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Abstract

The task of 2D object localization prediction, or the esti-

mation of an object’s future location and scale in an image,

is a developing area of computer vision research. An ac-

curate prediction of an object’s future localization has the

potential for drastically improving critical decision making

systems. In particular, an autonomous driving system’s col-

lision prevention system could make better-informed deci-

sions in the presence of accurate localization predictions

for nearby objects (i.e. cars, pedestrians, and hazardous

obstacles). Improving the accuracy of such localization sys-

tems is crucial to passenger / pedestrian safety. This paper

presents a novel technique for determining future bounding

boxes, representing the size and location of objects – and

the predictive uncertainty of both aspects – in a transit set-

ting. We present a simple feed-forward network for robust

prediction as a solution of this task, which is able to gener-

ate object locality proposals by making use of an object’s

previous locality information. We evaluate our method

against a number of related approaches and demonstrate its

benefits for vehicle localization, and different from previous

works, we propose to use distribution-based metrics to truly

measure the predictive efficiency of the network-regressed

uncertainty models.

1. Introduction

The task of 2D object localization has been an area of

heavy research in recent years. Specifically, this task in-

volves identifying the location and size of an object in an

image, often represented as a ’bounding box’. Proposed

methods, such as RCNN [14] and Fast RCNN [13], have

achieved high accuracy in 2D object localization tests per-

formed on tasks with a large amounts of training data avail-

able. These methods have been extended and improved

upon by SSD [22] and YOLO [27], in order to improve ef-

ficiency and have become capable of object localization in

real-time, while maintaining a high level of accuracy.

A natural extension of the task of 2D object localiza-

tion is the prediction of 2D object localizations (or future

Figure 1. Visualization of past localizations of a tracked vehi-

cle (orange), predicted +1 second future localization (red, dashed),

and the true +1 second future localization (white), drawn over the

+1 second future frame. The area of confidence is highlighted

around the predicted box. Our method predicts the red dashed box

as the mean B(t) of a robust 4D probability distribution based on

the Huber loss with scale parameter σ(t), given only the sequence

of orange bounding boxes as input. This model well captures the

potential amount of divergence for different input scenarios. In

both instances above, a car is observed traveling through an inter-

section, but the lateral view (bottom) has a larger spread of possi-

ble bounding boxes due to the car speeding up or slowing down.

object localization). This task is defined by the ability to

produce an accurate estimate of an object’s localization in

a future timestep, given some amount of auxiliary informa-

tion of the object (at minimum the previous localizations of

that object). Given that we now have methods for obtain-

ing previous localizations in real-time, it is now sensible

to work towards producing a real-time method for object

localization prediction which makes use of those previous

localizations.

Accurate localization prediction is a potentially invalu-

able source of information especially for decision-making

systems that rely on complex, real-time optimal control,



such as collision prevention systems present in Advanced

Driver Assistance Systems (ADAS) and Autonomous Vehi-

cles (AV). Decisions made by these systems result in the al-

teration of the acceleration or steering direction of the vehi-

cle, and are consequentially crucial to passenger and pedes-

trian safety. Accurately and efficiently extrapolating poten-

tial object trajectories thus decreases reactionary pressure

from the control planning algorithms in these systems. A

growing number of techniques [32] have investigated over-

head or 3D future-state modeling for objects in the vicinity

of an AV. However, such models inherently rely on tracked

observations made from on-board sensors (e.g., bounding

box detections in forward-facing cameras [26]), and rela-

tively few approaches have explored whether accurate fu-

ture localization in the sensor space can help to improve

planning or tracking algorithms, or indeed, whether such

prediction is even feasible.

