
 

 

 

 

Abstract 

 

Recently, global SfM has been attracting many 

researchers, mainly because of its time efficiency. Most of 

these methods are based on averaging relative orientations 

(ROs). Therefore, eliminating incorrect ROs is of great 

significance for improving the robustness of global SfM. In 

this paper, we propose a method to eliminate wrong ROs 

which have resulted from repetitive structure (RS) and very 

short baselines (VSB). We suggest two corresponding 

criteria that indicate the quality of ROs. These criteria are 

functions of potentially conjugate points resulting from 

local image matching of image pairs, followed by a 

geometry check using the 5-point algorithm combined with 

RANSAC. RS is detected based on counts of corresponding 

conjugate points of the various pairs, while VSB is found by 

inspecting the intersection angles of corresponding image 

rays. Based on these two criteria, incorrect ROs are 

eliminated. We demonstrate the proposed method on 

various datasets by inserting our refined ROs into a global 

SfM pipeline. The experiments show that compared to other 

methods we can generate the better results in this way. 

1. Introduction 

In recent years, Structure-from-Motion (SfM) has 

undergone an impressive development in both computer 

vision and photogrammetry [1, 29, 30]. The so called incre-

mental SfM has received a notable amount of attention, 

demonstrated e.g. by the success of the software packages 

Bundler [26, 27], VisualSFM [33, 34], and COLMAP [23, 

24]. The general idea is that one good initial image pair is 

firstly selected to do stereo reconstruction. Additional 

images are sequentially chosen based on some criteria to 

extend the photogrammetric block, and bundle adjustment 

is repetitively used to refine the results. As [6, 14, 29] 

demonstrated, this approach is impeded by a long 

computational time and artefacts such as visual drift. To 

overcome these drawbacks, [2, 5, 7, 14, 17, 18, 30, 31] 

presented a global solution. Global SfM is typically 

separated into two steps, global rotation averaging [8, 9, 10, 

11, 20, 21, 32] and global translation estimation [5, 29, 30]. 

The exterior orientation parameters of all available images 

are first simultaneously estimated, followed by only one 

final bundle adjustment. Compared to incremental SfM, 

global SfM is more sensitive to outliers in relative 

orientations (ROs) between image pairs [6, 30, 31].  

Many outliers in ROs can be eliminated by using the 

five-point method combined with RANSAC [7, 19]. 

However, incorrect ROs typically remain undetected, 

mainly due to two reasons: 1) repetitive structure (RS), and 

2) critical configurations stemming from very short 

baselines (VSB). 

Repetitive structure is a characteristic of a single image 

and describes the fact that many parts in the image look 

similar. Typically, the reason is that the 3D structure of the 

scene is repetitive (this is why we speak about repetitive 

structure, and not about repetitive texture, as texture refers 

to the 2D image space). As a consequence, when extracting 

features, the resulting descriptors are rather similar. 

Matching images with repetitive structure leads to many 

ambiguous point pairs and many outliers. In our context an 

image pair due to repetitive structure is a non-overlapping 

(a)

(b) 

(c) 

(d) 

Figure 1. An example scene with repetitive structure and image 

pairs with very short baselines. (a) Two example images with 

repetitive structure. (b) Ground truth of overlap graph with the 

image IDs on the horizontal and vertical axes; green pixels denote 

overlapping image pairs, red pixels represent non-overlapping 

pairs with incorrect ROs due to RS, and blue pixels indicate the 

corresponding VSB image pairs. (c) incorrect reconstruction 

without eliminating incorrect ROs. (d) accurate reconstruction 

after eliminating incorrect ROs using the method suggested in 

this paper. 
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image pair, for which potentially conjugate points are being 

found due to these ambiguities. Such non-overlapping, but 

nevertheless similarly looking images can e.g. stem from a 

set of façade images, when the façade is somewhat 

symmetric. If enough such incorrect point pairs are 

extracted, it is possible that the 5-point algorithm is not able 

to detect the error, and incorrect relative orientation 

parameters are derived. 

A critical configuration with a very short baseline (VSB) 

results from improper image acquisition planning, e.g. 

when images are taken in different directions, but from 

basically the same projection centre. In addition, crowd 

source datasets such as images available on the Internet are 

widely used nowadays. These datasets may contain pairs 

with critical configurations as well.  

In Fig. 1, we show an example with both RS and VSB 

image pairs. (a) shows repetitive structure of windows and 

bricks, (b) depicts the ground truth of the overlap graph 

where green pixels denote the desired overlapping image 

pairs; (c) and (d) show the reconstruction result when 

applying the global SfM method of [30] without and with 

applying our method to eliminate outliers in ROs, 

respectively. It is obvious that the reconstruction is more 

reasonable after eliminating the incorrect ROs. 

In this paper, we present a novel method to eliminate 

outliers in ROs which are due to RS and VSB. We suggest 

two corresponding criteria that indicate the quality of ROs. 

