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Abstract

The evaluation of computer vision methods on synthetic

images offers control over scene, object, and camera prop-

erties. The disadvantage is that synthetic data usually lack

many of the effects of real cameras that pose the actual

challenge to the methods under investigation. Among those,

noise is one of the effects more difficult to simulate as it

changes the signal at an early stage and is strongly influ-

enced by the camera’s internal processing chain. The re-

sulting noise is highly complex, intensity dependent, as well

as spatially and spectrally correlated. We propose to trans-

form synthetic images into the raw format of digital cam-

eras, alter them with a physically motivated noise model,

and then apply a processing chain that resembles a digital

camera. Experiments show that the resulting noise exhibits

a strong similarity to noise in real digital images, which fur-

ther decreases the gap between synthesized images and real

photographs.

1. Introduction

Camera-realistic ProcessingPhoto-realistic Rendering
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Figure 1. We transform noise-free synthetic images into the raw

format of digital cameras, alter them with a physically motivated

noise model, and apply a processing chain that resembles a real

camera. This leads to images with very realistic statistical prop-

erties and increases the transferability of conclusions drawn from

corresponding experiments.

Benchmark datasets are in high demand in areas such

as autonomous driving [10], detection and tracking of ob-

jects [33], face recognition [22], bioimaging and biomi-

croscopy [30], optical flow, disparity estimation, 3D recon-

struction [17, 9], and the training of neural networks [31].

These benchmark datasets provide not just the image

data itself, but also reference data acquired by a sensor that

is assumed to be significantly more accurate than the meth-

ods under investigation. As these datasets are based on real

measurements, they potentially contain every aspect of the

data acquisition process as it would be carried out during

application of the analysed methods. Thus, the acquired

evaluation results are assumed to have meaningful implica-

tions about the performance of methods when applied out-

side of the laboratory. The creation of such benchmark

datasets, however, is time consuming and costly in partic-

ular with respect to the generation of the reference data.

This causes a strong limitation on the number of possible

variables that are covered, i.e. often only a single sensor

(e.g. camera) with specific settings (e.g. depth of field, fo-

cal length, ISO, etc.) is used, scene and object properties

such as lighting, surface texture, geometric complexity do

not span the whole range of realistic variation, and the refer-

ence data is often far from problem-free (e.g. missing data,

measurement errors or inaccuracies). While real data has

usually more variation in scene and object properties than

synthetic images, once a dataset is acquired its properties

can’t be “modified” to test different usecases.

A solution to these issues is to use synthetic data which

offers full control about scene, object, and sensor properties

on the one hand and actual ground truth values for the tar-

get variables on the other hand. They can even be adapted to

fulfill specific requirements as long as the basis of the syn-

thesis (e.g. the corresponding Blender model) is still avail-

able. While synthetic benchmarks can not replace exper-

iments on real world data, they offer complementary pos-

sibilities to evaluate certain aspects of a processing chain

within a wide span of sensor settings and scene properties.

The Tsukuba dataset [25, 24] consists of 1800 ground truth

disparity maps and the corresponding image pairs with dif-

ferent lighting settings that had been created via Pixologic

ZBrush and Autodesk Maya. The Sintel dataset [1] is cre-
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ated from an animated 3D movie rendered with Blender,

provides camera calibration and poses as well as the ground

truth depth maps, and can be used to estimate performance

on different tasks including depth and camera motion es-

timation. The creation of such synthetic datasets comes

with its own challenges and limitations. On the one hand,

it requires - besides a solid understanding of the involved

rendering tools - a certain artistic skill which is why of-

ten simplified scenes are used or models originally intended

for other purposes. On the other hand, there is an obvious

gap between rendered images and images acquired with a

real camera as the image synthesis often neglects effects

of a real camera (such as tone mapping, lens distortions,

noise, and motion blur). The work in [21] aims to de-

crease those discrepancies by synthesizing realistic images

for a Synthetic Benchmark for 3D Reconstruction (SyB3R).

