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Abstract

Inferring relational behavior between road users as well

as road users and their surrounding physical space is an

important step toward effective modeling and prediction

of navigation strategies adopted by participants in road

scenes. To this end, we propose a relation-aware frame-

work for future trajectory forecast, which aims to infer rela-

tional information from the interactions of road users with

each other and with environments. Extensive evaluations

on a public dataset demonstrate the robustness of the pro-

posed framework as observed by performances higher than

the state-of-the-art methods.

1. Introduction

Forecasting future trajectories of moving participants in

indoor and outdoor environments has profound implications

for execution of safe navigation strategies in partially and

fully automated vehicles and robotic systems. Related re-

search has attempted to predict future trajectories by focus-

ing on human1-human (i.e., between road users) or human-

space (i.e., between road user(s) and space) interactions.

Discovering social interactions between humans has

been a mainstream approach to predict future trajectories.

Following [4] on modeling human-human interactions, so-

cial models have been presented for the data-driven meth-

ods [1, 3]. While successful in many cases, they may fail

to provide acceptable paths in a complex environment with-

out the guidance of scene context. Modeling human-space

interactions of nearby humans [5] toward surrounding envi-

ronments has been introduced as an additional modality to

social interactions. Although they consider scene context to

capture human-space interactions, this approach restricts in-

teractions to nearby neighbors and overlooks the influence

of distant obstacles in navigation, which is not feasible in

real-world scenarios. In this view, we present a relation-

aware framework where such interactions are not limited to

nearby road users nor surrounding medium (see Figure 1).

1The word ‘human’ refers to any types of road user – pedestrian, car,

cyclist, etc. – in the rest of this paper.
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Figure 1: The proposed gated relation encoder (GRE)

visually discovers both human-human (j-th region:

woman↔man) and human-space interactions (i-th region:

cyclist↔cone) from each region of the discretized grid over

time. Then, their pair-wise relations (i.e., ↔ , ↔ ,

↔ , ↔ , ↔ , ...) with respect to the past motion of

the target (→) are investigated from a global perspective.

Relational inference in [8] is inherently flexible to de-

fine ‘an object’ as a spatial feature representation extracted

from each region of the discretized grid regardless of what

exists in that region. Our work is analogous to [8] in the

sense that the word ‘object’ is defined. In our framework, an

object is a visual encoding of spatial behavior of road users

(if they exist) and environmental representations together

with their temporal interactions over time, which naturally

corresponds to local human-human and human-space inter-

actions in each region of the discretized grid. On top of

this, we consider learning to infer relational behavior from

all objects (i.e., spatio-temporal interactions in our context)

from a global perspective as shown in Fig. 1.

In practice, the relations between all object pairs do not

equally contribute to predict the motion of a specific road

user. For example, a distant building behind a car does not

have meaningful relational information with the ego-vehicle

that is moving forward. To address the different importance

of relations, we design a relation gate module (RGM) with

an internal gating process. Our RGM is beneficial to control

of information flow through multiple switch gates and iden-

tifies descriptive relations that highly influence the future

motion of the target by conditioning on its past trajectory.



An overview of our approach is as follows. Given a

sequence of images, the gated relation encoder (GRE) vi-

sually extracts spatio-temporal interactions (i.e., objects)

through the spatial behavior encoder (SBE) and temporal

interaction encoder (TIE) as shown in Fig. 1. The following

RGM of GRE infers pair-wise relations from objects and

then focuses on looking at which relations will be poten-

tially meaningful to forecast the future motion of the target

under its past behavior. We predict future locations using

the aggregated relational features through the trajectory pre-

diction network (TPN) in the form of heatmaps which can

be further refined by considering spatial dependencies be-

tween predicted locations and extended to learn the uncer-

tainty of future forecast at test time.