These criteria are functions of potentially conjugate points 

resulting from local image matching of image pairs, 

followed by a geometry check using the 5-point algorithm 

combined with RANSAC. RS is detected based on counts 

of corresponding conjugate points of the various pairs, 

while VSB are found by inspecting the intersection angles 

of corresponding image rays. The contributions are 

threefold: First, we publish three benchmark datasets with 

repetitive structure and very short baseline image pairs, as 

well as ground truth ROs as shown in Fig.1(b) for one 

example. Second, we present a method to compute the 

probability of an image pair to stem from repetitive struc-

ture or a very short baseline. Finally, based on the related 

criteria, we propose a method to eliminate incorrect ROs. 

This paper is organized as follows: Section 2 outlines 

relevant related work. In section 3, we introduce the method 

of computing the mentioned criteria Section 4 describes the 

algorithm to eliminate incorrect ROs. In section 5, we 

report experimental results on various datasets. Finally, 

section 6 concludes our work. 

2. Related work 

In this section, we review the related work on detecting 

blunders in ROs. A conventional way based on RANSAC 

is to use the epipolar geometry constraint, in which the 

essential (or fundamental) matrix is estimated after image 

matching. The ROs are only considered correct if a 

minimum number of point pairs conforms with the model 

of central perspective [15]. Although many wrong ROs can 

be eliminated in this way, non-overlapping pairs may still 

exist resulting from RS and VSB. Many works try to detect 

these errors. Here, we divide them into three categories: 

missing correspondences analysis, loop consistency 

constraint analysis and other methods. 

Missing correspondences analysis. Zach et al. [35] first 

presented the so-called missing correspondences among 

image triplet to infer incorrect ROs. The main idea is that if 

a substantial portion of correspondences between two 

images from the triplet cannot be observed by the third 

image, then the relative orientation between the two images 

is potentially incorrect. The authors used a Bayesian frame-

work for all image triplets to check the correctness of the 

corresponding image pairs. Roberts et al. [22] improved this 

idea by verifying the incorrect ROs via an expectation- 

maximization method which integrates the cues of missing 

correspondence and timestamp information, however, the 

latter is not available in general, e.g., for unordered images 

the acquisition sequence is unknown. Jiang et al. [15] 

extended the missing correspondences idea by minimizing 

the number of missing correspondences across the entire 

reconstruction instead of the triplets. Specifically, a 

spanning tree is first built and then problematic ROs are 

iteratively detected in a greedy way. As a consequence, the 

method may get stuck in a local minimum. 

Loop consistency constraint analysis. Zach et al. [36] 

were among the first to adopt the loop consistency 

constraint to infer the validity of ROs. They first generate 

cycles in the overlap graph; the relative rotations are then 

concatenated within each cycle, as a result an identify 

mapping should be obtained if all ROs in the cycle are 

correct. Potential errors are indicated by using a Bayesian 

network. Reich et al. [21] presented a sequential graph 

optimization method to eliminate incorrect relative 

rotations. Both [36] and [21] need a long processing time 

when dealing with a large image dataset where all the 

relative rotations need to be considered.  Shen et al. [25] 

presented a graph-based consistent method, where a 

minimum spanning tree is incrementally expanded by 

checking the loop consistency within a triplet until all 

available images are included in the tree. In previous work 

[30] we presented a triplet loop closure constraint based on 

relative rotations and translations. We eliminate ROs if the 

closure error of all corresponding triplets is above a pre-

defined threshold and then use [10] and a newly developed 

method for global rotation averaging and translation 

estimation, respectively. 

Other methods. Wilson and Snavely [31] proposed a 

1DSfM approach. Their basic idea is to project the 3D 

relative translations into different 1D direction vectors. 

They then used a kernel density estimator to sample these 

directions, wrong ROs normally stand out clearly in the 

direction of the 1D vector. However, as the authors write, 



 

 

their method fails in the presence of repetitive structure. 

Wang et al. [28] presented a hierarchical ROs selection 

method for repetitive structure. They first built a minimum 

spanning tree (MST), and then used a hierarchical scheme 

for RO selection. Finally, ROs are validated to avoid a 

structure collapse. The method only selects validated ROs 

along the MST which may break up the block of images, 

and image pairs with very short baselines are not dealt with. 

To solve for artefacts caused by repetitive structure, Cohen 

et al. [3] recovered various symmetrical structures using 

geometric and appearance cues to refine their bundle 

adjustment process. Heinly et al. [13] presented a post-

processing step using the SfM result as input for their 

method. They split the overlap graph into subsets and use 

conflicting correspondences to identify repetitive structure. 

The subsets of the overlap graph which are free from 

conflict are then merged into a correct reconstruction. 

