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Abstract

Anticipating an action that is about to happen al-

lows us to be more efficient in interacting with our en-

vironment. However, prediction is a challenging task

in computer vision, because videos are only partially

available when a decision is to be made. Complicat-

ing the issue is that it is not always clear which of

the visible activities in the scene are relevant to the

action, and which ones are not. We suggest that the

key to recognizing an action lies with the human actors,

and that it is therefore necessary for the prediction pro-

cess to attend to persons in a scene. In our work, we

extract fine-grained features on visible human actors

and predict the future via an L2-regression in feature

space. This allows the regressed future feature to focus

on the actor. Using this, the future action is classified.

More specifically, the fine-grained extraction is guided

by a pose prediction system that models current and

future human poses in the scene. We run qualitative

and quantitative experiments on the Charades dataset,

and initial results show that our system improves ac-

tion prediction.

1. Introduction

Action recognition is a popular field of research in
computer vision, where upon inspection of data show-
ing an activity, typically a video, a judgement in form
of a classification is made. Oftentimes, it is however
necessary to make a decision before the data relating
to the action has become available for observation. In
this scenario, we then need to solve an action antici-

pation [5, 8, 13] task. A plethora of applications rely
on prediction systems. For example, an autonomously
driving car needs to predict that a pedestrian is at-
tempting to cross the road in order to be able to slow
down in time. A different application is a household
robot that anticipates its owner’s next action in order
to support him, or, at the very least, not hinder him.

The key challenge is that we are not able to observe

Figure 1: A person is about to vacuum the floor. Her
pet dog is not relevant to the action. To focus the pre-
diction process on the human actor, a pose-based at-
tention mask is used to guide extraction of fine-grained
representations from the image. The future represen-
tation is then learned by regression.

the action itself. Fortunately, there are often common
patterns that can be observed ahead of time. Previous
work [13] attempted to find such patterns by unsuper-
vised learning on large video datasets. However, with-
out guidance as to what to look for, this approach has
limited effectiveness, as large portions of the scenery
are irrelevant to the activity. For the case of human

action anticipation, which we tackle in this work, we
suggest that such patterns can be found in the pose of
visible persons, as well as in objects that a person inter-
acts with. Hence, we can guide the prediction process
by emphasizing on the people visible in a scene.

Similar to [13], we attempt to perform the predic-
tion process inside the deep feature space in our work.
This avoids unnecessary reconstruction of the future
scenery pixel by pixel. Unlike the previous work how-
ever, we utilize the human pose as a means to learn an
attention scheme. The attention scheme acts as a mask
that removes information not relevant to any activity,
both for the given past observation, as well as for the
potential future. An input reduced in such way enables
a more effective prediction process. As a side product,
it also allows our proposed architecture to generate hu-
man poses for the as-of-yet unseen images in the future.



Figure 2: Our proposed system architecture. A pose

prediction stream encodes past pose representations
and predicts future representation with the help of a
decoder. Reconstructed poses are used as masks that
attend the input of a feature prediction stream.

2. Related Work

A number of methods [12, 15, 7, 14] attempt to pix-
elwise predict a future frame given an input of RGB
frames. Srivastava et al . [12] made an initial attempt
using an encoder-decoder LSTM architecture to predict
a small number of frames. The work in [15] leverages
human poses and then predicts a future frame in an
adversarial fashion, showing some promising results.

Human pose has also successfully been used for Ac-
tion Recognition [3, 4, 10]. In [3], pose-based features
are created by extracting patches around human body
parts, and aggregating them to learn a video descrip-
tor. The work in [4] models human body parts via
a more flexible pose attention mechanism. However,
none attempt an action prediction scenario.

The work in [6] learns to anticipate human activi-
ties with the help of object affordances. However, such
annotations are not available for most datasets.