2. Methodology

2.1. Spatio­Temporal Interactions

We extend the definition of ‘object’ in [8] to a spatio-

temporal feature extracted from each region of the dis-

cretized grid over time. It enables us to visually discover (i)

human-human interactions where there exist multiple road

users interacting with each other, (ii) human-space inter-

actions from their interactive behavior with environments,

and (iii) environmental representations by encoding struc-

tural information of the road. Given τ number of past im-

ages I = {It0−τ+1, It0−τ+2, ..., It0}, we visually extract

spatial representations of the static road structures, the road

topology, and the appearance of road users from individual

frames using the SBE. The concatenated features along the

time axis are spatial representations S ∈ R
τ x d x d x c. As a

result, each entry si ∈ R
τ x 1 x 1 x c of S = {s1, .., sn} con-

tains frame-wise knowledge of road users and road struc-

tures in i-th region of the discretized grid as in Fig. 1.

Therefore, we individually process each entry si of S us-

ing the TIE to model sequential changes of road users with

respect to environments. The resulting spatio-temporal fea-

tures O ∈ R
d x d x c thus contains a visual interpretation of

spatial behavior of road users and their temporal interac-

tions with each other and with environments. We decom-

pose O into a set of objects {o1, ..., on}, where n = d2 and

an object oi ∈ R
1 x 1 x c is a c-dimensional feature vector.

2.2. Relational Inference

Observations from actual prediction scenarios in road

scenes suggest that humans focus on only few important

relations that may potentially constrain the intended path,

instead of inferring every relational interactions of all road

users. In this view, we create the RGM which is able to

address the benefits of discriminatory information process

with respect to their relational importance.

Let RGM(·) be a function which takes as input a pair of

two objects (oi, oj) and spatial context qk. Note that qk is

R
ef

in
ed

V
an

il
la

t = t0+6 t = t0+7 t = t0+8

Past trajectory

Future prediction Probability

Low                                                                                          High

Figure 2: The efficacy of the SRN for spatial dependencies.

a feature representation extracted from the past trajectory

X k = {Xk
t0−τ+1, X

k
t0−τ+2, ..., X

k
t0
} of the k-th road user

observed in I. Then, the inferred relational features Fk

are as follows: Fk =
∑

i,j RGM(oi, oj , q
k). Through this

function, we first determine whether the given object pair

has meaningful relations from a spatio-temporal perspec-

tive by computing rij = tanhα(oij)⊙σβ(oij), where oij =
oi⊠oj is the concatenation of two objects. Note that we add

α, β, µ, λ as a subscript of hyperbolic tangent tanh(·) and

sigmoid σ(·) function to present that these functions come

after a fully connected layer. Then, we identify how their

relations can affect the future motion of k based on its past

motion context qk by fk
ij = tanhλ(rij ⊠ tanhµ(q

k)). This

step is essential in (i) determining whether the given rela-

tions rij would affect the target road user’s potential path

and (ii) reasoning about the best possible route, given the

motion history qk of the target. We subsequently collect all

relational information from every pair and perform element-

wise sum to produce target-specific relational features Fk.

2.3. Trajectory Prediction

The relational features Fk extracted from GRE are in-

crementally upsampled using a set of deconvolutional lay-

ers through the TPN. As an output, the network predicts

δ number of future locations in the form of heatmaps

Ĥk
A ∈ R

W x H x δ . At training time, we use the L2 Loss

LA =
∑

δ

∑
u,v

(
Hk

(δ)(u, v)− Ĥk
A(δ)(u, v)

)2

to minimize

the sum of squared error between the ground-truth heatmaps

Hk and the prediction Ĥk
A, all over the 2D locations (u, v).

