors [26, 27, 29]. Some au-
thors have introduced model-based methods that rely on
characterization of the spectral response of an RGB camera
to estimate muti- and hyperspectral information [2, 3, 17].

Leveraging ever-increasing hardware capabilities, more
recent research has exploited high-performance GPU com-
puting to implement statistical learning frameworks that
perform spectral super-resolution. Galliani et al. [10] em-
ployed deep CNNs to map between RGB and multispec-
tral images. More recently, generative adversarial net-
works (GANSs), a deep architecture largely based on CNNSs,
have been shown to generate high quality, high spatial
resolution images from low spatial resolution counterparts
[22, 18, 23, 16]. While GANSs are noted for their success in
spatial super-resolution task, there has not been much focus
on spectral super-resolution.

With regards to RGB estimation from multi- and hy-
perspectral data, previous work has leveraged visualization
techniques of imagery with high spectral resolution on RGB
displays such as minimum estimated abundance covariance
(MEAC) [25]. Other approaches have attempted to pre-
serve the maximal amount of information within the re-

duced spectral space but ultimately the image had to be dis-
played in false color. To overcome the limitations, mani-
fold learning and alignment has been proposed [19]. In this
work, we demonstrate a direct mapping from multispectral
imagery to RGB images using conditional generative adver-
sarial networks.

3. Methods

This section outlines the proposed data-driven approach
for estimation of missing spectral data; training methods
and data preprocessing steps are described in detail.

3.1. Conditional GANs

Tne introduction of Generative Adversarial Networks
(GAN) [11] represented a significant breakthrough in the
field of unsupervised learning. A GAN consists of two
modules, a generator and a discriminator, which are usu-
ally implemented in the form of neural networks. The gen-
erative module captures the distribution of the data, while
the discriminative module performs probability estimation
on whether a sample to which it is exposed comes from
the training data or is synthetically generated. Specifically,
generator G(z; 6,) builds a mapping function from a noise
distribution p,(z) to the data space, while discriminator
D(x;604) produces a single scalar output representing the
probability that observed sample = comes from the actual
training data distribution rather than from the learned p,.

G and D are trained simultaneously. The parameters for
G are learned through gradient descent and error backprop-
agation to minimize loss function log(1 — D(G(z))). At the
same time, the parameters for D are learned by minimizing
log D(X). Optimizing both networks can be posed as a
two-player minimax game with value function V (G, D):

min max V' (D, Q)
G D

= EINPdam(z) [logD(x)] + EZ~pI(Z) [1 - D(G(Z))]
(1)

The GAN framework can be naturally extended to learn
conditional distributions by conditioning the generator and
discriminator on additional information y, rather than on
the noise vector z; the networks that result by following
this formulation are known as conditional generative adver-
sarial networks (cGANSs). Conditioning input y can be any
auxiliary information such as class labels, actual images, or
any data from other modalities. In cGANSs, the prior input
noise p,(z) is combined with y to form joint hidden layer
representations, which results in a generative model that is
capable of transforming samples from one domain into an-
other domain. Applications of such domain transformations
include image-to-image translation [16].



RGB to MSI

Skip connections

RGB Input

Pixel Intensities RGB Channels
(0-255)

Low-res MSI to High-res MSI

RGB-to-MSI cGAN

High-resolution
Multispectral Images
Reflectance
(0-65535)

Skip connections

Low-res MSI to High-res

Low-resolution Multispectral Images MSI cGAN
Reflectance (0-65535)

Figure 1. An illustration of the problem formulation. The first approach involves learning a mapping directly from the RGB to the high

spectral-resolution image domain. The second approach learns a mapping between the downsampled multispectral images (MSI) and the
full multispectral images. The former operates on pixel intensities while the latter operates on spectral reflectance values.
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Figure 2. Reconstruction of five selected spectral bands using an RGB input. The Error maps are pseudo colored with the jet colormap,
with red, green and blue indicating negative, zero, and positive errors respectively.

The objective function of the conditional two-player 3.2. Problem formulation
minimax game is:
In this paper, we propose a framework to perform learn-

minmax V (D, G) ing of a spectral mapping function from an input image with
@ b C; channels to an output image with C, channels using
= Eonpiara(ely) 108 D(@)|+Eznp, () [1 — D(G(2]y))] ¢GANs. Our framework supports an arbitrary number of

@) input and output channels, in practice limited only by the



available computational resources.

Spectral super-resolution from RGB data. This task
involves mapping a three-channel (C; = 3) RGB pixel im-
age to a 31-band multispectral image (C, = 31). RGB
intensity values are the post-processed result from what has
been captured by the camera sensor. On the other hand,
multispectral image data usually corresponds to the spec-
tral reflectance measured by the sensor. Therefore, the rela-
tionship between the two domains is expected to be highly
non-linear.