Our work bears greatest similarity with that by Von-
drick et al . in [13]. Instead of first predicting a high-
dimensional RGB frame at the desired point in time
in the future, they apply a deep regression network
and predict the future in a much lower dimensional
space, in their case the 4096-dimensional FC7 layers
of AlexNet. The network is pretrained in an unsu-
pervised fashion, and then annotated on a small-scale
supervised dataset. However, we identify several flaws
in their work: First, the deep feature extracted from
AlexNet includes largely irrelevant information on the

background scenery. Second, the features are extracted
from a single past frame as well as a single future
(groundtruth) frame. Any motion information that
could help describe the action-to-be-predicted is lost.

3. Proposed Method

Our system, see Figure 2, is formed by two main
components: A pose prediction stream and a feature

prediction stream. We begin by describing the pose
prediction stream.

3.1. Pose-based attention generation

The task of the pose prediction stream is two-fold:
First, we can use it to predict the following poses of a
person in the video. Based on these predicted poses,
a classification may be made as well. Second, more
importantly, we use the poses to generate meaningful
attention masks, which will then be used to extract
fine-grained features on the actor, see Sec. 3.2.

While one may attempt to learn the pose directly
from RGB input, for our initial experiments, we make
use of an existing pose detector to conclude where pos-
sible actors are located in the scene. In particular, we
use the work by Cao et al . [1] to extract Part Affinity
Fields (PAF). A PAF is a set of two-dimensional vec-
tors that describe orientation of a body part at each lo-
cation in an image. Given such a vector vx,y = (v1, v2)
of a PAF, we can consider ‖v‖2 = v2

1
+v2

2
as a measure

of whether a pixel (x, y) belongs to a body part or not.
We use this body part map, visualized in the middle
row of Figure 3, as input to our pose stream.

The first goal of the pose stream is to predict the
future poses. To accomplish this, we implemented
a ConvLSTM-based [9] encoder-decoder. An encod-
ing ConvLSTM reads in the P -dimensional body part
maps extracted on a video clip, where P = 18 in our
case, and generates an intermediate state (C,H). The
state is then used to initialize the decoding ConvL-
STM, which will predict future poses. To approach
our second goal, we can use the poses as a natural at-
tention mask to remove background information from
the observed (past) RGB video sequence.

3.2. Actor feature extraction

Our work proposes to improve the prediction step by
attending to the main actors of an action. At the same
time, changes in the background that do not contribute
to the prediction process should be disregarded. It
should be noted that background features can help de-
scribe the scene, and while no prediction is performed,
a single (past) feature is extracted for classification.

In order to be able to attend to certain regions of
a frame, we earlier described how we generate atten-



tion masks from the pose stream. These masks can be
used in two different fashions: One can apply the mask
on the RGB image itself, and then use a deep convo-
lutional network to extract high-level features on that
frame. Alternatively, we could also apply the attention
mask at a later stage, for example on the last spatial
layer of the convolutional stack.

In our ongoing work, we choose the 3D-convolutional
network I3D [2] as a feature extractor. I3D is con-
sidered the state-of-the-art for action recognition on
benchmarks such as UCF-101. We decide to apply the
attention masks on the RGB image directly. This al-
lows us to finetune the convolutional network in the
hope that fine-grained, human-specific features can be
learned. As the attention masks recovered from the
pose stream have lower spatial resolution (in our case
28 × 28), we resize the masks in several steps up to a
resolution of 224×224 using bilinear interpolation lay-
ers, each followed by a 1× 1 convolution. The resizing
operation supports gradient backpropagation.

3.3. Decoding future representation

In the previous section, we extracted fine-grained
features of persons visible in the scene. These features
describe the actors in the time ahead of the action-to-
be-predicted, and we refer to them as past features.
These past features are used as input to the feature

prediction stream.
The prediction process in the feature prediction

stream is again implemented by an encoder-decoder
framework. An encoding recurrent network reads in
the past features extracted previously on the observed
video sequence of length Tin. The final state of the
recurrent network is then copied, and used to initialize
a decoding recurrent network, which does not take any
input (or an all-zero input) and generates Tout out-
put features. As prediction loss, we choose the L2-
regression loss. As the outputs of recurrent networks
often apply the hyperbolic tangens tanh(·) as activa-
tion function, we add an additional 1×1 convolutional
layer with ReLU activation in order to match the acti-
vation function used in I3D.