2.4. Refinement with Spatial Dependencies

Predicted heatmaps from the TPN are sometimes am-

biguous as in Fig. 2. Our main insight for this issue is

a lack of spatial dependencies among predictions. Since

the network independently predicts δ heatmaps, there is

no constraint to enforce them to be spatially aligned be-

tween predictions. Thus, we design a spatial refinement

network (SRN) to learn implicit spatial dependencies in

a feature space. We first concatenate intermediate activa-

tions (early and late features) of the TPN and let through
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Figure 3: The efficacy of the uncertainty embedding into

our framework with MC dropout.

the SRN using large receptive fields [6, 9]. As a result,

the outputs Ĥk
O show less confusion between heatmap lo-

cations, making use of rich contextual information from

neighboring predictions. To train the SRN together with

optimizing the rest of the system, we define another L2 loss

LO =
∑

δ

∑
u,v

(
Hk

(δ)(u, v)− Ĥk
O(δ)(u, v)

)2

. Then the

total loss is as follows: Loptimize = ζLA + ηLO, where

ζ = η = 1 which properly optimizes our SRN with respect

to the TPN and GRE.

2.5. Uncertainty of Future Prediction

Bayesian neural networks (BNNs) bave been considered

to tackle the uncertainty of the network’s weight parame-

ters. [2] found that inference in BNNs can be approximated

by sampling from the posterior distribution of the determin-

istic network’s weight parameters using Monte Carlo (MC)

dropout. Details of MC dropout are skipped for brevity.

We perform approximating variational inference [2] using

dropout at test time to draw multiple samples from the

dropout distribution. It literally enables us to capture mul-

tiple plausible trajectories over the uncertainties of the net-

work’s learned weight parameters. However, we use the

mean of L samples as our prediction, which best approx-

imates variational inference in BNNs. The efficacy of the

uncertainty embedding is visualized in Fig. 3. We compute

the variance of L = 5 samples to measure the uncertainty.

3. Experiments

We use a public dataset [7] for evaluation, collected from

a drone capturing top-down road scenes. Heatmaps H are

generated in the 128x128 image space using the center co-

ordinates Y = {Yt0+1, Yt0+2, ..., Yt0+δ} of road users. We

use 3.2 sec of past images I and coordinates X k of the tar-

get k as input and predict 4.0 sec of future frames. For eval-

uation, we find coordinates of a point with a maximum like-

lihood Ŷk from heatmaps Ĥk and calculate average (ADE)

and final distance error (FDE) in pixels between Yk and Ŷk.

Method 1.0 sec 2.0 sec 3.0 sec 4.0 sec

S-LSTM [1] 1.93 / 3.38 3.24 / 5.33 4.89 / 9.58 6.97 / 14.57

DESIRE [5] - / 2.00 - / 4.41 - / 7.18 - / 10.23

RE Conv2D 2.42 / 3.09 3.50 / 5.23 4.72 / 8.16 6.19 / 11.92

RE 2D+3D 2.36 / 2.99 3.33 / 4.80 4.37 / 7.26 5.58 / 10.27

GRE Vanilla 1.85 / 2.41 2.77 / 4.27 3.82 / 6.70 5.00 / 9.58

GRE Refine 1.71 / 2.23 2.57 / 3.95 3.52 / 6.13 4.60 / 8.79

GRE MC-2 1.66 / 2.17 2.51 / 3.89 3.46 / 6.06 4.54 / 8.73

GRE MC-5 1.61 / 2.13 2.44 / 3.85 3.38 / 5.99 4.46 / 8.68

Table 1: Quantitative comparison (ADE / FDE in pixels) of

our approach with the self-generated baselines and state-of-

the-art methods [1, 5] using SDD [7] at 1 / 5 resolution.

3.1. Quantitative Comparisons

Spatio-temporal interactions: Encoding spatio-temporal

features from images is crucial to discover both human-

human and human-space interactions, which makes ours ap-

proach distinct from others. To demonstrate the rationale of

using spatio-temporal interactions, we compare two base-

lines2: (i) RE Conv2D which discovers only spatial interac-

tions using 2D convolutions; and (ii) RE 2D+3D where we

infer spatio-temporal interactions as discussed in Sec. 2.1.

As shown in Tbl. 1, the performance of the RE 2D+3D

baseline is dramatically improved against RE Conv2D by

replacing the final 2D convolution with a 3D convolution.