This framework allows to investigate how calibration errors,

camera parameters, and scene properties influence Struc-

ture from Motion and Multi-View Stereo. Blender and the

path tracer Cycles as well as public 3D models are used to

render photo-realistic images in a first step. Camera effects

such as depth of field, scene properties such as illumination,

and object properties such as surface texture are controlled

within Blender. Other aspects such as tone mapping, radial

distortions, and image noise are handled by a post process-

ing chain to avoid the time consuming rendering process

for every parameter change. One of the most difficult chal-

lenges is the creation of realistic image noise, which SyB3R

models as a post processing step by adding a random noise

term that is modelled after the statistical data of a real cam-

era. The applied model, however, is rather simplistic and

- despite creating visually consistent noise - cannot cover

all statistical properties of noise in real cameras. Indeed,

many approaches to model image noise focus on already

interpolated RGB images [21, 11, 16] or even on JPEG

files [26]. There are many noise sources affecting images

taken with digital cameras. They may depend on different

scene as well as sensor properties and may appear more or

less prominent, but all of them (besides compression arti-

facts) are already present in the unprocessed output of the

sensor and get shaped by subsequent processing operations

[26, 3]. Thus, an alternative approach to adding the noise

at the very end of the processing chain and aiming to shape

the outcome to the statistical properties of a real camera, is

to apply a realistic and physically motivated noise model at

the very beginning of the image formation process and let

the resulting image pass through a software equivalent of

the processing pipeline of a real camera such as white bal-

ancing, demosaicing, tone mapping, gamma correction, etc.

Such a solution provides not only the possibility to apply a

realistic (physically motivated) noise model, but offers also

optimal control about realistic image effects caused by the

image processing chain of real cameras.

While every digital camera passes the acquired data

through a processing chain, the specific steps are hard-

wired inside the camera, proprietary, as well as confidential,

and thus there are only general models (e.g. [23, 13, 14])

that often lack details specific to a given camera. A good

overview of the color image processing pipeline of modern

digital cameras can be found in [29], while a more high-

level overview is provided in [3] which mainly focuses on

processing steps that tend to create, enhance, or reduce dif-

ferent artifacts. Besides those abstract models of the in-

camera processing pipeline, there exist few approaches that

aim to implement at least certain aspects of this processing

chain in software. In [16] a new in-camera imaging model

is proposed based on the analysis of more than 10K im-

ages from more than 30 cameras. Their framework allows

to convert a given sRGB image captured with one set of

settings to an sRGB image with another set of settings of

a specific camera. The pipeline includes a transformation

of the sRGB image to the original RAW format, followed

by white balancing, color space transform, gamut, and tone

mapping. The proposed in-camera imaging model does not

consider the demosaicing step and thus assumes that the raw

values are already interpolated. The work in [15] provides

a software platform that applies common camera imaging

pipeline steps to images in RAW format. It allows the user

to access each of these steps, to modify its parameters, to

change intermediate images, and to re-introduce them into

the pipeline.

We extend the work in [21] by using the framework of

SyB3R to render photo-realistic and physically plausible

images. These images are in a linear RGB color space that

allows to transform them into mosaicked images as in the

very beginning of the image formation process of a real

camera. At this point we apply a physically motivated noise

model that consists of multiple components, each of them

adjustable by system parameters. Thus, noise is added to the

synthetic images at a point where it would also be present

in real cameras, namely before any image processing steps

are executed. The created noisy RAW images are then fed

to common processing steps as they would occur in a real

camera, i.e. white balancing, demosaicing, noise reduction,

tone mapping, gamma correction, and JPEG compression.

The main contributions of our work are:

• An image processing pipeline that resembles the inter-

nal processing chain of real digital cameras. The pro-

posed pipeline can be applied either to noise-free syn-

thetic images or real images with high signal-to-noise

ratio.

• We model synthetic image noise at the very begin-

ning of the proposed pipeline where common assump-

tions about image noise (e.g. being IID) are still valid.

The noise consists of three independent components:
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Figure 2. General overview of the proposed framework.

Poissonian-Gaussian noise, time-varying row noise,

and fixed pattern noise. The introduced noise is trans-

formed and shaped by the subsequent image process-

ing steps very alike to the processes in real digital cam-

eras.

• We show that the combination of the proposed noise-

model and processing chain leads to results in the ex-

ample task of multi-view stereo reconstruction that

closely resemble results based on real images, where

results with IID Gaussian noise lead to very different

results.