Compared with the above-mentioned methods, we 

propose a pipeline that can deal with RS ROs, with which 

loop consistency constraint analysis has difficulties, and 

can also deal with VSB which missing correspondences 

analysis has problems with.  

3. Detecting ROs of repetitive structures and 

very short baseline 

In this section, we first present the method to detect error 

ROs that are due to repetitive structure, and a criterion that 

indicates the degree of RS is introduced. Then, the method 

of detecting incorrect ROs that result from VSB is proposed, 

a criterion that indicates the degree of VSB is also presented. 

3.1. Detecting ROs of repetitive structures 

 
To distinguish RS ROs from all ROs, one normally takes 

advantage of non-repetitive structure, also present in the 

images. If two images depict a scene with 100% repetitive 

structure, even interactively we cannot tell overlapping 

image pairs apart from non-overlapping ones. Fig.2 shows 

an example of two image pairs. From both image pairs 

correspondences can be generated by image matching as the 

red, green and yellow points in Fig. 2 show. Visually, we 

can easily tell that image pair 1 is a pair with overlap since 

it contains non-repetitive structure (see the red boxes). In 

contrast, image pair 2, which is non-overlapping, does not 

have such non-repetitive structure. We argue that: 

- assuming a constant image size (in pixels) the number of 

features per image is approximately constant (if the image 

size varies, a normalisation needs to be carried out). 

- given a constant overlap, overlapping pairs have more 

conjugate points than non-overlapping pairs, because the 

latter do not have any inliers with respect to a central 

perspective model, as the pair has no overlap.  

We use these two hypotheses to detect and subsequently 

eliminate non-overlapping image pairs which survived the 

five-point geometry check. 

We first construct a set S of feature point 

correspondences S: S= {S1, S2, S3, …., Sn}, n is the number 

of images, Si is the set of feature points in the i-th image, 

each represented by an ID (in Fig. 2, S1 contains the red, 

green and yellow points). Then, ܳ௜௝௜  is the set of feature 

point IDs of the i-th image that have matches between the 

i-th and the j-th image, such as the red and green points in 

image pair 1 of Fig. 2. Now, we construct the difference sets 

between S and Q, denoted by ܦ௜௝=Si\ܳ௜௝௜  for image i and ܦ௝௜=Sj\ܳ௝௜௝  for image j. Since Si is assumed to be approxi-

mately constant, and overlapping pairs are assumed to have 

more matches than non-overlapping ones (see hypotheses 

above), the number of IDs in both, ܦ௜௝ and ܦ௝௜ is small for 

overlapping pairs, and large otherwise. In addition, we 

consider the IDs in Di with respect to the other images 

which have correspondences with the i-th image and 

generate a vector ࢍ௜௝	 =[݃௜ଵ, ݃௜ଶ, ݃௜ଷ, … , ݃௜௡], where ݃௜௝=0 and ݃௜௞=|{f∈ܦ௜௝&& f is a feature matched to the k-th image}|, | | 

is the operator which returns the number of set elements. 

We finally use equation (1) to compute a value RSij repre-

senting the degree of repetitive structure of image i and j. 

As mentioned, overlapping image pairs are assumed to have 

a small number of elements in the difference set and the 

value of ࢍij
Tࢍji should be small as well, while the number of 

correspondences in the denominator of (1) is large. Thus, 

the smaller RSij is, the more probable it is that the image 

pair does overlap and the RO is correct, rather than being 

solely due to repetitive structure. 

Our hypotheses are violated if images only overlap 

partially, in particular if the overlapping area is small. We 

argue that ROs of such image pairs are not robust either, 

thus if there is enough proper overlap between the images, 

it is reasonable to eliminate pairs with small overlap also. 

3.2. Detecting ROs of very short baseline 

Critical configurations stemming from very short 

baselines (VSB) decrease the robustness of SfM both in 

Figure 2. Image pairs of non-repetitive and repetitive 

structures, green boxes denote RS and red boxed denote non-

RS. Red points are the correspondences from non-RS, green 

ones are the correspondences from RS in image pair 1, yellow 

points are the correspondences from RS in image pair 2.  

ܴܵ௜௝ = (หܦ௜௝ห + หܦ௝௜ห)(ࢍij
Tࢍji)/(หܳ௜௝௜ ห + |ܳ௝௜௝ |)                      (1) 



 

 

structure and motion estimation, because VBS lead to small 

intersection angles and thus imprecise coordinates of the 

intersection point during triangulation and global 

translation estimation. 