Relation gate module: We train the GRE Vanilla baseline

which replaces the fully connected layers of the RE to the

proposed RGM. The improvements of both ADE and FDE

are achieved by a huge margin from the RE 2D+3D base-

line. It implies the benefits of the RGM which controls in-

formation flow with respect to the relational importance.

Spatial refinement: GRE Refine (with the SRN) signifi-

cantly outperforms GRE Vanilla from both metrics all over

time. It validates that the proposed SRN effectively acquires

rich contextual information about dependencies between fu-

ture locations from initial predictions ĤA in a feature space

and hence removes unacceptable prediction failures.

Monte Carlo dropout: To validate our uncertainty strat-

egy for future trajectory forecast, we generate two GRE MC

baselines with a different suffix -L, where L denotes the

number of samples drawn at test time. The fact that any

GRE MC-L baselines consistently show the decrease in er-

ror rate for both near and far future prediction indicates the

efficacy of the presented uncertainty embedding.

Comparison with literature: We compare the perfor-

mance of our approach to two state-of-the-art methods,

one from human-human interaction oriented approaches (S-

LSTM [1]) and the other from human-space interaction ori-

ented approaches (DESIRE [5]3). The results in Tbl. 1 indi-

cate that incorporating scene context is crucial to successful

predictions as our method and [5] shows a lower error rate

2The baselines with a prefix RE do not employ the proposed gating

process but assume equal importance of relations similarly to [8].
3We use DESIRE-SI-IT0 Best which shows the best performance with-

out using the oracle error metric.
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Figure 4: Qualitative evaluation. (Color codes: Yellow - given past trajectory, Red - ground-truth, and Green - our prediction)
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Figure 5: Illustrations of our prediction during complicated human-human interactions. (a) A cyclist (•••) interacts with a

person moving slow (•••). (b) A person (•••) meets a group of people. (c) A cyclist (•••) first interacts with another cyclist

in front (•••) and then considers the influence of a person (•••). The proposed approach socially avoids potential collisions.

than that of [1]. Moreover, our models with GRE gener-

ally outperform [5], validating the robustness of the pro-

posed spatio-temporal interactions encoding pipeline which

is designed to discover the human-human and human-space

interactions from local to global scales. Note that the effec-

tiveness of our approach is especially pronounced toward

far future predictions. Unlike [1, 5] which restrict human

interactions to nearby surroundings, we do not limit the in-

teraction boundary and hence achieve more accurate predic-

tions toward the far future.

3.2. Qualitative Evaluation

Figure 4 qualitatively evaluates how inferred relations

encourage our model to generate natural motion for the tar-

get with respect to the consideration of human-human inter-

actions (4a) and human-space interactions (4b). Both cases

clearly show that spatio-temporal relational inferences ad-

equately constrain our future predictions to be more realis-

tic. We also illustrate prediction failures in Figure 4c where

the road user suddenly changes course and 4d where the

road user is aggressive to interactions with an environment.

Extension to incorporate such human behavior is our next

plan. In Figure 5, we specifically illustrate more compli-

cated human-human interaction scenarios. As validated in

these examples, the proposed approach visually infers rela-

tional interactions based on the potential influence of others

toward the future motion of the target.

4. Conclusion

We proposed a relation-aware framework which aims to

forecast future trajectory of road users. Inspired by the

human capability of inferring relational behavior from a

physical environment, we introduced a system to discover

both human-human and human-space interactions. The pro-

posed approach first investigates spatial behavior road users

and environments together with their temporal interactions.

Then, we identify relations from these interactions, which

have a high potential to influence the future motion of the

target based on its past trajectory. To generate future tra-

jectories, we predict a set of probability maps that can be

further refined by considering spatial dependencies between

the initial predictions as well as the nature of uncertainty in

future forecast. Evaluations show that the proposed frame-

work is powerful as it achieves state-of-the-art performance.
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