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Abstract

Thermal-to-visible face recognition is an emerging tech-
nology for low-light and nighttime human identification,
for which detection of fiducial landmarks is a critical step
required for face alignment prior to recognition. How-
ever, thermal images with their low contrast, low resolu-
tion, and lack of textural information have proven a chal-
lenging obstacle for the detection of the fiducial land-
marks used for image alignment. This paper analyzes
the ability of modern landmark detection algorithms to
cope with the adversarial conditions present in the ther-
mal domain by exploring the strengths and weaknesses
of three deep-learning based landmark detection architec-
tures originally developed for visible images: the Deep
Alignment Network (DAN), Multi-task Convolutional Neu-
ral Network (MTCNN), and a Multi-class Patch-based fully-
convolutional neural network (PBC). Our experiments yield
a normalized mean squared error of 0.04 at an offset dis-
tance of 2.5 meters using the DAN architecture, indicating
an ability for cascaded shape regression neural networks to
adapt to thermal images. However, we find that even small
alignment errors disproportionately reduce correct recog-
nition rates. With images aligned using the best performing
model, an 8.2% drop in EER is observed as compared with
ground truth alignments, leaving further room for improve-
ment in this area.

1. Introduction

For thermal-to-visible face recognition, faces are aligned
to canonical coordinates using a set of fiducial landmarks,
which often requires automatic face and landmark detection
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algorithms. However, there is relatively little research on fa-
cial landmark detection in the thermal domain. Moreover,
there are indications that face recognition with thermal im-
agery is more sensitive to proper face alignment compared
to visible spectrum face recognition [2]. The alignment pro-
cess is illustrated in Figure 1.

As stated in [4], “...most of the work to date supports the
conclusion that salient facial feature localization in thermal
images is significantly more challenging.” Thermal imagery
inherently has less spatial resolution than visible imagery
due to the longer wavelengths of MWIR and LWIR. The
facial region in a thermal image exhibits low contrast and
lacks the textural information present in its visible counter-
part. The modality gap between visible and infrared images
is showcased in [0]. Therefore, the plethora of fiducial land-
mark detection algorithms developed for visible face recog-
nition systems may be challenged in the thermal spectrum.

A variety of deep-learning based approaches have shown
success for face alignment on visible images. However, pre-
vious thermal alignment research [ 1 ][8][14][13][17] has not
yet explored deep-learning based approaches. Even with
relatively limited amount of training data in the thermal
spectrum, the state of the art techniques developed for vis-
ible face alignment may still be applicable in the thermal
domain through retraining and/or modifications to the net-
work architecture.

In this paper, we examine the importance of face align-
ment for thermal-to-visible face verification and assess the
effectiveness of different landmark detection strategies. We
explore the possibility of applying modern deep-learning
approaches to the thermal domain. In particular, we inves-
tigate a multi-class patch-based fully-convolutional neural
network classifier (PBC) and two state of the art landmark
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Figure 1. Alignment of a thermal image to a set of canonical points such that the landmarks in both the visible and thermal images appear

in the same image locations.

detection algorithms developed for visible images: the Deep
Alignment Network (DAN) [9] and the Multi-Task Convo-
lIutional Neural Network (MTCNN) [19].

The paper is structured as follows. Chapter 2 summa-
rizes prior research in the area of thermal face alignment.
Chapter 3 describes in greater detail the key features of
the algorithms examined in this paper. Chapter 4 presents
and discusses the experimental results. Closing remarks are
made in Chapter 5.

2. Background

Early methods of thermal face alignment focused on
developing methods specialized to detect a particular fa-
cial feature. Bourlai ef al. [1] relied on a combination of
photometric normalization techniques in conjunction with
template-based matching to detect eye locations. Also fo-
cusing on eye detection, Wang et al. [17] extract Haar-like
features from assumed eye regions for classification with
an SVM. Utilizing video frames to detect nostril locations,
Tzeng et al. [ 14] exploit the variance in temperature around
the nostrils during respiration.