 
In Fig. 3, we show a standard case of a two-view 

geometry with a relatively wide baseline and a case with 

VSB. P is the object point, Ci and Cj are the projection 

centres of images i and j,  t represents the baseline vector 

from Ci to Cj, ݎ௜  and ݎ௝  are two projection rays, ߠ௜  is the 

intersection angle of t and ݎ௜, ߠ௝ is the intersection angle of 

t and ݎ௝ ௣ߠ ,  is the intersection angle of ݎ௜  and ݎ௝ . In the 

standard case, we obtain the inequality 0 < ௜ߠ < ௝ߠ < ߨ  , 

whereas, for VSB, an approximate equation 0 < ௜ߠ ≈ ௝ߠ <   ߨ

can be set up. We use these two equations to distinguish 

cases with very short baselines from standard cases. For a 

standard case, we obtain: 

 
where R is the relative rotation and t is the relative 

translation. ݔ௜ and ݔ௝ are the image coordinates of conjugate 

points as predicted from image matching. We can rewrite 

these equations as 

 
For VSB, we have 0 < ௜ߠ ≈ ௝ߠ < ߨ , this means ܿܿ௜௝ (R) 

should close to 0. We can also derive the formulae XP = XCi 

+ ௜ݔ௜ܴ௜ߣ  and XP = XCj + ௝ߣ ௝ܴݔ௝ , where XP denotes the 

coordinate vector of object point P and XCi, XCj are  the 

projection centres Ci and Ci, ߣ௜ and ߣ௝ are the scale factors, ܴ௜  and ௝ܴ  are the corresponding rotation matrices from 

image to object space.  

XP= XCi +ߣ௜ܴ௜ݔ௜= XCj +ߣ௝ ௝ܴݔ௝                                (6) 

which can be rewritten as 

 
where t = ௝ܴି ଵ(XCi - XCj) is the baseline vector, ߣ௜௝ = ௜ݔ௜ܴ௜ߣ ௜. For VSB XCi = XCj  and we haveߣ/௜ =1ݒ ,௝ߣ/௜ߣ ≈ ௝ߣ ௝ܴݔ௝ 
and R = ܴ௜	 ௝ܴି ଵ, which also leads to ܿܿ௜௝(R) being close to 0. 

As for each pair of correspondences we have one ܿܿ௜௝(R), 

we use the mean value	ܸܵܤ௜௝ of ܿܿ௜௝(R) in equation (9) as a 

criterion to quantify the degree of an image pair to have a 

VSB: the smaller the	ܸܵܤ௜௝ is, the higher the probability that 

the image pair is a VSB pair. 

 
Note, there exists an implicit assumption that the length 

of baselines cannot equal 0 when decomposing the essential 

matrix into relative rotation and translations [11, 16]. 

However, relative rotation can obviously be computed for 

image pairs of 0 baseline as this is the task of transforming 

images into epipolar geometry, and equation (9) remains 

correct in this case; the corresponding derivation can be 

found in the appendix.  

In order to investigate, in how far the assumption is 

relevant for us, we design a simulation experiment to see 

whether rotation can still be accurately estimated when the 

baseline is very short or even exactly 0.  

 
As Fig. 4(a) shows, a set of 100 3D points is randomly 

generated in a cube of [-1,1]3. We simulate two cameras 

with focal length 3500 pixels and an image size of 1200×
800 pixels viewing these 3D points. We keep one camera 

fixed at point (5,0,0) and start to move the second camera 

from this point along an arc (shown by the green line) with 

centre of (0,0,0) and 5m radius in small steps, until these 

two cameras are 3m (arc distance) away from each other. 

The corresponding rotation matrices are designed by 

requiring these two cameras to be able to view all 3D points, 

then, image pairs with known exterior parameters are 

simulated. The image coordinates of the 3D object points 

are generated via the collinearity equations with 0.2 (pixel) 

standard deviation Gaussian noise. The relative orientations 

of these image pairs are then estimated using the five-point 

algorithm from the resulting conjugate point coordinates, 

and they are compared to the simulated exterior parameters. 

Since the relative translation is normalized and the scale is 

unknown, we can only compare the translation directions. 

The arc between two cameras is transferred into baseline 

length. We obtain results showed in Fig. 4(b); the relative 

rotation error remains stable, while the relative translation 

error increases as the baseline decreases, which means that 

the relative rotation can be robustly estimated, while the 

relative translation cannot, when the baseline is very short. 

Very short baselineStandard case 

Figure 3. Two-view geometry constrain 

ଵିݏ݋ܿ  (ோ௫ೕ)೅௧ห௫ೕห·|௧| > ଵିݏ݋ܿ ௫೔೅௧|௫೔|·|௧|                                  (2) 

i.e.      
௫೔೅௧ห௫ೕห·|௧| > (ோ௫ೕ)೅௧|௫೔|·|௧|                                              (3) 

(	ห݆ݔห	ݔ௜் − 	(்(௝ݔܴ)	|݅ݔ| ௧|(4)                                      0 < |ݐ ܿܿ௜௝(R) = | (	ห݆ݔห	ݔ௜் − 	(்(௝ݔܴ)	|݅ݔ| ௧|(5)                         | |ݐ 

(7)                                                    (௜tݒ + ௜ݔ		ܴ)௜௝ߣ=௝ݔ     

௝ߣ+ ௜= XCj - XCiݔ௜ܴ௜ߣ      ௝ܴݔ௝                                         (8) 

௜௝ܤܸܵ  = avg (ܿܿ௜௝(R))                                             (9) 

Figure 4. Simulation experiment. (a) shows the poses of the 

simulated cameras and the position of object points, the red 

frame is the fixed camera and the black frames denote the 

different projection centres of the second camera. (b) 

shows the error in degree of relative rotation and translation for 

different baseline lengths. 