Motivated by this lack of analysis and toward the indus-

try goal [28] of integrating machine-learning prediction al-

gorithms in planning/tracking systems, we propose a data-

driven approach for predicting future vehicle localizations,

as well as uncertainty in this prediction, from ego-centric

views on a moving car (Fig. 1). Uncertainty estimation –

namely aleatoric uncertainty, which relates to inherent am-

biguities in possible output states [16] – is a particularly im-

portant aspect to characterize in vehicle localization predic-

tion, as the relatively short observation times and variability

in driver behaviors can lead to highly divergent future states

for similar initial scenarios. We thus seek a simple model

that can model future localizations with as high of a confi-

dence as possible, while also relating the spread of possible

future states in the bounding box domain. Such informa-

tion can be used, for example, to determine the region of

the image in which the actual future bounding box is likely

to occur with a certain level of confidence.

The key contributions of this paper are the following:

• We present a feed-forward neural network capable of

accurately performing object localization prediction

from a first-person vehicular perspective, solely using

prior bounding boxes as input.

• We introduce a probabilistic formulation of the Huber

loss that allows us to capture uncertainty in the future

bounding box location while maintaining robust loss

properties during training.

• We propose to evaluate the predictive distribution of

a learned regressor, which better reflects the aleatoric

accuracy of the predictor than existing metrics that di-

rectly evaluate the prediction mean against the ground-

truth observation.

• We demonstrate that simple polynomial regression

works at least as well as using a recurrent neural net-

work (RNN)-based regressor to generate future local-

ization predictions. In addition to being more effi-

cient, this goes against trends in state of the art meth-

ods like [4] that expect an RNN to be more efficient in

modeling uncertainty.

The rest of the paper is organized as follows: Sec-

tion 2 reviews related work for both general and vehicle-

specific localization prediction. Section 3 details our

neural-network-based approach and describes the integra-

tion of uncertainty estimation into the Huber loss. Experi-

ments and results are presented in Section 4, and we sum-

marize our work in Section 5.

2. Related Work

Recent computer vision applications for future object

localization have been partially inspired by predicting the

motion of humans. One influential work is that of Alahi

et al. [1], who trained a recurrent neural network (RNN)

to generate probabilistic future trajectories for indepen-

dent pedestrians, which is meant as a data-driven alter-

native to hand-tuned crowd navigation models. Among

other non-vehiclar works, perhaps most relevant to our own

is that of Yagi et al. [30], who construct a convolution-

deconvolution architecture for the task of future person lo-

calization. They utilize three-input streams for encoding

location-scale information, the motion of the camera wearer

(ego-motion), and human pose information. Outputs of

these input streams are concatenated and fed to a deconvo-

lutional network to generate future 2D joint locations. How-

ever, this model does not consider aleatoric uncertainty.

Vehicle localization/motion prediction is a quickly grow-

ing area of research, with several contemporary approaches

to our own and many other recent efforts. The majority of

related works have focused on overhead modeling scenar-

ios, where positions and trajectories are expressed in the

coordinates of the 2D road surface [32]. Relatively few

works have investigated 2D future vehicle localization for

ego-motion video scenarios, although a number of vehi-

cle tracking approaches use simple linear or quadratic re-

gression to predict a rough localization of current bounding

boxes given previous observations.

Among many recent and relevant overhead modeling

scenarios [23, 26, 8, 7, 29], Altché and de La Fortelle [2]

use a long short-term memory (LSTM) RNN to predict the

overhead trajectory of a target vehicle given sequentially

provided observations of the vehicle and its surrounding

neighbors’ positions and velocities. Kim et al. [17] pre-

dict the relative overhead positions of surrounding vehi-

cles using a generic LSTM-RNN, with separate RNN in-

stances being applied to each tracked vehicle. Indepen-

dent RNNs are trained to predict positions at 0.5s, 1.0s,

and 2.0s in the future. Li et al. [21] train a two-layer hid-

den Markov model to classify driving situations and then

predict overhead trajectories for all vehicles in the scene

using scenario-specific state behaviors. Driver actions are



simultaneously evolved according to their current scenario

states and a learned Gaussian mixture model for state tran-

sitions. While we do not model state transitions, our model

could serve to inform such a predictive formulation. Lee

et al. [20] propose to use a conditional variational autoen-

coder to capture the possible future states of a given input

scenario in an overhead representation. As part of their

pipeline, they train an RNN to create samples from the non-

parametric underlying distribution. Our approach contrasts

theirs by directly regressing a distribution of localization

transformations, rather than using a generative model that

must be sampled from in order to predict possible paths.