Recent research targets the facial region as a whole.
Kopaczka et al. [8] learn an Active Appearance Model from
HOG and SIFT features to track landmark locations in ther-
mal videos. Bypassing facial landmarks altogether, Sun and
Zheng [13] perform iterative point-to-point matching with
Canny edge maps of visible and thermal image pairs.

In 2003, Chen et al. [2] studied the sensitivity of com-
bined thermal and visible face recognition systems to im-
ages misaligned via small perturbations in the eye landmark
locations. They recorded a 5-19% drop in correct match
percentages compared to using correctly aligned images. It
should be noted the systems used both the visible and ther-

mal image of a probe subject, as opposed to using only a
thermal probe. The algorithms consisted of a PCA-based
matcher as well as a commercial off-the-shelf system.

3. Landmark Detection in Thermal Imagery
3.1. Multi-Task Convolutional Neural Network

MTCNN [19] is a joint face detection and landmark lo-
calization algorithm used in the preprocessing pipeline of
several state of the art face recognition models [3][10][16].
The architecture is composed of a three stage neural net-
work. Each stage of the network is trained to simultane-
ously classify face regions and directly regress a set of land-
mark location values for each region.

The ith stage is defined as

glece gter gl = fi(P39), (1)

~Jace

where P is an image patch, §; € R is the probability
that P is a face, 7’ € R* are adjustments to the posi-
tion and size of the bounding box describing the face patch,
3}5 € R is the set of coordinates for the eyes, nose, and
mouth corner landmarks. Throughout the paper, network
parameters are denoted as 6. Each stage is trained indepen-
dently, with input batches alternating the minimization of
the losses associated with §/%°¢, §j°°% and ¢/'. Input training
data is composed of image patches of size 12x12, 24x24,
and 48x48 for stages ¢ = 1...3 respectively. Positive (face)
patches and randomly cropped negative (non-face) patches
are used in the training of the face classification task.

After training, the first stage acts as a fully-convolutional
network which produces a set of feature maps, where each
spatial location in the output feature maps is a vector con-
taining 57 °¢, *°%, and 7' associated with a specific recep-
tive field. The location of face regions in the original input



image can be extrapolated from the feature maps based on
the receptive field of the network. Detected face regions are
cropped and propagated to the next stage. Stages 2 and 3,
operating on proposed patches of incrementally larger res-
olutions, yield 1 x 1 x 15 dimensional feature maps cor-
responding to the 10-dimension landmark values, the 4-
dimensional bounding box values, and the 1-dimensional
face class probability. The stages of the MTCNN resemble
a cascaded, coarse-to-fine detection strategy.

layer | size | kernel | stride | padding |
conv 10 3x3 1 valid
max pool 2x2 2 same
conv 16 3x3 1 valid
conv 32 3x3 1 valid
’ face \ 1 \ 1x1 \ 1 \ valid ‘
’ box \ 4 \ 1x1 \ 1 \ valid ‘
[ landmarks [ 10 [ Ix1 |1 | valid |
Table 1. Stage 1 of MTCNN.
layer | size | kernel | stride | padding
conv 28 3x3 1 valid
max pool 3x3 2 same
conv 48 3x3 1 valid
max pool 3x3 2 valid
conv 64 2x2 1 valid
max pool 2x2 2 valid
fc 128 | NA NA NA
’ face \ 1 \ 1x1 \ 1 \ valid ‘
’ box \ 4 \ 1x1 \ 1 \ valid ‘
’ landmarks \ 10 \ 1x1 \ 1 \ valid ‘
Table 2. Stage 2 of MTCNN.
layer | size | kernel | stride | padding
conv 32 3x3 1 valid
max pool 3x3 2 same
conv 64 3x3 1 valid
max pool 3x3 2 valid
conv 64 3x3 1 valid
max pool 2x2 2 same
conv 128 | 2x2 1 valid
fc 256 | NA NA NA
’ face \ 1 \ 1x1 \ 1 \ valid ‘
’ box \ 4 \ 1x1 \ 1 \ valid ‘
’ landmarks \ 10 \ 1x1 \ 1 \ valid ‘

Table 3. Stage 3 of MTCNN.