• We provide a flexible, open-source C++ implementa-

tion [19] of the proposed framework that allows to eas-

ily change or extend individual modules, to modify pa-

rameter settings, to select different variants of a mod-

ule or deselect it at all if it is not required (e.g. reverse

auto white balancing is not necessary if the input im-

ages have not been white balanced and the denoising

procedures may be skipped as well) and to have access

to all intermediate images at each processing stage.

2. Methodology

Figure 2 shows the general workflow of the proposed

method: As input serve synthetic (noise-free) images which

are transformed into raw image data (Section 2.1) which

are subsequently altered by different types of noise (Sec-

tion 2.2). After applying the noise model, the images un-

dergo a typical image processing pipeline (Section 2.3) con-

sisting of auto white balancing, demosaicing, denoising,

tone mapping, and compression.

2.1. Conversion into raw data

As input we use images rendered in Blender using Cy-

cles which allows to take a multitude of scene, object, and

camera properties into account. The proposed framework,

however, is not limited to Blender and can be applied to any

kind of images as long as they meet certain assumptions,

i.e. having no or only weak noise and being in a linear color

space. It is noteworthy that even real images can be used by

the proposed processing chain as long as they have a large

signal-to-noise ratio1 and are given in raw format (see Sec-

tion 3 for examples).

As image sensors of digital cameras are not color-

sensitive, a Color Filter Array (CFA) is used that lets only

specific colors pass at each pixel. That is why the raw out-

put of a sensor does not provide several color measurements

per pixel, but every pixel measures the intensity of a differ-

ent color. There are various CFA patterns and which one is

used depends on camera vendor and model. The proposed

framework uses RGB images and Bayer pattern (an exam-

ple is shown in Figure 1), as they are widely used in digital

cameras.

As the input images already provide RGB values for all

pixels, they are converted to a CFA structure by using only

one of those channels in each pixel. The remaining pixels

are set to zero and are not used in further operations.

The output received from the image sensor of a camera

usually has incorrect white balance (WB). If the input image

is already white balanced, we revert this step by dividing red

and blue values by user-defined coefficients.

2.2. Noise modelling

The noise in the final image product of a digital camera

is highly complex, intensity dependent, and correlated spa-

tially as well as over the different color channels. The core

idea of the proposed framework is not to attempt to model

this highly complex noise of the final image product as it

was done e.g. in [21], but instead model the noise at the

very beginning of the processing pipeline, where the cor-

responding model is considerably simpler. Nevertheless,

even at this point the exact noise model is not completely

known and target of scientific interest [27]. We decided to

use the Poissonian-Gaussian noise model [5] as it is widely

assumed as being suitable for the raw data of digital image

sensors on the one hand and relatively simple on the other

hand. This is of importance since the user of the framework

needs to be able to adjust its parameters efficiently to obtain

realistic results.

The model consists of two independent components:

The Poissonian component relates to the signal-dependent

noise, such as photon shot noise, which follows the

Poisson distribution due to the photon-counting process.

The Gaussian component represents the remaining signal-

independent noise, e.g. electric or thermal noise. The vari-

ance σ2 of the measured signal can be described by

σ2(y(x)) = ay(x) + b (1)

a = χ−1θ (2)

b = θ2b
′

+ b
′′

− θ2χ−1p0 (3)

1While in principle the framework is of course applicable to images of

any noise level, it is unclear how noise sources additional to those being

modelled would influence the final image noise.
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where ay(x) is the variance of Poissonian component,

which depends on the original noise-free signal y(x), χ is

a real scalar parameter related to the quantum efficiency of

the sensor (i.e. the more photons are necessary to generate

a sensor response, the smaller is χ), θ > 1 is a scaling fac-

tor corresponding to the signal amplification (i.e. a analog

gain to amplify the collected charge usually controlled by

setting the ISO sensitivity in digital cameras). The constant

variance b of the Gaussian component has two components:

b
′

and b
′′

, where the latter describes the part of the noise

that appears after amplification and is not affected by θ. The

pedestal parameter p0 is the base level of the image sensor

to which the collected charge is added.

Besides the Poissonian-Gaussian noise, we additionally

model row noise and vertical (column) fixed pattern noise

(VFPN) [11]. These noise types follow a Gaussian dis-

tribution and can be simply generated by adding Gaussian

distributed random values to each row (or column), respec-

tively. The difference between both is that row noise is time-

varying and is thus different among different frames, while

VFPN remains immutable over multiple frames and differs

only in images taken with different camera models.

