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Abstract

This paper presents a new algorithm for enforcing tem-

poral coherence on depth estimation from multi-view videos

of dynamic scenes as well as the first substantial quantita-

tive evaluation of the improvement in depth estimation ac-

curacy due to temporal coherence. The proposed algorithm

is generally applicable and practical since it bypasses ex-

plicit scene flow estimation, which has a very large state

space, and relies only on optical flow which is used to im-

pose soft constraints on depth estimation for the next frame.

As a result, our algorithm is applicable to scenes with large

depth and motion ranges. The output is a sequence of depth

maps that can be used for novel view synthesis among other

applications. While it is intuitive that enforcing temporal

coherence should improve the accuracy of depth estima-

tion, this improvement has never been assessed quantita-

tively due to the lack of data with ground truth. To overcome

this limitation we use the image prediction error as the cri-

terion and show that the benefits of temporal coherence are

significant on a diverse set of multi-view video sequences.

1. Introduction

3D reconstruction is one of the most studied problems

in computer vision. Impressive 3D models can now be ob-

tained from large collections of images of a static scene.

The work of Shan et al. [1] in particular has issued a chal-

lenge to the research community to generate photo-realistic

models that can appear indistinguishable from actual pho-

tographs. Even though the current top-performing methods

have not yet passed this Turing test, one could foresee this

day coming soon. The next frontier is achieving the same

level of quality for dynamic scenes, which pose significant

new challenges to 3D reconstruction algorithms.

The goal of this paper is to make progress towards

free-viewpoint video generation for dynamic scenes. Free-

viewpoint video is a technology that allows the viewer of a

multi-camera video to control a virtual camera and generate

videos from novel viewpoints by combining all available

images. Interactive performance is often required, but in

this paper we are concerned with accuracy first. One path

that leads to free-viewpoint video is to ensure that the 3D

reconstruction at each time instant, using only images taken

simultaneously, is perfect. The work of Collet et al [2] is

a step in that direction that demonstrates qualitatively out-

standing results. However, each frame is reconstructed in-

dependently. A more realistic approach is to accept that

perfection is hard to achieve and attempt to improve the 3D

reconstruction of a given frame by leveraging information

from previous frames. We, thus, aim to estimate temporally

coherent depth given synchronized videos captured by mul-

tiple calibrated cameras.

This problem is related to scene flow estimation [3],

which is the 3D equivalent of optical flow. As long as

resampling in the temporal dimension is not required, i.e.

novel viewpoint synthesis is restricted to the spatial domain,

estimating depth only is sufficient. By not having to as-

sign specific 3D velocities to pixels, we can impose soft

constraints on depth optimization favoring temporal coher-

ence with previous frames without having to make hard de-

cisions on pixel-to-pixel correspondences in time. On the

other hand, we assign a specific depth to each pixel, making

hard decisions about correspondences in space.

Our approach uses Semi-Global Matching (SGM) [4] to

optimize depth assignments according to a data term that

comprises two parts: one due to spatial correspondence cost

(photoconsistency) and one due to temporal constraints.

The former is computed using the plane-sweeping algo-

rithm [5], while optical flow is computed according to the

method of Sun et el. [6]. The two parts of the data term are

blended to form a single cost volume that favors the matches

proposed by optical flow and to favor smoothness in dispar-

ity.

While it is intuitive that leveraging information from

multiple frames should lead to improvements in accuracy,

1



Figure 1. First column: depth maps and corresponding renderings

computed without temporal constraints. Second column: depth

maps and corresponding renderings with temporal constraints for

the ballet [10] and book arrival [11] datasets.

only qualitative results on dynamic scenes have been shown

in the literature, with the exception of [7, 8]. Not surpris-

ingly, the lack of appropriate datasets with ground truth is

the cause for this shortcoming. Even though structured light

or time of flight sensors registered with the cameras can be

used to generate ground truth depth maps, but not scene

flow, such datasets are not publicly available. The use of

synthetic data [9] has recently emerged as a popular last re-

sort. While there is some evidence that findings on synthetic

data generalize to problems in the real world, we leave these

experiments for future work.