4. Evaluation

In the following, we first describe the used dataset,
Charades [11], and then report our initial results.

4.1. Dataset: Charades

The Charades dataset consists of 9848 videos show-
ing people acting out daily indoor activities. It is es-
pecially suited to our work, as it centers on human ac-
tions, which ensures that only a small fraction of frames
lacks a visible pose. The are 157 activities, which are

described by a verb-object structure, where the num-
ber of verbs and objects is restricted. There is a strong
class imbalance in the dataset, and for our initial ex-
periments we use a subset of seven classes1 with large
number of examples.

Each action in the dataset is annotated with two
timestamps, the starting and end time of that action.
For our experiments, we read in Tin frames ahead of
the annotated starting time. In case that not enough
frames exist, the last valid frame is repeated. For the
future reference representation, we load Tout frames
from the temporal center of the annotated action.

4.2. Quantitative results

For initial results, we run our system on a subset of
seven Charades classes, and compare with the simpler
feature regression approach in [13], marked as (i). We
test three configurations: First, in the configurations
marked as (ii) and (iv), we only input the body part
maps generated from PAFs into the pose stream. In the
second case, marked (iii), we additionally feed segmen-
tation maps of a set of objects of interest. We choose 20
of the 80 annotated object classes in the CoCo dataset.
Note that the objects only serve as input, i.e., we do
not regress their future instances.

Table 1: Our initial results. The baseline configura-
tion is based on [13], but now reads in a sequence of
Tin frames instead of a single one. Our fine-grained
prediction improves accuracy by 2% over the baseline.

Configuration Accuracy

(i) Vondrick et al . [13] Baseline 31.26%
+LSTM

(ii) Fine-grained Pose Ours 31.86%
+ConvLSTM

(iii) Fine-grained Pose+Obj Ours 31.36%
+ConvLSTM

(iv) Fine-grained Pose Ours 33.27%

+LSTM

The results in Table 1 suggest that we can indeed
gain some performance when attending to the main
actors. Adding objects as additional input surprisingly
had a detrimental effect on prediction accuracy. Our
qualitative analysis reveals one reason for this.

4.3. Qualitative results

The pose stream reconstructs past poses, and pre-
dicts future poses. An exemplary reconstruction can be

1Putting something on a table, Drinking from a cup, Someone

is going from standing to sitting, Someone is smiling, Someone

is sneezing, Someone is standing up from somewhere, Someone

is eating something



(a) (b)

Figure 3: (a) Attention mask generated from pose
stream. (b) Objects fed to pose stream leave a trace in
mask (contrast adjusted).

seen in Figure 3 (a). Figure 3 (b) reveals one cause for
the reduced accuracy of configuration (iii): Although
only the pose should be reconstructed, the mask also
faintly shows objects in the scene, here a stove and a
refrigerator. We conclude that relevant object informa-
tion needs to be processed in a more elaborate manner.

5. Conclusion & Future Work

Human actors play an important role for human ac-
tion anticipation. Our proposed system attends to visi-
ble persons in videos and extracts fine-grained features.
We have shown that the use of such features can im-
prove the prediction process. As a side product, our
work also generates dense pose predictions.

Several open questions remain. Most importantly,
the attention system is currently only using pose knowl-
edge available from the pose prediction stream. How-
ever, some of the objects present in the scene, as well
as the actors intention, expressed in particular by the
gaze, may be useful information to generate a richer
attention mask. Second, while the pose stream recon-
structs past poses faithfully, we have not addressed fu-
ture poses yet, which may be predicted by providing
additional scene information.
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