Tables 1, 2, and 3 present the network architecture of
MTCNN’s three stages. The layers entitled “face”, “box”,
and “landmarks” represent the §72¢¢, *°* and ¢ outputs
of the network and are each connected to the the last convo-
lutional or fully-connected layer of the network. The three
stages of MTCNN contain a total of 494,924 paramaters,
however the majority of parameters exist in the final stage
(387,648 parameters).

Because the MTCNN jointly regresses all five landmarks
from the entire face region, it learns a spatial arrangement of
facial features, leading to anatomically reasonable guesses
when there is a lack of information to track individual land-
marks.

3.2. Multi-Class Patch-Based Classifier

The Multi-Class Patch-Based Classifier (PBC) detects
facial features similar to how the MTCNN detects faces.
Where MTCNN'’s face detector is a binary classifier, the
PBC classifies regions of an image as belonging to one of
six classes, five of which correspond to landmark locations
(left eye, right eye, base of the nose, left mouth corner,
and right mouth corner) while the sixth represents a non-
landmark region.

The Multi-Class PBC is a fully-convolutional neural net-
work trained on image patches extracted from landmark and
non-landmark facial regions, similar to MTCNN and other
cascaded classifiers such as Viola-Jones [15]. The architec-
ture is constructed such that a 60x60 input image patch be-
comes spatially reduced through the network such that the
output is a single vector of class probabilities. The structure
of the network, detailed in Table 4, is based off the final
stage of MTCNN. The network has 1,016,390 parameters.

[ layer | size | kernel | stride | padding |
conv 32 3x3 1 valid
max pool 3x3 2 same
conv 64 3x3 1 valid
max pool 3x3 2 valid
conv 64 3x3 1 same
max pool 2x2 2 valid
conv 128 | 2x2 1 same
conv 256 | 3x3 1 same
conv 256 | 3x3 1 same
conv 10 1x1 1 same

Table 4. Multi-Class Patch-Based Classifier (PBC) network.

After training, the network is fed a cropped face image
I € R and produces a three-dimensional feature map
M € RIxkxe L(jlklc) : j < hk < w,c = 6} of ¢ of
unscaled class logits. The PBC network function is defined
as



M = f(I;0). (2)

The indices in M with the highest classification score for
class [ are given by

T, G0 = argr?aX(Mj,k,l)- 3)
IR

Given a function g(p, q) mapping from spatial location
(p,q) in M toregion R € R™*™ {(n|m) :n < h,m < w}
in I. The region of I containing landmark [ is given by

R = g(argrgax(Mj,kyl)). 4
3

The (x, y) coordinate of the landmark in the original im-
age I is assumed to be the center point of R;.

In contrast to the MTCNN, PBC classifies each region
of the image independently, paying no regard to the global
appearance. As the classifier focuses entirely on local re-
gions, its parameters become specialized for the detection
of specific features. However, false positives can lead to
large errors since the model is not constrained by a global
face shape prior.

3.3. Deep Alignment Network

DAN [9] is a state of the art landmark detection al-
gorithm for visible images. It is composed of two cas-
caded VGG-like networks. A 112x112 input image I is
aligned to an initial estimate of the landmarks [/, usually
obtained from a mean shape calculated from the training
data. Whereas MTCNN regresses landmark location val-
ues, DAN regresses a set of offsets used to update the ini-
tial landmark estimates. Similar to MTCNN, DAN learns
a statistical representation of a face by regressing landmark
values from the global image.

Our experiments utilize the two stage version of the
model. The first stage is defined simply as

The input to the second stage is a three channel image
composed of the original image, a heatmap image H high-
lighting estimated landmark locations, and a feature em-
bedding vector E obtained from a fully-connected layer in
the prior stage. Between stages, a similarity transform T’
is used to re-normalize the image to the canonical shape I.
The largest of the three models, the two-stage DAN contains
23,022,592 total parameters.