Their method also uses a Euclidean-distance-based loss ob-

jective, unlike our proposed robust loss objective, which is

a confidence-weighted version of the Huber loss [15].

Detection-based 2D vehicle tracking pipelines typically

also make use of simple predictive models that allow them

to branch and bound correspondences in the current set of

putative detections. For example, Choi [6] uses linear and

quadratic models to prune bounding box hypotheses, and

Duelholm et al. [9] use a simple linear model predict bound-

ing boxes for objects that have lost tracking. We explore the

potential of using these simpler continuous models instead

of heavyweight, discrete RNN architectures when modeling

the future state progression.

Possibly the most related approach to our work is the

egocentric future bounding box localization method of

Bhattacharyya et al. [4]. There, the authors use an RNN to

jointly predict future vehicle odometry and future bounding

boxes for pedestrians. They adopt a confidence-weighted

Gaussian loss to model the future bounding boxes in a man-

ner that captures both aleatoric and epistimological uncer-

tainty. We demonstrate that this type of loss is not robust

for future vehicle localization. Finally, we also note a num-

ber of contemporary works have recently appeared online

covering similar topics in overhead and egocentric future

localization [11, 10, 31, 24]. To our knowledge, however,

no other works have explored improving the modeling of

aleatoric uncertainty by adopting robust (particularly, non-

Gaussian) underlying distributions.

3. Methods

The general goal of future object localization is to

regress a model of not-yet-reached state(s) given some num-

ber of previous observations up to the current moment in

time, t0. In our case, previous observations consist of n

bounding boxes for a single object (i.e., a vehicle) obtained

by a 2D object tracking system over the last ns seconds,

where s is the frame-rate of the tracker. Given these bound-

ing boxes {B−n+1, B−n+2, . . . , B0} as input, we train a

neural network to regress a function B(t) that yields a pre-

dicted bounding box for the object at any future time t > t0.

Since uncertainty in object localization generally grows as a

function of time, the network is also trained to output a sec-

ond function, σ(t), that models the uncertainty region for

the localization B(t); smaller σ(t) values indicate higher

confidence. Together, these regressed functions model the

distribution of possible object states that may be observed

at time t.

3.1. Data Representation and Architecture

Our network takes as input n prior bounding boxes

{Bi}, with Bi = [xi, yi, wi, hi] denoting the (x, y) cen-

ter, width, and height of the box. The network architec-

ture consists of a simple 4-layer feed-forward neural net-

work. Each hidden layer is a fully connected layer consist-

ing of 64 nodes, with ReLu [25] activations after each layer.

The final layer is a linear regressor that outputs param-

eters
(

θB =
{

θxB , θ
y
B , θ

w
B , θ

h
B

}

, θσ =
{

θxσ, θ
y
σ, θ

w
σ , θ

h
σ

})

for

the bounding box predictor B(t; θB) and uncertainty model

σ(t; θσ). In our implementation, each of the four bounding

box dimensions are modeled by a separate prediction func-

tion that relies on its own set of parameters, i.e.,

B(t; θB) =
[

Bx(t; θ
x
B), By(t; θ

y
B), Bw(t; θ

w
B), Bh(t; θ

h
B)

]

,

(1)

and similarly for σ(t; θσ):

σ(t; θσ) =
[

σx(t; θ
x
σ), σy(t; θ

y
σ), σw(t; θ

w
σ ), σh(t; θ

h
σ)
]

.