In this paper we present the first comprehensive, quanti-

tative evaluation of the improvement in multi-view 3D re-

construction of dynamic scenes due to temporal coherence

constraints. The evaluation is conducted on a diverse set

of multi-view videos [10, 12, 11] by excluding the frames

of one camera from all computations and then rendering

the colored depth map of the reference view to that cam-

era to “predict” the actual image. The error metric we use

is the average difference in RGB values between the pre-

dicted and actual image. While this metric may not ac-

curately capture errors in textureless regions, it can clearly

demonstrate when one depth map is superior to another. As

advocated by [13, 14, 15], the ability to predict new views

closely matches the requirements of many applications and

does not require ground truth depth. Figure 1 shows the

estimated depths computed by SGM, with and without tem-

poral constraints and the corresponding renderings on the

novel view used for evaluation. Both the depth maps and

renderings are qualitatively and quantitatively better when

temporal constraints are applied (see Section 7). Our algo-

rithm improves reconstruction accuracy and reduces flick-

ering artifacts in the videos.

In summary, the contributions of the paper are:

• a novel, generic and practical algorithm for temporally

consistent depth estimation and

• the most extensive, to date, quantitative evaluation of

the effects of temporal coherence on depth estimation

accuracy.

2. Related Work

In this section, we focus on viewpoint-based methods

that estimate depth for all pixels of the reference image.

We then summarize the evaluation efforts presented in these

publications. Approaches [16, 17] that reconstruct a single

object, which has been segmented from the background,

are not applicable to our inputs and are not covered here.

Space-time stereo methods that operate in spatio-temporal

volumes [18, 19, 20, 7, 8] require small frame-to-frame mo-

tion to be applicable. Our method, on the other hand, uses

optical flow to detect long-range temporal matches.

Related to this paper is prior work that uses optical flow

to improve disparity estimation by modifying the cost vol-

ume based on optical flow [21, 22, 23]. Larsen et al. [21]

favor disparities that remain constant from frame to frame,

while Bartczak et al. [22] allow the disparity to vary by

one level between two consecutive frames. Yang et al. [23]

explicitly segment the dynamic foreground from the static

background and optimize them separately.

To reduce the number of parameters to be estimated and

to regularize the solution, a common approach is to repre-

sent the scene as a collection of, typically planar, segments

following parametric motion models. Vogel et al. [24] rep-

resent the scene with a set of rigidly moving planar patches

and minimize an energy function that encompasses pho-

toconsistency over multiple stereo pairs, image segmenta-

tion consistency and smoothness in 3D shape and motion.
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Mustafa et al. [25] integrate a sparse-to-dense temporal cor-

respondence technique with joint multi-view segmentation

and reconstruction to obtain complete 4-D representations

of static and dynamic objects.

Other authors do not rely on image segmentation and al-

low each pixel to have its own depth and 3D motion. Cech et

al. [26] compute quasi-dense scene flow by growing spatial

and temporal correspondence seeds. Variational approaches

for joint estimation of all degrees of freedom have been pub-

lished by [27, 28, 29]. Typically, the shape at time t0 is ini-

tialized by stereo matching and then shape and motion are

jointly estimated resulting in convergence to the nearest lo-

cal minimum of an appropriate energy functional. To reduce

computational complexity, some authors decouple disparity

and motion estimation [30, 31].

Especially relevant to our work are methods that impose

constraints on the next disparity map based on the current

disparity and flow estimates [32, 33, 34]. Gong [32] com-

putes the photoconsistency of all possible disparity flows

per pixel, under a small motion assumption. The disparity

values predicted by disparity flow are favored in the next

frame by penalizing all other disparities. Liu and Philomin

[33] employ a variational scene flow estimator [27] and use

its output to predict the next disparity map and to impose

soft constraints on disparity estimation for that frame. Min

et al. [34] modify the cost function to enforce temporal co-

herence and use a frame similarity function to determine

the influence of the modification. These methods, however,

incur the high computational cost of scene flow estimation.

Evaluation The majority of the above publications do not

include quantitative evaluation except on synthetic inputs,

or they present results after applying the algorithms on static

scenes and grouping the images in sets that are assumed

to be acquired at different times. Overall, the effects of

enforcing temporal coherence on the 3D reconstruction on

real dynamic scenes compared to reconstructing sequences

of 3D models ignoring temporal information have not been

measured. Qualitative results on real data are presented by

[27, 21, 17, 22, 33, 28, 26, 29, 30, 31, 23], while [34] also

includes qualitative results on novel view synthesis. Even

recent methods for scene flow on RGB-D sequences cap-

tured by depth cameras only present qualitative evaluation

[35, 36, 37, 38, 39, 40].