Spectral super-resolution from downsampled bands.
In this task, the 31 bands are downsampled to C; < C,
bands for training; we consider scenarios where C; &
{6,7,11,16,31}. We keep the first and last channels fixed
across the different scenarios, while the intermediate chan-
nels are uniformly sampled in order to yield the desired
number of bands.

Inverse mapping from multispectral to RGB images.
Traditionally, rendering RGB images from multispectral
images is not a trivial task. Oftentimes, such operations
have high complexity and may involve complicated non-
linear transformations that leverage domain knowledge. In
this task, a function that maps multispectral data to RGB
imagery is learned.

3.3. Data description

In this experiment, we used the CAVE dataset [28],
which consists of 32 scenes divided into 5 sections. Imagery
for each scene includes full spectral resolution reflectance
data from 400nm to 700nm at 10nm steps resulting in 31
total bands. Each band is stored as a 16-bit grayscale PNG
image. For training and testing, we preserve the order of the
filenames listed in the official website and split the data into
training and testing sets in alternating order. In other words,
channels 1, 3, 5, ..., 31 are used for training whereas images
2,4,6, ..., 32 are used for testing.

Data preprocessing. The available reflectance data has
a depth of 16 bits (i.e., ranging from 0 to 65535) while the
RGB pixel intensities have a depth of 8 bits (i.e., ranging
between 0 and 255). We find that by linearly stretching the
RGB pixel intensities to the full 16-bit range, the learning
process converged faster. In other words, the conversion
from 8-bit to 16-bit images was achieved by computing:

Tgvit = 256(Jgpic +1) — 1

Due to the relatively small number of training images, we
performed on-the-fly data augmentation where the training
sample was scaled randomly by a factor of +5%. Nearest-
neighbor interpolation was used as needed during the resiz-
ing process.

3.4. Training the model

In our experiments, we observed that when C; is much
smaller than C, (e.g., when attempting to upsample 3 chan-
nels into 31 channels), training took longer to converge.
Hence, the number of training epochs was selected as a
function of input channel size; specifically, we set the num-
ber of epochs to F; — EyC;, where 1 = 5700, Ey = 300
are constant values chosen. The model was trained using
the ADAM optimizer with a learning rate of 0.0002 and mo-
mentum of 0.5.

4. Results and Discussion

We first provide a brief description of the choices of
evaluation metrics, and then report the performance of the
model based on these metrics.

4.1. Evaluation metrics

We employed multiple evaluation metrics to evaluate the
quality of the reconstructed data. All metrics are computed
by treating 8-bit integers as a floating point value.

Performance metrics. We measure the root mean-
squared error (RMSE) between the reconstructed spectral
map ¢ and the ground truth y according to:

1 whe 1/2
RMSE(y, ) = (whc > @i - yi)2>

1=0

We also employed the relative root mean squared error
(rRMSE) as outlined in [10]. To that end, the RMSE is
divided by the mean value of the ground truth according to:

~\ whe
. RMSE(y, ) <
rRMSE(y, §) = % > v
i=0

Some authors [10] choose to clip values beyond the 8-
bit 0-255 range. However, they fail to mention how they
implement the 16-bit to 8-bit conversion. In this paper, the
conversion takes place by computing:

1
Ig pig = %(Ilﬁ—bit +1)-1

where [-] is the nearest-integer function.

4.2. Model performance

Overall performance. Fig. 3 includes RMSE computed
between the ground truth imagery and the reconstructed im-
agery for different reconstruction tasks. Generally speak-
ing, our framework was able to reconstruct pixel values in
missing spectral bands within approximately 3% of their
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Figure 3. Reconstruction RMSE with respect to the ground truth. Labels are formatted as MSI-C;-C,, where C; and C,, are the number of
input and output channels, respectively. The vertical colored lines indicate the center of the red, green, and blue channels.
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Figure 4. Spectral signatures of six examples from the test set computed by taking the mean of reflectance values for each channel. RGB

to MSI approach (cross domain) struggled more compared to direct spectral super-resolution (same domain).

original value. As illustrated in the plots, the reconstruction
error has a tendency to increase as the wavelength of the
reconstructed band increases. This trend is observed across
all cases investigated. Inspection of the data set revealed
that pixel values tend to have larger variance in bands with
longer wavelengths, which is likely an effect of noise. Fur-
thermore, the effect of the increasing reconstruction error

is more pronounced in RGB to MSI reconstruction, and is
less obvious in MSI to MSI spectral super-resolution. We
hypothesize that this is due to the fact that RGB pixel inten-
sities have different physical meaning than the target val-
ues which effectively represent spectral reflectance. In con-
trast, input-output values for the spectral super-resolution
approach lie within the same domain and there is less dis-
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Figure 5. Visual evaluation of the MSI-to-RGB approach.

parity between the physical meaning of the values. Con-
sequently, the reconstruction performance is better in the
latter case.

Table 1. Resulting RMSE and rRMSE for the three-channel RGB
to 31-band Multispectral reconstruction task.