(b)(a) 



 

 

4. Eliminating incorrect ROs 

In this section, we introduce our method for eliminating 

incorrect ROs. After calculating the criteria for RS and VSB 

for each image pair, a comprehensive method that cannot 

only filter as many RO outliers as possible, but also keep 

the photogrammetric block intact as a whole is presented. 

The input ROs are computed and filtered using the five-

point algorithm [19], we then generate a view graph G = 

,ࣇ)  with the largest number of connected images (the (ࢿ

number is indicated by Ne), where the vertice set ࣇ 

represents the images and the edge set ࢿ denotes the ROs. 

To keep the block intact we assign each edge in G a weight ݐݏ݉ݓ௜௝	 calculated by (10) and construct a minimum 

spanning tree for G, described in algorithm 1, where norm(.) 

normalizes the corresponding values into the range (0, 1). 

We add the selected ROs in the spanning tree into a set O. 

 
 

Algorithm 1 Constructing a minimum spanning tree 

Input The view Graph G = (ࣇ, ௜௝ݐݏ݉ݓ and the corresponding (ࢿ  values. 

Output The set O with Ne−1 ROs connecting all vertices 

in ࣇ. 
1. Select one RO with smallest ݐݏ݉ݓ௜௝ , add this RO into 

O and the vertices into a set L, then compute the 

difference set of L and ࣇ by using DS = ࣇ\L. 

2. Figure out vertices from DS that have ROs linking to 

any vertex in L, and choose one vertex with RO of 

smallest ݐݏ݉ݓ௜௝ , add this RO into O and the 

corresponding vertex into L, DS is updated by ࣇ\L. 

3. Repeat 2 until all vertices in ࣇ are included by L.  
 

To eliminate incorrect ROs due to RS, we set ܽ௜௝=1 if 

image i and j overlap, otherwise ܽ௜௝=0. For each image we 

keep at least Nr ROs. From the input ROs, Mr×Ne ROs are 

selected with the smallest sum of corresponding RSij values;  

Mr is a free parameter which needs to be set according to 

experience. Based on the above mentioned requirements, 

we then do the selection by minimizing equation (11). 

 
We apply the same idea to select image pairs with 

reasonably long baselines, as equation (12) shows. We set ܾ௜௝=1 if the baseline between images i and j is long enough, 

otherwise ܾ௜௝=0. Then, equation (12) is maximised, note 

that the total number of selected ROs is Mv×Ne. where Mv 

is a free parameter similar to Mr. 

                                                           
1 More information about Mosek can be found at www.mosek.com. 

The Mosek library 1  that can solve linear optimization 

problems is used to obtain solutions of equation (11) and 

(12). Finally, we eliminate ROs with ܽ௜௝=0 or ܾ௜௝ = 0, while 

ROs with ܽ௜௝=1 and ܾ௜௝ = 1 are kept for further global SfM. 

5. Experiments 

In this section, we present a detailed evaluation of our 

method. The experiments are conducted with various 

datasets including three image datasets with ground truth 

for the ROs. Ground truth means that we know for each 

potential pair of images whether the pair overlaps, whether 

it is non-overlapping with repetitive structure and whether 

it has a very short baseline, as shown in Fig. 1(b); ground 

truth has been established manually. Further, we investi-

gated four public datasets with highly repetitive structure 

and a challenging dataset, which many global SfM methods 

cannot deal with. We feed the refined ROs to the global 

SfM pipeline of our previous work [30] consisting of global 

rotation averaging by [10] and global translation estimation 

and compare the results with other methods. 

5.1. Evaluation on three datasets with RO ground 

truth 

To demonstrate the performance of our outlier 

elimination method we generate three image datasets with 

RO ground truth2. We choose three buildings with repeti-

tive structure (we use abbreviations B1, B2 and B3 to 

represent these three datasets henceforth), images are 

acquired around these buildings. The camera is rotated 

along the vertical axis several times at each exposure station 

to obtain VSB image pairs, see Fig. 6, where the VSB ROs 

(blue pixels in the second column) are all located along the 

main diagonal of the overlap graph. Tab. 1 offers detailed 

information on these three datasets. Np is the number of 

input ROs. In this experiment, Nr is set to 5 to make sure 

that each image is reliably connected to the block, Mr and 

Mv are selected according to how redundant Np is (for 

example, in B1, on average each image in Ne has 

2011/182=11 overlapping images which means for each 

image, the corresponding ROs are somewhat redundant 

when conducting global SfM) and the number of RS and 

VSB ROs. For B2 and B3 larger values are chosen for Mr 

and Mv than for B1, because B2 and B3 have many more 

redundant ROs than B1 does, see Tab. 1. Thus, we can 

choose more non-RS and non-VSB ROs for each image of 

B2 and B3. 
 