Several publications [27, 33, 28, 38, 41] present results

on the multi-baseline Middlebury data [42]. The algorithms

still attempt to estimate flow in the vertical direction and in

disparity even though they are always zero. The most exten-

sive evaluation on rigid scenes is presented by [24] on the

KITTI benchmark [43], which, however, does not contain

independently moving objects. Menze and Geiger [44] pro-

posed a joint depth and scene flow estimation method and

a new dataset for evaluation. It assumes a finite number of

rigidly moving objects in the scene, while our method can

handle non-rigidity.

In the absence of ground truth data, Furukawa and Ponce

[45] concatenated forward and reverse videos around a

common frame, creating sequences such as f1f2f3f2f1,

and then measured the consistency of scene flow estimates

between the same pairs of frames that appear in reverse or-

der, such as f1f2 and f2f1. Ideally, shape estimates should

be identical and scene flow vectors should have the same

magnitude but opposite orientation. We did not adopt this

technique here since it can fail to detect errors such as those

due to excessive smoothness of the estimated flow.

A small scale quantitative evaluation was conducted by

Popham et al. [46] who measured the accuracy of scene

flow estimation over long sequences (90 frames) on a small

number of points manually clicked on the images. Clearly,

this approach does not scale well and also suffers from se-

lection bias. The most thorough evaluations were published

by Sizintsev and Wildes [7, 8]. Ground truth is acquired

using structured light sensors on stop motion sequences in

a motorized stage. While this study is unprecedented and

valuable, the experimental setup is not ideal since several

fiducial markers had to be placed on each independently

moving surface to aid ground truth generation. This also

improves the accuracy of the algorithms being evaluated,

not only on the markers themselves, but also on nearby pix-

els that are affected via regularization.

3. Problem Statement

In this paper we address the estimation of temporally

coherent depth maps from multiple synchronized and cal-

ibrated video sequences of a scene. To this end, we com-

bine outputs of depth estimation for sets of images taken

at the same time (spatial correspondences) with frame-to-

frame optical flow computed for the reference camera (tem-

poral correspondences). Depth estimation is carried out in

two stages: plane-sweeping stereo for generating the cost or

likelihood volume and SGM for extracting the final depth

estimates from the cost volume.

Temporal smoothness constraints are based on optical

flow computation. Since optical flow estimation is not per-

fect in practice, we do not implement temporal matches as

hard constraints, but we blend them into the cost volume

encoding our preference for depths at time t + 1 that are

consistent with the optical flow results. The implementa-

tion is presented in Section 5.

Since no datasets with ground truth depth over entire

video sequences are publicly available, we evaluate the ac-

curacy of the estimated depth maps based on the quality of

synthesized views generated from them. We perform these

evaluations by excluding the frames of one camera from all

computations and then rendering the colored depth map of

the reference view to that camera to “predict” the actual im-
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age. The error metric we use is the average difference in

RGB values between the predicted and actual image. While

this metric may not accurately capture errors in textureless

regions, it is suitable for free viewpoint video. The evalua-

tion methodology and experimental results are presented in

Sections 6 and 7, respectively.

4. Multi-baseline Semi-Global Matching

In this section, we present depth map estimation for the

single-frame case, before temporal constraints are applied.

Our approach combines the plane-sweeping algorithm [5]

with Semi-Global Matching (SGM) optimization [4]. The

former is used for computing the likelihood of a number of

possible depths for each pixel of the reference view. Since

plane-sweeping does not require the images to be rectified,

it is very convenient for multi-view matching. SGM is used

for obtaining a depth map that approximately optimizes an

energy function considering both fidelity to the matching

likelihoods and smoothness. We use the rSGM implementa-

tion provided by Spangenberg et al. [47]. For each dataset,

we select one camera as the reference view and compute

depth for its pixels using frames from other cameras to com-

pute the matching likelihood.