2.3. In­camera image formation

Intensity scaling. Intensity values synthesized by

SyB3R based on Blender are in a linear color space and

range between 0 and 1. While the raw data of digital cam-

eras is often also linear in intensity, the range varies between

different camera models. Many cameras specify the black

level of the sensor, i.e. the minimum value which usually

deviates from zero, as well as the white level. If no black

and white levels are specified, the proposed framework uses

the minimum and maximum values of the image for nor-

malization.

Auto white balancing. Automatic white balancing

(AWB) is used in digital cameras to achieve color con-

stancy, i.e. attempting that the colors of an object do not

vary for different illuminations by adjusting signal levels

such that the color spectral response of the image sensor is

similar to the human eye [14].

While there are many types of AWB (see e.g. [34] for an

overview of basic techniques for digital cameras), the two

most widespread methods are “Gray world” (based on the

assumption that the mean scene reflectance is achromatic)

and “White patch” (based on color constancy, i.e. the maxi-

mal cone response of the human visual system is perceived

as white) [18].

Both methods lead to different results in practice (the

white patch approach provides “warmer” images that are

usually more pleasant to the human eye), which is why the

proposed framework implements both and leaves it to the

user to select the one better suited to his needs.

Demosaicing. Demosaicing is an integral part of every

image formation process in single-sensor digital cameras

and is necessary for full-color image reproduction that ac-

curately represents the captured scene [29]. There are sev-

eral well-established demosaicing algorithms of which [28]

provides a good overview. While the most efficient demo-

saicing approach is a simple non adaptive bilinear interpola-

tion, better results are obtained by edge-directed interpola-

tion techniques that analyze the local pixel neighborhood to

determine a preferred interpolation direction and thus avoid

interpolating across image edges [12]. Median-based in-

terpolation [6] combines bilinear interpolation and median

filtering of color differences and has been shown to produce

superior results for real images [28]. The proposed frame-

work provides all three of the above variants and proposes

an additional fourth method, namely edge-directed median-

based interpolation, that combines edge-directed interpola-

tion and median-based filtering.

Figure 3 shows example results of these demosaicing

techniques applied to a noisy CFA image obtained from a

camera (a Canon 5D Mark II). The two methods based on

median filtering (Figure 3c) and d)) preserve more sharp-

ness. Bilinear as well as edge-directed interpolation (shown

in Figure 3a) and b)) lead to color artifacts. Bilinear interpo-

lation causes color fringes at edges (Figure 3a)) which are

also not corrected if median filtering (Figure 3c)) is applied

subsequently. At least for this example image, the result of

the proposed method (Figure 3d)) appears most similar to

the output of the camera (Figure 3e)).

(a) Camera-internal interpolation (+JPEG)

(b) Bilinear in-

terpolation

(c) Edge-

directed

interpolation

(d) Bilinear

and 3 × 3

median

interpolation

(e) Edge-

directed and

3 × 3 median

interpolation

Figure 3. Different interpolation techniques applied to a real image

in RAW format.
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Denoising. Most modern cameras internally apply a de-

noising method before the non-linear tone-mapping stage of

which the proposed framework provides three simple exam-

ples: A simple average filter, a median filter that preserves

edges but effectively only removes outliers, and a bilateral

filter that preserves edges by considering both pixel posi-

tion and intensity. Denoising is perfomed in YCbCr color

space with a stronger filtering on the chroma components.

The amount of filtering can be steered by the ISO level.

Tone-mapping. Tone-mapping is part of the photo-

finishing process and aims to simulate the appearance of

a scene with a high-dynamic range in a medium with lim-

ited range. Its non-linear transformation is a rather artis-

tic choice, usually differs for different camera models as

well as settings, and is implemented as 1D Look-Up Table

(LUT). If no tone curve is specified by the user, the pro-

posed framework uses the tone curve from [15] as default.