2 These datasets are available on github.com/wx7531774/SFM_results. 

௜௝ݐݏ݉ݓ  = norm(ܴ ௜ܵ௝)+norm(1/	ܸܵܤ௜௝)                      (10)

min௔೔ೕ ܴ ௜ܵ௝ܽ௜௝     subject to:                                                       ∀i ∈ ν , ∑ ܽ௜௝	௝ ≥ Nr, where (i, j) ∈ ,݅)∀ ;ࢿ ݆) ∈ O, ܽ௜௝ = 1;∀(݅, ݆) ∈ ∑ ,ࢿ ܽ௜௝		 =  ௥×Ne;      (11)ܯ

max௕೔ೕ ௜௝ܾ௜௝   subject to:                                                     ∀iܤܸܵ ∈ ν , ∑ ܾ௜௝	௝ ≥ Nr, where (i, j) ∈  ࢿ; ∀(݅, ݆) ∈ O, ܾ௜௝ = 1; ∀(݅, ݆) ∈ ∑ ,ࢿ ܾ௜௝		 =  ௩×Ne;    (12)ܯ



 

 

 
Ne Np 

Correct 

ROs 
RS VSB Nr Mr Mv 

B1 182 2011 1089 784 138 5 6 10 

B2 215 6357 1935 4030 392 5 10 27 

B3 342 4956 3202 1422 332 5 10 13 

Table 1. Description of the generated RO datasets. 
 

To validate the performance of our method in detecting 

RS and VSB ROs, and to see how RS and VSB ROs affect 

global SfM, we conduct experiments using four pipelines: 

RS and VSB ROs elimination (indicated by “Ours” in the 

following tables and figures), no ROs elimination, only RS 

elimination, and only VSB elimination. Based on the 

ground truth ROs, Tab. 2 provides the precision and recall 

values for detecting RS, VSB and the correct ROs. We find 

that most ground truth ROs can be detected (recall is higher 

than 90%), however, some false positives are detected 

which leads to a lower precision. In addition, the precision 

of detecting VSB ROs is lower than that of detecting RS 

ROs. Thus, our method also eliminates some image pairs 

with should be kept for further processing. Nevertheless, 

the precision of “Ours” is higher than that of the other 

pipelines. Fig. 5 is the visualization of SfM results. We find 

that the results with our ROs elimination are the best. The 

other three pipelines generated artefacts shown in the green 

ellipses. We also conclude that both RS and VSB ROs can 

negatively affect global SfM. Thus, it is necessary to 

eliminate both types of errors. 
 

 Detection of 

RS only 

Detection of 

VSB only 

Correct ROs after RS 

and VSB elimination 

 P R P R P R 
B1 80 95 67 93 81 97 

B2 93 97 66 92 94 93 

B3 81 90 62 96 91 93 

Table. 2 Precision and Recall value in percent on detecting RS, 

VSB and correct ROs. P and R denote precision and recall. 
 

 
Figure. 5 Visualization of SfM results from different pipelines. 

 

To further investigate our RO elimination method, we 

compare the results with those of Zach et al. [36], Wilson 

and Snavely [31] and Wang et al. [30]. Compared with the 

other methods, Tab. 3 shows that we have the lowest 

number of ROs attributed as correct; this is also illustrated 

by Fig. 6 where the overlap graph of “Ours” is filled with 

less black pixels than that of the other methods. We 

calculate the precision and recall values based on the 

ground truth of ROs, see Tab. 4. We find that the recall 

values of all methods are higher than 90%, which means 

they are all able to detect most of the correct ROs, whereas, 

our method has a much higher precision. This indicates that 

we detect many false positives, and thus consider fewer 

incorrect ROs as being correct. 
 

 Ours [36] [31] [30] 
B1 1303 1684 1569 1846 

B2 1918 5839 5391 5066 

B3 3278 4349 3690 4776 

Table. 3 Comparison of the no. of selected ROs from dif.  methods 
 

 Ours [36] [31] [30] 

P R P R P R P R 
B1 81 97 60 93 65 94 56 95 

B2 94 93 35 99 37 99 40 99 

B3 91 93 73 99 82 95 67 99 

Table. 4 Comparison of precision and recall value in percent of 

different methods. P and R denote precision and recall. 
 