In plane sweeping stereo we define a family of planes

parallel to the image plane of the reference view. For each

pixel (x, y), depth hypotheses are formed by intersecting

the corresponding ray with the set of planes. We then define

a square window centered at (x, y) in the reference view

and warp it to the target views using the homographies from

the reference view to the target views through the current

plane. We compute the normalized cross-correlation (NCC)

between the window on the reference view and each warped

window on the target views, and store the average as the

likelihood of assigning to the pixel the depth corresponding

to the current plane. Target images in which the matching

window falls out of bounds are excluded. The output of this

stage is a likelihood volume that contains the average NCC

for assigning plane index d to pixel (x, y). It is converted to

a cost volume C(x, y, d) by negating the NCC scores.

SGM approximately optimizes a global two-dimensional

energy function by combining 1D minimization problems

in multiple directions. We use eight paths for dynamic pro-

gramming and 256 discretized depths per pixel. The energy

of a depth map D has the form of a summation of a data

cost for assigning depth dp to pixel p and smoothness costs

that penalize depth discontinuities.

E(D) =
∑

p

{C(p, dp) +
∑

q∈Np

P1T [|dp − dq| = 1]

+
∑

q∈Np

P2T [|dp − dq| > 1]}. (1)

P1 is the penalty added to the energy function of a pixel p
for pixels q in the 1D neighborhood Np of p, for which we

observe a depth change equal to one discrete level, which

may be due to slanted or curved surfaces. P2 is the penalty

for all depth changes greater than 1 (P2 > P1). T [·] is an

indicator function which is 1 when its argument is true. In

the implementation of [47], P2 is defined adaptively based

on the intensity values I of pixels p and q:

P2(p) = max{γ − α · |I(p)− I(q)|, P2,min} (2)

where P2,min is the minimum acceptable penalty value.

Minimization is performed in each direction separately and

the final cost for assigning a depth value to a pixel is ob-

tained by adding the costs all paths that go through the pixel

at that depth. The depth with the smallest total cost is se-

lected. We then apply subpixel refinement and a 3×3 me-

dian filter as in [47].

5. Imposing Temporal Constraints

We assume that if a pixel (xt, yt) with depth dt moves to

coordinates (xt+1, yt+1) in the next frame, then the depth

of (xt+1, yt+1) should be close to dt. We further assume

that dt+1 is normally distributed around dt, as shown below.

To estimate the optical flow between frames t and t + 1
of the reference camera, we use the software of Sun et al.

[6]. Figure 2 shows an example of two consecutive frames.

A visualization of the estimated flow is presented on the

second row, using the Middlebury color coding [48] on the

left and the vector plot on the right.

The key assumption is that the depth of temporal

matches in the next frame dt+1 follows a probability dis-

tribution P that is centered around the depth of the previous

Figure 2. First row: Input images at time instance t (left) and t+1

(right). Second Row: Visualization of flow with Middlebury color

coding [48], and vector plot.
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frame dt at pixel (xt, yt) which corresponds to (xt+1, yt+1)
according to optical flow. This idea was inspired by the

work of Unger et al. [49] who presented a probabilistic

depth map fusion algorithm for static scenes by approxi-

mating the distribution of projected depths on the reference

view from projection uncertainties. Here, we use optical

flow to establish matches. We assume that the likelihood L
of the depth at time t+1 is maximum at the plane dt+1 = dt
and it decreases with increasing distance in depth.

L(dt+1, xt+1, yt+1|dt, xt, yt) =
1

A
exp

(

−
(dt+1 − dt)

2

2σ2
d

)

(3)

with σd set to one disparity value. Disparity is defined as

bmaxf/d, where bmax is the maximum baseline between

the reference and a target view used in plane sweeping, and

f is the focal length of the reference camera. A controls the

relative weight of the temporal constraints compared to the

data term. This formulation allows us to apply soft tempo-

ral constraints on depth estimation at time t + 1 by blend-

ing them into the cost volume Ct+1. This is accomplished

by subtracting the likelihood L from the corresponding cost

values, which is equivalent to adding the likelihood before

the NCC is negated.

The cost volume C ′

t+1 is updated based on the optical

flow OFt from t to t+ 1, the initial depth map of the previ-

ous frame Dt and the current cost volume Ct+1 as inputs.