Aly = So(T(I), H, E; ). (6)

4. Experimental Results
4.1. Dataset

This study uses Volumes 1 and 2 of the ARL Polarimetric
Thermal Face Dataset released in [7] and extended in [1&].
It is a collection of thermal and visible image pairs. Volume
1 contains 60 subjects while Volume 2 contains 51 subjects.

Data from Volume 1 is captured at three different dis-
tances: Range 1 (2.5m), Range 2 (5Sm), and Range 3 (7.5m).
Each of the 60 subjects has 16 image samples per range, for
a total of 48 samples per subject. The average interocular
distances for the thermal images are 87 pixels, 44 pixels,
and 31 pixels at Ranges 1, 2, and 3 respectively. The inte-
rocular distance of the visible images at Range 2 matches
the interocular distance for Range 1 thermal images. Vol-
ume 2 data is captured at Range 1 only (2.5m), with 31
samples per subject.

The dataset is divided into Protocols 1 and 2 as described
in [18]. For both Protocols, five random folds are gener-
ated wherein subjects are randomly assigned to train and
test sets. The 60 subjects in Protocol 1 are evenly split be-
tween training and testing. Each fold of Protocol 2 is cre-
ated by randomly selecting 85 subjects for training and 26
subjects for testing.

Images are horizontally flipped to augment the training
data. As aresult, Protocol 1 contains 23,040 training images
and 11,520 testing images per fold. Protocol 2 contains on
average 72,845 training images and 11,098 testing images
per fold.

4.2. Training

The DAN and MTCNN models have been trained in the
same fashion as described in the original papers [9][19].

Because MTCNN performs face detection and landmark
localization jointly, it is possible for it to fail to propose
the correct face region, thereby failing to provide any land-
marks. In contrast, DAN and PBC assume a cropped face is
given. In order to facilitate a fair comparison, the first two
stages of MTCNN are bypassed at test time, which serve
only to propose and refine the detected face region. Instead,
the correct face region is passed directly to the third stage
to obtain the regressed landmark values.

The PBC is trained for four epochs on randomly cropped
landmark and non-landmark locations. Random patches are
considered to be landmark regions if they have an Intersec-
tion over Union greater than 0.8 with the ground truth land-
mark region. A learning rate of 0.001 is used with Adam
optimizer on batch sizes of 128.

4.3. Landmark Detection Performance

The algorithms are evaluated based on the point-to-point
normalized mean squared error (NMSE) metrics, calculated
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Method R1 R2 R3 Avg
MTCNN | 0.201 £0.02 | 0.205 £0.02 | 0.187 £0.03 | 0.198 £0.03
PBC 0.164 £ 0.02 | 0.330 £0.06 | 0.716 = 0.05 | 0.403 £+ 0.03
DAN 0.050 £ 0.02 | 0.056 £ 0.02 | 0.061 £ 0.02 | 0.056 £ 0.02
Table 5. Protocol 1 NMSE and standard deviations at Ranges 1, 2, and 3.

’ Method \ R1 \ R2 \ R3 \ Avg
MTCNN | 0.112£0.03 | 0.109 £0.03 | 0.114 £0.03 | 0.097 £ 0.03
PBC 0.073+0.01 | 0.117+0.02 | 0.236 £0.06 | 0.211 £0.04
DAN 0.044 +0.02 | 0.045+0.02 | 0.047 +0.02 | 0.046 £+ 0.02

Table 6. Protocol 2 NMSE and standard deviations at Ranges 1, 2, and 3.

)

as
=,
d

where d is the interocular distance, /; is the ith predicted
landmark, and [* is the ground truth landmark.

Tables 5 and 6 list the global NMSE and standard de-
viation averaged over all landmarks across all five folds of
each protocol. DAN achieves the lowest error rates at all
ranges and in both protocols. Figures 2 and 3 plot the Cu-
mulative Error Distribution (CED) curves, representing the
proportion of images whose average NMSE falls below a
given error threshold.

Protocol 2 contains more than triple the amount of train-
ing images than Protocol 1. The limited training data of Pro-
tocol 1 results in substantially lower performance across all
algorithms. DAN and MTCNN perform consistently across
all ranges due to their ability to learn a holistic representa-
tion of a face. Conversely, the lower resolutions at increased
ranges causes PBC to suffer drastically.