 
Figure.6 Overlap graphs of the three datasets from different 

methods. The first column shows sample images. The second 

column is the RO ground truth; green pixels denote correct ROs, 

red pixels are RS ROs, blue pixels denote VSB ROs. In the next 

columns, black pixels indicate that the corresponding ROs are kept 

and white pixels are the corresponding eliminated ROs. 
 

 
Figure 7. Visualization of SfM results from different methods. 

 

Fig. 6 compares the RO elimination results. Comparing 

our results and the ground truth overlap graph, it can be seen 

that most of the red and blue pixels along the diagonal are 

eliminated, whereas, many red pixels still exist in [36], [31], 

and [30]. This means that the loop constraints used in [36], 

and constraints based on relative translation as employed in 

[31] and [30] are not capable to deal with repetitive 

structures in these three building datasets in the same way 

as our method. In addition, many blue pixels also remain in 

the results of [36], [31], and [30]. Fig. 7 shows a 



 

 

visualization of the obtained SfM results. We come to 

similar conclusions as for Fig. 5: the proposed RO 

elimination method generates the best result, the other three 

methods generate artefacts shown in the green ellipses. 

5.2. Evaluation on four public datasets with highly 

repetitive structure 

In this section, we report on experiments on four public 

datasets with highly repetitive structure, namely the Temple 

of Heaven (ToH), Street (Str.) [3], Indoor (Ind.) and 

Stadium (Sta.) [25]. For these four datasets, there are no 

VSB ROs, so we only strive to eliminate RS ROs by setting 

Nr to be 5 and Mr to be 7, respectively, and only RSij is used 

in equation (10) to compute the ݐݏ݉ݓ௜௝ . Tab. 5 contains the 

Ne of each dataset, the number of input ROs Np, and the 

number of ROs attributed as correct. 
 

 
Ne Np 

Number of correct ROs 

Ours [36] [31] [30] 
ToH 341 56429 2387 34195 48540 48507 

Str. 175 5171 1225 4544 4089 3832 

Ind. 152 4740 1064 3380 3449 4059 

Sta. 156 1733 1092 728 1338 1368 

Table 5. Comparison of the no. of ROs from different methods. 
 

 
Figure 8. Overlap graph of the four public datasets obtained from 

the different methods. The second column is the overlap graph 

from the input ROs, black pixels denote that the corresponding 

ROs are available. This is also true for the last four columns. The 

third column is the normalized RSij graph. 
 

Taking Fig. 8 and Tab. 5 into consideration together, we 

find that after having applied the five-point algorithms each 

dataset has a very redundant number of ROs, and incorrect 

ROs survived due to RS. The third column of Fig. 8 shows 

the normalized RSij graph. Specifically, we calculate the 

RSij values for each RO by using equation (1) and normalize 

them into the range (0,1). The brighter the pixel is, the 

larger is the corresponding RSij and, thus, the higher the 

probability that the image pair does not overlap. When 

comparing with other methods in Tab. 5, for TOH, Str. and 

Sta., we eliminate many more ROs and the number of ROs 

after elimination from our method is smallest, because 

based on Mr, only a limited number is selected by design. 

The last four columns in Fig.8 show the overlap graphs of 

the different methods. Our method results in a much cleaner 

overlap graph. For Sta., we keep more ROs than [36], which, 

however, reconstructs only part of the image block.  

Since no ground truth ROs are provided for these datasets, 

to validate the quality of the correct ROs, we insert the ROs 

obtained by different methods into the global SfM pipeline 

[30] (note that we turn off the ROs elimination process of 

[30] when inserting the ROs of other methods). The 

reconstruction results are shown in Fig. 9; green ellipses 

denote artefacts. Compared to the other three methods, we 

don’t have visual artefacts in our results and our method is 

able to improve the result of global SfM. For ToH, only part 

of the temple is reconstructed by [36], [31] and [30]. 

Probably due to the RS ROs in the Str. dataset, which 

results in an overlap graph with a pair of wings shown by 

Fig. 8, [36], [31] and [30] generated a folded reconstruction. 

As for Ind., many images are orientated into the wrong 

position by using [36], [31]and [30], and these methods also 

produce a folded reconstruction result. The reconstruction 

result of Sta. by [36] does not keep a consistent block, and 

it has the lowest number of ROs (728); and the original 

circular stadium is not closed by [31] and [30]. 
 

 
Figure 9. Visualization of SfM results from different methods. 

5.3. Evaluation on a challenging dataset and 

limitation 

To further explore the capability and limitation of the 

proposed method, we test one more challenging dataset, 

namely Quad [4], which many global SfM methods fail on 

[6, 30]. [30] claimed that the reasons are due to RS and 

critical geometric configuration of VSB image pairs, hence, 

we try our method on this dataset. Compared to the ground 

truth of reconstruction result [4], we obtain a reasonable 

result, see Fig. 10(a), by setting Nr =5, Mr = 15 and Mv =22, 

whereas, we obtain an incorrect reconstruction, see 

Fig.10(b), by setting Nr =5, Mr =20 and Mv =25. There are 

many incorrect reconstructions on buildings in Fig. 10(b). 