C ′

t+1(xt+1, yt+1, dt+1) = Ct+1(xt+1, yt+1, dt+1)

− P (dt+1, xt+1, yt+1|dt, xt, yt), ∀(xt, yt) (4)

The updated depth map D′

t+1 is computed from C ′

t+1 using

SGM for all frames. We call this process temporal coher-

ence constraint with a time horizon of one frame.

We also applied this method on longer time horizons by

using the updated depths of the previous frame d′t instead

of dt in Eq. 4. This led to the unlimited horizon temporal

coherence constraint. As expected, the unlimited horizon

constraint in some cases results in propagation of errors or

blending of surfaces in the updated depth assignments. In

Section 7 we evaluated different time horizons by not al-

lowing temporal constraints to persist longer than a given

number of frames.

6. Evaluation Methodology

In the absence of ground truth, we use view prediction

errors [13, 15, 50, 51, 14, 52, 53] to evaluate the generated

depth maps. In all cases, we use a completely separate vali-

dation camera for evaluation and entirely exclude its frames

from depth estimation. We always choose an extrapolating

view for validation so that errors are more pronounced in

it. An interpolating view, according to Szeliski [13], is one

that lies between views used in the computation, while an

extrapolating view is beyond the set of target and reference

views. Clearly, synthesizing extrapolating views is more

challenging, since the sensitivity to depth errors increases

as the viewpoint of the validation camera moves away from

the reference camera.

In recent work, Waechter et al. [14] present an extensive

analysis of novel view prediction error as a measurement of

the accuracy of 3-D reconstructed models. In our context, it

has two main advantages. First, it allows the use of datasets

without ground truth depth for evaluation. This is critical

since no real datasets with ground truth exist. Second, it

makes the comparison of different methods that use various

scene representations feasible.

We synthesize views by projecting the colored depth

map of the reference view, after subpixel refinement, to the

validation view. If multiple projections fall onto a pixel, we

keep the one nearest to the camera. Two types of errors oc-

cur after this process: pixels of the synthesized image may

differ in RGB from those of the actual image and there may

be no synthesized RGB values for some pixels. To avoid

unnecessarily penalizing algorithms for pixels that cannot

be predicted, we detect pixels of the validation camera that

cannot be the projection of any point inside the frustum of

the reference camera bounded by the minimum and maxi-

mum depth. These pixels are excluded from the evaluation.

We then use the Manhattan distance in RGB over pixels that

receive projections and we set the error to 256 per color

channel for uncovered pixels. We also tried the 1-NCC er-

ror according to [14], but it has limitations in textureless

areas.

7. Experimental Results

We evaluate our method using four publicly available,

multi-view datasets, which were captured in widely differ-

ent configurations. Cheongsam [12] is captured in a dome

with a 4.2m diameter by twenty cameras arranged in a ring.

Each video is 30 frames long. The ballet data [10] are ac-

quired by eight cameras forming a 30 ◦ arc, thus with nar-

rower baselines. The depth range is 7.6m and the length

of the video is 100 frames. The book arrival and outdoor

videos are provided by the MOBILE3DTV project [11].

They are captured using the same sixteen-camera rig, with

the cameras mounted side-by-side parallel to each other.

The maximum depth of the book arrival video and the out-

door video is 3.2m and 32m respectively and the length is

100 frames for both.

All experiments are performed with constant parameters

for all parts of our method except for the number of tar-

get views in the plane-sweeping algorithm. We used two

neighboring target views on each side of the reference view
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for all datasets except for the Cheongsam dataset, where the

wide angle between neighboring views forced us to use one

target view on each side. NCC is computed in 5×5 win-

dows over 256 fronto-parallel planes with subpixel spacing.

For SGM we use 8 paths, P1 = 11, α = 0.5, γ = 35 and

P2,min = 17. For the temporal constraint computation, the

parameters are A = 10 and Lmin = 0.01. The latter is

a threshold on L, below which we do not perform the cost

volume updates according to Eq. (4) because they are neg-

ligible. A is the most important parameter as it controls the

blending of the two cues that are combined in the updated

cost volume.