Further insight into the algorithms’ behaviors are gained
from the qualitative examples in Figure 4. The example
image exhibits how PBC misclassifies the left eye corner
as the left mouth corner. The plateu regions of the PBC’s
CED curve highlight the negative impact Ranges 1 and 2
have on its performance. While PBC failed to outperform

DAN, a form of local region refinement may improve global

appearance-based methods in the case of high-resolution

face images

The right-shifted CED curve for MTCNN is an indica-
tion of the consistent amount of error being introduced to
each landmark. This is reflected in the central image of Fig-
ure 4. By regressing exact landmark locations, the range
and scale of output values is larger for MTCNN than DAN.

Outputs in this range may be harder to control than DAN’s

smaller, iterative shape updates. The fact that MTCNN oc-

casionally sees slightly lower NMSE at some higher ranges

points to some predictions being coincidentally accurate.
Additional qualitative results in Figure 5 showing the

performance for each model on each of three subjects re-
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Figure 2. Protocol 1 Cumulative Error Distribution curves of the
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Figure 4. Left: PBC landmark predictions containing a corner of the left eye being mistaken for the left mouth corner. Center: MTCNN
landmarks with correct spatial arrangement but wrong locations. Right: High quality DAN landmarks.

inforce the previous qualitative observations and corrobate
the quantitative results. Despite the predictions of the PBC
model being on par with or better than predictions from the
DAN model for the subjects in the first two columns, the
PBC’s failure to accurately localize the right mouth cor-
ner for the third subject heavily skews its average NMSE,
once again insinuating some form of local refinement may
be beneficial in tandem with global information.

4.4. Impact on Face Verification

We follow the same process as [7][11] for conducting
face verification trials, however we align to five points in-
stead of two. DoG filtering is applied to the aligned ther-
mal and visible imagery. As in [7][11], a Deep Perceptual
Mapping (DPM) [12] from visible to thermal modalities is
learned. Finally, matching is performed with one-versus-
all classifiers using a partial least squares (PLS) regression
model [5].

The following results are verification rates for Range 1
thermal image probes. Figures 6 and 7 illustrates the drop
in performance when using the predicted landmarks for ver-
ification versus the ground truth. However, DAN landmarks
nearly match performance with the ground truth on Protocol
2. This demonstrates the ability of DAN to adapt effectively
to thermal imagery.

Taken as a whole, the results concur with the findings
of [2] that face verification in the thermal spectrum is more
sensitive to image alignment.

5. Conclusion

Our results illustrate the sensitivity of face verification
algorithms to misaligned thermal images. We have shown
that thermal images aligned with modern landmark detec-
tion algorithms often fail to achieve thermal-to-visible face
verification results on par with manually aligned imagery.

2
MTCNN 3 o 3 4 8 y

PBC . .

DAN . . &

Figure 5. Qualitative results for each model on Protocol 1 at Range
1 (2.5m). The enumerated detected landmarks are shown in blue,
ground truth landmarks in red.

Nevertheless, we demonstrate the cascaded shape re-
gression method exhibited by the DAN architecture shows
promise. Learning a global face appearance is key to avoid-
ing critical localization errors, especially at offset distances
from the camera greater than 2.5 meters. However, quan-
titative findings hint at the potential benefits of integrating
local and global detection strategies when high resolution,
high inter-ocular distance thermal images are available.

The benefits of joint face detection and landmark local-
ization exploited by MTCNN for visible images does not
appear to translate to the thermal domain, where there may
be more benefit for algorithms to specialize in accomplish-
ing a single task given the unique qualities of thermal im-
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Figure 7. Protocol 2 ROC curves showing thermal-to-visible ver-
ification performance when using ground truth (GT), DAN, PBC,
and MTCNN landmarks.

agery. Another important characteristic is that while both
MTCNN and DAN represent regression-based strategies,
DAN’s approach of iteratively regressing landmark updates,
instead of the actual landmark coordinates, is likely an eas-
ier objective to learn.
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