(2)

3.2. Relative Transformations as Output

Existing approaches for future object localization [31,

30] have sought to output a transformation of bounding

boxes in the image space, i.e., they return pixel coordinate

offsets for the box center and a pixel change in width and

height. Instead of regressing to the pixel displacement from

the most recent box to the predicted box, we regress to

a scale-invariant transformation [14]. This transformation

consists of a width-space translation of the center coordi-

nate, and a log-space translation of the width and height.

Our main motivation for using such normalized transforma-

tions is that they allow us to assume a log-linear distribution

of the width and height parameters (see Fig. 4).

A ground-truth scale-invariant transformation, T̂ (t),
from anchor box B0 (the most recent known bounding box)

to the ground-truth prediction box, B̂(t), is generated for

training as follows:

T̂ (t) = [T̂x(t), T̂y(t), T̂w(t), T̂h(t)] (3)

T̂x(t) =
x̂(t)− x0

w0
T̂y(t) =

ŷ(t)− y0

h0

T̂w(t) = log

(

ŵ(t)

w0

)

T̂h(t) = log

(

ĥ(t)

h0

)



These serve as our target values during training. To

generate a predicted box, B(t), from an anchor box using

the network-regressed transformation T (t), we reverse the

transformation, and apply it to anchor box B0:

T (t) = [Tx(t), Ty(t), Tw(t), Th(t)] (4)

x(t) = w0Tx(t) + x0 y(t) = h0Ty(t) + y0

w(t) = w0 exp
(

Tw(t)
)

h(t) = h0 exp
(

Th(t)
)

Thus, our training fits T (t) to T̂ (t), rather than B(t) to

B̂(t), and the predictor as a function of network output can

instead be understood as B(t; θB) = B(B0, T (t; θB)).

3.3. Predictive Function Regression

In addition to performing absolute transformation regres-

sion, previous works in future object localization have mod-

eled B(t) in various forms at fixed timepoints in the future,

including as the sequential application of a recurrent neural

network (RNN) and a separate regression of the indepen-

dent transformation at each future timepoint. For the task

of 2D vehicle localization, however, it is potentially use-

ful to allow predictions at arbitrary future timepoints, for

example to provide higher-latency tracking algorithms with

future predictions that temporally align to the frame of de-

ployment. Moreover, an RNN must be sequentially applied

to reach a desired discrete timestep. We also argue that,

at least for our use-case, the RNN prediction approach is

‘overkill’, in that its ability to model highly variable motion

patterns (e.g., the path of a human navigating a crowd) is not

necessary for the relatively smoother trajectories of automo-

tive vehicles. We accordingly propose to model the motion

trajectory as an ordinary polynomial, and we demonstrate

that this approach fits the expected transformation distribu-

tion with at least as much efficiency as an RNN approach,

while being simpler to compute and not requiring iterative

application.

Recall that our network output consists of separate pa-

rameters (θdB , θ
d
c ) for each bounding box dimension d ∈

{x, y, w, h}. For our bounding box predictor, we choose to

model θdB = (θ
d(1)
B , θ

d(2)
B , . . . , θ

d(p)
B ) as the coefficients of

a pth-degree zero-intercept polynomial. Here, p is a hyper-

parameter of our algorithm. The associated transformation

for dimension d is thus

Td(t; θ
d
B) =

p
∑

i=1

θ
d(i)
B ti. (5)

For our confidence regression, we expect the uncer-

tainty in our future bounding box location to grow (per-

haps slowly) as t increases. Thus, we model the uncertainty

σd(t; θ
d
σ) of dimension d as

σd(t; θ
d
σ) = |θd(1)σ t|+ |θd(0)σ |+ ǫ, (6)

where θdσ = (θ
d(0)
σ , θ

d(1)
σ ), and ǫ is a small positive constant

that helps avoid poor conditioning during training. In all

our experiments, we use ǫ = 0.001, and all our networks

output p+ 2 coefficients for each bounding box dimension,

or 4p+ 8 total outputs.