CAVE RGB - MSI 31 ‘ Arad [4] Galliani [10]  Ours
RMSE 5.40 4.76 8.06
rRMSE - 0.2804 0.3210

RGB to multispectral reconstruction. The reconstruc-
tion of spectral bands using RGB inputs is visualized in
Fig. 2. The proposed approach is compared with the algo-
rithms introduced by Arad et al. [4] and Galliani et al. [10]
in terms of RMSE and rRMSE (see Table 1). Our method
did not fare too well with the RGB-to-Multispectral super-
resolution formulation and is largely attributed to the chal-
lenge of GANs “hallucinating” the spectral bands instead
of learning a good mapping function between the two do-
mains, as mentioned in prior work [7, 16, 14]. In addi-
tion, [10] performed 8-bit clipping before computation of
the metric; while we performed computation on our 16-bit
model output (0-65536) rescaled to 8-bit (0-255) without
clipping.

For visualization purposes, spectral signatures of six ex-
amples from the test set are shown in Fig. 4. For Food,
Strawberries, and Beads, the reconstructed reflectance (blue
dotted lines) accurately reflects the ground truth reflectance
(green solid lines). As before, reconstruction errors are rela-
tively small in shorter wavelengths of Superballs and tend to
increase at higher wavelengths. An almost constant bias of
mapped values is observed in Sponges and Chart & Stuffed
Toy, potentially due to the scene having visual clutter in the

foreground, in addition to the 2D chart in the background.

Spectral super-resolution. We compare our approach
with the spectral interpolation (Spctlnt) approach where
missing bands are filled with interpolated values between
the two neighboring available channels. Formally, the ma-
trix for the i-th channel between two channels D+ and
D.,,q is described by:

(Dend - Dstart)(i - 1)

D':DG T
7 start T c+1

where c is the number of missing channels in between. For
example, ¢ = 5 when a 6-channel input is upsampled to 31
channels (i.e., 31 =1+5+14+54+1+5+14+5+1+5+1
where 1s are channels that are retained, and 5s in between
indicate the number of missing channels.) Results for spec-
tral super-resolution (i.e., from low spectral resolution to
high spectral resolution) are shown in Table 2. As hypoth-
esized, the general observation is that as the number of dis-
carded bands, the performance of the model improves. It is
also observed that the proposed approach has lower RMSE
compared to naive spectral interpolation.

Table 2. Resulting RMSE and rRMSE for competing spectral
super-resolution formulations. Labels are formatted as MSI-C;-
C,, where C; and C, are the number of input and output channels
respectively.

Spctlnt ~ Spctlnt | Ours Ours
CAVE Dataset | RMSE rRMSE | RMSE RMSE
RGB to MSI-31 - - 8.0622  0.2062
MSI-6-31 7.2942  0.4236 | 5.9907 0.1664
MSI-7-31 59417 0.3514 | 5.3824  0.1420
MSI-11-31 4.8440 0.2881 | 4.7001 0.1293
MSI-16-31 5.0178 0.3074 | 4.8740 0.1326




Multispectral to RGB. Quantitative results for this task
are shown in Fig. 3. The outputs are visualized in Fig. 5.
From inspection of the examples provided, we conclude the
model can accurately reconstruct RGB color values. How-
ever, the model appears to have introduced some blur to the
generated outputs. Since the framework accepts the full di-
mension of the image as the input, it relies on the global
image statistics while reconstructing the output. With this
in mind, the framework could be extended to learn finer lo-
cal features to produce crisper and sharper images. This can
be achieved by training a local model that processes over-
lapping subimages from the original input and averaged at
the output.

Table 3. Resulting RMSE and rRMSE for the MSI to RGB map-
ping task.

rRMSE
0.1389

CAVE Dataset | RMSE
MSI 31 -RGB | 5.6490

5. Conclusion

We proposed a framework to super-resolve images in
the spectral domain using conditional generative adversar-
ial networks. We demonstrated via experimental validation
that such framework is not only able to learn the mapping
between two domains having distinct physical meaning, but
that it can also learn to effectively map between low- and
high-dimensional features in the same domain. We com-
pared our forward-mapping approach with competing state-
of-art methods, in addition to proposing the same frame-
work to solve the inverse mapping problem which tradition-
ally has been solved using high complexity band-selection
methods. Our framework was able to learn global image
statistics from a limited number of training data and achieve
good performance. We surmise that as mapping methods
such as the ones proposed increase in capabilities, many ap-
plications where performance is affected by the expense of
hyperspectral sensing will benefit. The downside of relying
on purely data-driven generative model such as GANs is
their susceptibilty to hallucination as shown in our RGB-to-
Spectral translation and also in prior work. Future research
directions are delineated below:

1. Extend the framework to operate on a patch basis so
that high-frequency local image structures can be bet-
ter reconstructed and appear sharper.

2. Investigate multi-scale framework to enhance perfor-
mance by leveraging statistics extracted from hierar-
chical multi-resolution image structures.

3. Devise methods to reduce susceptibility to hallucina-
tions.
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