Given a video, we computed cost volumes for every

frame using plane-sweeping. We consider as a baseline the

initial depth maps extracted by applying SGM on these cost

volumes. Then, we generated depth maps by applying tem-

poral constraints over all possible time horizons. For ex-

ample, time horizon equal to 5 means that for the current

time t we start updating the depths using the temporal con-

straints at t-5 and use the updated depths until we reach time

t. Starting from a time horizon equal to 1 and increasing the

value, we observe improvements until the horizon becomes

equal to 3, where peak performance is observed. Beyond

that, accuracy decreases reaching a minimum in most cases

for a horizon close to 10. Accuracy then plateaus and stays

approximately constant as the horizon reaches the length of

the video. Therefore, only results for time horizons equal

to 1 frame, 3 frames and unlimited (all previous) frames are

shown.

base hor = 1 unlim. hor hor = 3

book arrival 85.9 71.5 65.5 61.5

outdoor 26.6 21.7 24.2 20.2

Cheongsam 406.8 401.9 402.3 401.3

ballet 321.4 308.9 299.1 301.5

Table 1. Average RGB L1 distance of synthesized novel views

compared to actual images. The average is taken over all pixels

of all frames of a single reference camera. Base denotes the stan-

dard SGM algorithm without temporal constraints.

base hor = 1 unlim. hor hor = 3

book arrival 90.4% 92.3% 93.3% 93.7%

outdoor 98.2% 98.8% 98.9% 99.0%

Cheongsam 49.6% 50.3% 50.2% 50.4%

ballet 59.7% 61.4% 62.7% 62.4%

Table 2. Average percentage of pixels with valid projection, ex-

cluding the impossible ones. The average is taken over all frames

of a single reference camera.

Tables 1, and 2 summarize the accuracy of all meth-

ods according to the criteria of Section 6. The best re-

sults were obtained with a time horizon of 3 frames in all

videos except for the ballet video, where the unlimited hori-

zon performed slightly better due to the textureless back-

ground. Cheongsam and ballet have less coverage due to

their much larger baselines. The results for a time horizon

of 1 frame and those with unlimited horizon show the range

within which our solutions vary, but sensitivity is low. Once

the time horizon reaches the upper single digits, the met-

rics become virtually constant. The optimal time horizon

for a scene depends on factors such as the fraction of pix-

els that is occluded or unoccluded in each frame and the

velocity of the surfaces. The improvement due to tempo-

ral constraints is smaller for the Cheongsam data. This is

because the initial depth estimates are more accurate com-

pared to the rest of the datasets. The variation of the average

RGB differences presented in Table 1 is explained by the

completely different configuration of the cameras used in

each video (angle and distance between cameras as well as

depth range). This determines the degree of occlusion from

the reference view to the novel view. Figure 3 illustrates

the qualitative improvement achieved by the temporal con-

straints. We observe improvements in the reconstruction of

both the stationary background and moving foreground ob-

jects. It is worth mentioning here that in every single frame

of all videos tested, the novel view generated with temporal

constraints is superior to the baseline in terms of both L1

RGB distance from the actual image, and also includes a

larger percentage of pixels with valid projection.

8. Conclusions

We have presented a general algorithm for improving

the temporal coherence of depth estimation for dynamic

scenes and demonstrated significant quantitative and quali-

tative improvements. While this finding is not unexpected,

this type of study was missing from the literature. We are

optimistic that our algorithm will be adopted by the research

community because it is compatible with all discrete opti-

mization methods and only has one parameter to be tuned

(A in Eq. 3). Unlike [32, 33, 34], our approach does not re-

quire scene flow estimation to impose temporal coherence.

The quantitative results of Section 7 show significant

overall improvements due to temporal coherence. More-

over, novel views generated with temporal constraints are

always superior in terms of our metrics. Depending on data-

specific factors, the average improvement can be as high

as 30%, as in the book arrival sequence. These factors in-

clude camera configuration, i.e. the angle between the ref-

erence and validation view and the baseline, as well as the

frequency content of the images, which determines the sen-

sitivity in terms of the synthesis of novel RGB values. An-

alyzing these effects is an interesting future direction.
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Book arrival

Ballet

3DV Outdoor

Figure 3. First and third columns: depths and corresponding novel view projections without temporal constraints. Second and fourth

columns: depths and corresponding novel view projections with temporal constraints.
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