Gamma correction. Since the human eye perceives dif-

ferences in dark regions much better than the differences in

light regions, it is desirable to have a larger accuracy for low

intensities, while high intensities could be compressed to

save space. This task is solved by Gamma correction [4, 2]

that transforms every intensity value by the power function

f(x) = x1/γ (4)

that describes the relationship between the numerical value

of a pixel and its actual luminance. Cameras usually im-

plement Gamma correction as an 1D LUT. The proposed

framework uses as default γ = 2.2 as an approximation of

sRGB.

Image compression. Although some digital cameras al-

low to store images in raw format, it is more common to

compress the final image product to be able to save more

images on a single memory card. JPEG is commonly used

for (lossy) compression of digital images as it allows to

specify the compression ratio with the cost of compression

artifacts (e.g. colorful halos around edges) if too strongly

compressed. Before JPEG compression, pixel values are

converted to an 8-bit representation, i.e. to values in the

range [0–255]. The proposed framework uses a default

compression setting of 97.

3. Experiments

The purpose of the proposed framework is to bring syn-

thetic images closer to their real-world counterparts in order

to increase the transferability of conclusions drawn from ex-

periments on synthetic data to the application on real-world

data. To this aim, care was taken to apply a physically plau-

sible and well established noise model at the very beginning

of a processing chain which resembles the image formation

pipeline in a digital camera. It is, however, not without dif-

ficulty to attempt to evaluate this procedure. The statistics

and properties of a captured image vary greatly being not

only dependent on scene properties, but also on the camera

model (i.e. the specifically implemented processing chain)

and its settings (e.g. tone-mapping, compression ratio, etc.).

Nevertheless, we attempt to qualitatively show that the pro-

posed framework leads to similar noise characteristics as

in images captured with a real camera (Section 3.1) and to

provide quantitative cues that the produced synthetic im-

ages lead to similar behaviour of methods in an example

application (Section 3.2).

3.1. Qualitative evaluation

As an example we use an synthetic image of a toad as

natural object with strong texture as well as an image of

a snail as its real counterpart captured by a camera (i.e. a

Canon 5D Mark II). As far as possible, the same parameter

settings are used for capturing the photos and synthesizing

the images: Focal length of 50.0 mm, an aperture of 4.0, and

the sensor width is 36 mm with a resolution of 1920×2880

pixels. We used a ISO level of 3200 to make noise well

visible.

The images are simultaneously stored in JPEG and CR2

(raw) format which allows to apply the image processing

pipeline of the proposed framework to real, noisy, and un-

processed raw data of actual photographs. As those images

already contain (real) image noise, the noise-generation step

of the pipeline is omitted.

While Figure 4(b) shows the processing results of the

proposed framework when applied to a synthetic image,

Figure 4(d) shows a real image that is processed with the

identical pipeline (besides the noise modelling step). In

both cases noise appears intensity dependent and spatially

correlated. Figure 4(e) shows the results of the camera-

internal processing chain and illustrates clearly the influ-

ence of the specific pipeline on the final image character-

istics: In both cases, i.e. Figures 4(d) and 4(e), the exact

same image is used including the noise (as it is the same

picture). Only the image processing pipeline differs and

leads to a different coloring (due to tonemapping) and seem-

ingly slightly different noise (e.g. due to different noise-

reduction). However, this variation only reflects the inter-

camera variance regarding specific details of the applied

processing chain.

For reference, Figures 4(a) and 4(c) show the results

of [21] which models image characteristics after measure-

ments taken for a specific camera (in this case a Canon EOS

400D). Besides applying a different tonemapping, this cam-

era has also more noise at this ISO level. Furthermore, the

noise model is applied as a post processing step and thus

not influenced by previous processing steps.
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(a) Synthetic image; Noise and image processing from [21].

(b) Synthetic image; Proposed noise model and image processing.

(c) Real image; Real noise and image processing from [21].

(d) Real image; Real noise and proposed image processing.

(e) Real image; Real noise and in-camera image processing.

Figure 4. Qualitative comparison between synthetic noise gener-

ated by [21] and the proposed model on synthetic and real images.

Differences best seen in the digital version.