3.4. Training Objective with Confidence

Our training objective minimizes a localization loss

which measures error from the model’s predicted transfor-

mation, T (t), to the target transformation T̂ (t) at multiple

future timepoints {tk} with ground-truth localizations. We

adopt the Huber loss [15] (sometimes called the smoothL1

loss) due to its ability to robustly train against abnormal or

outlier ground-truth bounding boxes [13]. This loss is ap-

plied separately over each bounding box dimension d.

Different from similar work in object localization pre-

diction [20, 4, 31], we thus seek to robustly characterize in

σd(t) the potential confidence in our prediction. This can be

directly integrated into the Huber loss. Consider the typical

definition of the Huber loss between a predicted value x and

target value x̂:

H(x̂, x) =

{

1
2 (x̂− x)

2
if |x̂− x| < τ

τ |x̂− x| − 1
2τ

2 otherwise,
(7)

where τ is a threshold at which the function switches from

an L2-loss to an L1-loss. Taking a maximum-likelihood ap-

proach, we can interpret a solution to this loss as minimiz-

ing the negative log-likelihood of a modified, heavy-tailed

version of the Gaussian distribution with mean µ = x and

fixed scale parameter σ:

p(x̂|x, σ) =







1
c
exp

(

− (x̂−x)2

2σ2

)

if |x̂− x| < τ

1
c
exp

(

− τ
σ2 |x̂− x|+ τ2

2σ2

)

otherwise,

(8)

where c = σ
√
2π erf( τ

σ
√

2
)+ 2σ2

τ
exp(− τ2

2σ2 ) is a normaliz-

ing constant that makes the area under the distribution curve

equal to one, and erf(·) is the Gauss error function. As ex-

plained below, we use τ = 1.345σ.

Here, we consider σ to be unknown a priori and thus

regress it as σd(t). Our prediction for transformation di-

mension d becomes our distribution mean, i.e., µ = Td(t).
Taking the negative log-likelihood of Eq. (8), we arrive at

the confidence-weighted Huber training objective for our

bounding box regression:

min
θd

B
,θd

σ

∑

d

Hd(T̂d(t), Td(t; θ
d
σ), σd(t; θ

d
σ)), (9)

Hd(T̂ , T, σ) = log c+

{

(T̂−T)
2

2σ2 if |T̂ − T | < τ
τ
σ2 |T̂ − T | − τ2

2σ2 otherwise,

where c is the normalizing constant defined above.



Value for τ . Ideally, the hyperparameter τ should scale

with the certainty in the prediction. To provide some in-

tuition for this property, consider the functional design of

the Huber loss. The L1 tails of the loss provide a robust

function for significantly abnormal/erroneous predictions;

this dampens gradient steps toward outlier predictions dur-

ing training. The L1 gradient around zero, however, is gen-

erally too large for the most accurate training cases, and

thus to prevent overfitting and instability, the L2 loss is sub-

stituted when the error is small, since it has a comparably

flatter gradient for errors in [−1, 1]. Thus, if the variance in

the prediction-vs-ground-truth error is expected to be small

(for instance, in our case, particularly when t is close to

t0), we should seek to have higher robustness to high-error

ground-truth observations, since they are by definition out-

liers according to the variance model. On the other hand,

larger uncertainty should lead to larger τ , since the spread

of “relatively accurate” ground-truth observations is larger

and we are therefore less confident that the associated gra-

dient direction will lead to a general overall improvement.

In summary, τ is a scaled version of uncertainty com-

puted as: τd(t) = Mσd(t), where hyperparameter M =
1.345 was suggested by Huber to offer a good trade-off

point for balancing the efficiency of the Gaussian with the

robust L1 tails [19]. While the properties of the Huber

scale parameter (σ) are generally well known [19], to our

knowledge the trained regression of its value has not been

explored for robust aleatoric modeling.