The limitation of our method is thus its sensitivity to the 

parameters Nr, Mr and Mv. 

     
(a)                                             (b) 

Figure. 10 Visualization of Quad SfM result by different settings. 



 

 

6. Conclusion 

In this paper, we presented a novel method to eliminate 

blunders in ROs for conducting robust global SfM. We deal 

with incorrect ROs that are the result of repetitive structure 

and very short baselines.  Criteria for these two cases are 

introduced, and incorrect ROs are eliminated based on these 

two criteria. For evaluation we processed various datasets 

and compared the results to those of other methods, and 

thereby demonstrated that our method can improve the 

robustness of global SfM. Since all the test datasets are 

from architectures and the current limitation of our new 

method is the parameter setting, we next plan to investigate 

different kind of images (for example, UAV images) and 

the idea of choosing reasonable values for the free 

parameters when facing different kinds of datasets. 

Appendix 

Proposition: The elements of the relative rotation matrix R 

can be accurately estimated from the essential matrix, no 

matter how short the baseline length is. 

Proof. Inspired by the calculation of the essential matrix 

[11], we use the correspondences to obtain a solution of a 3

×3 matrix L. 

where	⊗ denotes the Kronecker product, ࢞௜ and ࢞௝ are the 

coordinates of all the correspondences from image i and j, 

vec(.) is the vectorization of a matrix. To take the relative 

rotation and translation into consideration, we rewrite (13) 

using the mixed-product property of 	⊗ and equation (7), 

where ߣ௜௝  is eliminated as ߣ௜௝  is always larger than 0, ࢜௜ 
contains all the ݒ௜ 	values from all the correspondences,  

 
For the whole correspondences, m is the number of 

correspondences, we can get equation (15). Then, we use U 

which represents the parameter matrix and z representing 

the unknowns, namely R, t and L 

U=ۖ۔ۖە
ۓ ଵ்ݔ ⊗ ଶ்ݔ	[	ଵݒ		ଵ்ݔ] ⊗ ௠்ݔ..[	ଶݒ		ଶ்ݔ] ⊗ ۘۖۙ[	ଶݒ		௠்ݔ]

ۖۗ
,  z=(I3⊗  vec(L)       (16) (்[ݐ				ܴ]

Uz=0                                                                          (17) 

We analyse the U matrix, which is shown in (18) 

۔ۖەۖ		
݉ݒ		1		݉ݕ	݉ݔ			݉ݒ݉ݕ		݉ݕ		2݉ݕ		݉ݔ݉ݕ			݉ݒ݉ݔ		݉ݔ		݉ݕ݉ݔ		2݉ݔ..2ݒ		1		2ݕ	2ݔ					2ݒ2ݕ				2ݕ				22ݕ				2ݔ2ݕ				2ݒ2ݔ			2ݔ				2ݕ2ݔ			22ݔ	1ݒ		1		1ݕ	1ݔ				1ݒ1ݕ				1ݕ				12ݕ				1ݔ1ݕ				1ݒ1ݔ			1ݔ				1ݕ1ݔ			12ݔ	ۓ ۙۘۖ

ۖۗ
 (18) 

As we can easily find out, columns 2, 3 and 7 are equal to 

columns 5,9 and 10, so, rank(U)≤9. Therefore, when m≥9 

the homogeneous equation (17) has three linearly 

independent basic solutions 

 
So, the general solution space of z is 

 
in which ݇ଵ, ݇ଶ, ݇ଶ are all real numbers. According to (16), 

 
Replacing (21) in equations (20) yields 

		= ൞0	ൠܮ்ݐ	ܮ்	൜ܴ= ܮ்[ݐ				ܴ] − ݇ଵ 		− ݇ଶ݇ଵ					0				 − ݇ଷ݇ଶ						݇ଷ								00								0									0 ൢ                               (22) 

Then, we obtain the relationship between R and L, t and L. 

 
and k = (݇ଵ, −݇ଶ, ݇ଷ). (23) means that the solution L of (10) 

is just the essential matrix [12]. So, R can be decomposed 

from L. From (23) and (24), when t ≠ 0, we get t =±ܴ࢑ and 

R can be correctly estimated using SVD decomposition [11]. 

For t=0, it is clear that L has no relationship with t, and it is 

still related to R and k. k can never be a zero vector which 

means t is not related to k, because the solution z will be 

zero if k is a zero vector and this requires that the 

homogenous equation should have a full rank which means 

Rank(U) = 12, and this can never happen. So, R can still be 

correctly estimated from L when t=0, and the corresponding 

solution for t is not the correct relative translation, but the k 

vector. 
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