3.2. Quantitative evaluation

In this section, we consider the application of multi-

view stereo (MVS) 3D reconstructions where, especially on

weakly textured surfaces, noise plays a fundamental role

[21]. We compare five types of images: The unaltered

out-of-camera JPEG images, the raw images with camera

noise but processed with our pipeline, “noise free” raw im-

ages processed with our pipeline including synthetic noise,

“noise free” raw images processed with SyB3R [21], and

JPEG images with Gaussian IID noise with the same vari-

ance as the out-of-camera JPEG images. For four of these

types, we create images with increasing noise levels and

analyze, how the point clouds from the 3D reconstruction

deteriorate. SyB3R uses a noise model with settings that

fit a specific camera with specific parameters and does - in

contrast to the proposed work - not allow a free choice of

the ISO level. Thus, there are only results for ISO 1600.

To rule out any influence of a synthetic image creation,

we base this experiment on real photos. We took pictures

with a Sony A7R II of a scene containing strongly and

weakly textured surfaces (see Figure 5). The scene is pic-

tured from six different view points to enable 3D recon-

struction, which was carried out with a custom structure

from motion pipeline followed by PMVS2 [8] for dense

MVS reconstruction. For each view point, we captured im-

ages for the ISO levels 100, 200, 400, 800, 1600 while com-

pensating for increased brightness with the exposure time.

For each view point and ISO level, eight images were taken

(i.e. 6× 5× 8 images in total).

The first two types of images are procured by simply tak-

ing, for each ISO level and view point, one of the eight im-

ages and using either the JPEG or by processing the raw file

with our pipeline, respectively. The third type, however, re-

quires noise free raw data as well as a calibrated synthetic

noise model. For each view point, we average the eight ISO-

100 images (in their raw form) to compute an “ISO-12.5”

image which we consider to be noise-free (similar to [20]).

To calibrate the synthetic noise, we compute for each ISO

level the pixel variations across the eight images of each

view point. By combining the estimated variance for each

pixel with the estimated true intensity from the “ISO-12.5”

images, we can perform a least squares fit of the parameters

a and b in Equation (1) for each ISO level. We then run the

proposed processing chain on the “ISO-12.5” images with

the estimated parameters for the synthetic noise. To cre-

ate the fourth image type, JPEG images with IID noise, we

compute the pixel variance in the out-of-camera JPEG im-

ages for each ISO level and add Gaussian IID noise with

this variance to the averaged ISO 100 out-of-camera JPEG

images.

Figure 5 shows crops from the five image types. Note

that the real and our proposed synthetic noise are spatially

correlated. Also note how for the real and proposed process-

ing, with increasing ISO level, not only the noise increases

but also, due to increased filter strength (as being dependent

on the ISO level, see Section 2.3), the texture is more and

more removed.

For each of the five processing types and for each ISO

level, we perform a 3D reconstruction. For two different

confidence thresholds in the dense reconstruction, Figure 6

shows the number of points in the resulting point clouds

which usually correlates with a reconstruction’s complete-

ness. As expected, the ability of PMVS to locate 3D points

decreases with increasing noise. The numbers of points for

the out-of-camera JPEGs and the images produced by the

4326



(a) Camera

JPEG w.

camera noise

(b) Proposed

with camera

noise

(c) Proposed

with synthetic

noise

(d) Camera

JPEG with

IID noise

(e) SyB3R

[21]

Figure 5. Example image (top row) and crops for different types

and ISO levels. Color differences are caused by different tone

mapping procedures, i.e. proposed (2nd and 3rd column) and cam-

era internal (1st and 4th column). Rows alternate between ISO 100

and ISO 1600. Differences best seen in the digital version.

proposed pipeline are quite similar. The IID noise, how-

ever, has a completely different impact on the reconstruc-

tion. This is due to two reasons: Firstly, PMVS by default

downsamples the input images internally to half the resolu-

tion. This is not uncommon, other frameworks (e.g., MVE

[7]) do the same, and even the Middlebury 2014 images [32]

are not full resolution images. Downsampling IID noise re-

duces much of the noise energy (all the high frequency com-

ponents). Real noise, on the other hand, is spatially corre-

lated and thus does not loose as much energy from down-

sampling. The second reason for the different behavior is

that the IID noise only reflects the noise strength of the real

images, but not the degradation of the signal due to stronger

filtering for higher ISO levels. Using IID noise, even if cal-

ibrated to have the correct strength, thus leads to an overes-

timation of a method’s resilience to noise. The noise model

in SyB3R [21] needs to be fitted to each camera ISO level

individually and was only available for ISO 1600. There, it
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Figure 6. Number of points in the reconstructed point clouds for

different processing types and noise levels. SyB3R refers to the

noise model in [21] which was tweaked for a different camera

(Canon EOS 400D) that has more noise at ISO 1600 than the

Sony A7R II used and imitated here.

seems to behave more realistic than IID noise, but is not as

close as the proposed noise model. However, the compar-

ison is not entirely fair since the noise model in SyB3R is

modeled after a different camera (Canon EOS 400D) which

also has more noise at the same ISO level in reality. Thus, a

less complete reconstruction at the same ISO level is to be

expected.

To judge the precision of the reconstruction, we per-

formed Poisson surface reconstructions. These can be

found in Figure 7 for three different ISO levels. The im-

ages are shaded by ambient occlusion to better highlight

inaccuracies. As with completeness, precision is also af-
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Figure 7. Meshed 3D reconstructions with a low threshold (0.3).

Top to bottom: Camera w. camera noise, proposed w. camera

noise, proposed with synthetic noise, camera w. IID noise. Left to

right: ISO 100, 400, 1600.

fected by image noise and deteriorates quickly for weakly

textured surfaces. The precision for images processed with

the proposed approach seems to be very close to the preci-

sion achieved with the out-of-camera JPEGs albeit slightly

better. We attribute this difference to the difference in

tonemapping and filtering which is varies for different real

world cameras. With IID noise, the precision seems to de-

crease only very slightly and the results are very far from

the real world.

4. Conclusions and Future Work

The proposed framework models realistic noise and

other effects in synthetic images by simulating the image

formation process of digital cameras. The framework op-

erates with HDR images that can for example be synthe-

sized in Blender but can also be applied to real camera

images if they are provided in RAW format. The case of

synthetic images, however, has the advantage of allowing

control over camera, scene, and object parameters on the

one hand, and on the other providing access to ground truth

values for target variables such as depth, albedo, etc. The

intended application is the creation of synthetic benchmark

datasets for the evaluation of image based algorithms. Un-

like other works, the noise in the final image is not modeled

based on data from one particular camera model, but simu-

lated at the very beginning of the image formation process,

i.e. in the raw data, before any processing operations are

applied. While the noise model is simple, it considers the

most significant, signal-dependent and signal-independent

noise sources. The simplicity of the model allows control

over noise type and energy by a few parameters with a con-

cise physical interpretation such as parameters related to the

ISO level and the quantum efficiency of the sensor.

The framework implements all main processing steps

inherent to an in-camera imaging pipeline, i.e. intensity

scaling, auto white balancing, demosaicing, denoising, tone

mapping, gamma correction, and compression. All interme-

diate results of each stage are accessible and can be stored

as HDR files. The implementation of the proposed image

processing pipeline is flexible and allows the user to select

which steps should be performed with which parameter set-

tings.

Qualitative results show that the synthetic noise closely

resembles realistic camera noise. The main differences are

caused by different image processing pipelines of the pro-

posed framework and the used example camera, in partic-

ular with respect to different tone mapping and denoising

techniques. As the specific processing chains also differ

significantly for different camera vendors or even image

settings and the proposed framework is flexible regarding

the individual modules, the resulting images are well within

the realistic range. Quantitative results on the example task

of MVS show, that the corresponding methods behave very

similar if either real images or images with the proposed

synthetic noise are used. Images with Gaussian IID noise,

however, lead to very different results demonstrating clearly

the insuffiency of this simple noise model.

There are several aspects that require a more elaborate

implementation to obtain even more accurate results. While

the proposed noise model appears to be sufficiently accu-

rate, the processing chain can be improved by using a more

sophisticated implementation of individual modules. One

example is the denoising step, where the proposed pipeline

applies rather simple methods while modern cameras seem

to use approaches that filter noise more effectively while

preserving fine image structures. Furthermore, while sev-

eral works regarding camera pipelines (e.g. [29, 15]) per-

form denoising after the demosaicing step, it might be ben-

eficial to apply it before any processing steps alter the nature

of the noise too much. Finally, most cameras do not directly

record the intensities of the sRGB primaries, something the

camera has to compensate for. This color space transforma-

tion was neglected in this work and could be added in the

future.
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