4. Experiments

We outline two main points of comparison for the task

of future vehicle localization: (1) We evaluate whether our

proposed confidence-weighted Huber loss (Eq. 9) is bet-

ter suited for heteroscedastic modeling versus alternative

probability-based loss functions. To this end, we also com-

pute results for versions of our network trained with L1 and

L2 confidence-weighted loss objectives, which respectively

correspond to Laplace and Gaussian distribution models

(c.f. Eq. (8)). We demonstrate that our robust aleatoric ob-

jective better learns the distribution space of possible future

bounding box transformations. (2) We compare the results

of our direct polynomial regression against the regression of

an initial state for a co-trained RNN that predicts localiza-

tions, which has been proposed in similar approaches [4].

In addition to exploring the space of training configura-

tions, we also propose alternative metrics to the displace-

ment error and intersection-over-union statistics reported in

existing works on future localization. Specifically, we an-

alyze the accuracy of the predicted distribution of possible

transformations compared to the ground-truth distribution

of the testing data, instead of measuring whether the pre-

dicted future state evolved as predicted. This analysis gives

a more holistic understanding of whether the variability of

possible future states is truly understood by the network.

In all experiments, we evaluate our model using p = 6,

which was experimentally chosen for p from 2 to 7 because

it gave the lowest training loss across the L1, L2, and Huber

models. Each network is trained using a batch size of 128

and a learning rate of 5e-4 with Adam optimization [18].

4.1. Dataset and Implementation

To evaluate our methods, we train and test on samples

generated from the KITTI “Raw” dataset [12]. This dataset

consists of 38 videos with object tracklet information for

various types of driving environments including: city, res-

idential, and road settings. We consider the vehicle object

tracklet labels ‘Car’, ‘Van’, and ‘Truck’ during evaluation.

We adapt the supplied tracking information for use with

the vehicle localization prediction task. First, we iso-

late continuous two-second periods (20 frames) of track-

ing information for a given object; this makes up one sam-

ple. The first second of tracking information (defined by

ten bounding boxes, split a tenth of a second apart) are

established as past observations, and used as the input

{B−n+1, B−n+2, . . . , B0} for a given prediction task.

The object localizations associated with the last ten

frames are reserved as the ground truth bounding boxes for

the sample. We construct transformations from the anchor

B0 to each of the target bounding boxes {B1, B2, . . . , B10}
via the process detailed above. This set of ten transforma-

tions serve as the regression targets for the sample.

Our RNN implementation is a stand-alone network that

takes as input the previous bounding box transformation

and outputs a new transformation. This architecture is se-

quentially applied to output transformations at 0.1s inter-

vals. The network consists of a 64-element gated recurrent

unit (GRU) layer [5], followed by a 64-element hidden layer

processing the GRU’s hidden state, followed by a final lin-

ear layer. We modify our proposed neural network to output

an initial hidden state for the RNN, instead of polynomial

coefficients. The first future transformation is estimated di-

rectly from this initial hidden state, bypassing the RNN.

4.2. IoU and Displacement Error Analysis

We begin by reporting two widely used measurements

for analyzing future bounding box locations: displacement

error (DE) and intersection-over-union (IoU). Displacement

error evaluates location prediction error and is calculated

by taking the Euclidean distance between the centers of the

predicted B(t) and ground-truth B̂(t) bounding boxes. We

report DE for +0.5s and +1.0s in the future, and we also

report average displacement error (ADE) for future time-

points ranging from +0.1s to +1.0s at intervals of 0.1s. IoU

evaluates location and scale error for our network’s predic-

tions and is computed as the overlap ratio for the predicted

and ground-truth bounding boxes versus their joint area.



All Hard

DE ADE IoU DE ADE IoU

Loss Func. +0.5s +1.0s +0.5s +1.0s +0.5s +1.0s +0.5s +1.0s

– constant 32.06 72.15 36.98 0.498 0.339 44.23 102.40 51.62 0.326 0.128

– linear 14.61 39.51 17.95 0.663 0.464 23.14 63.27 28.56 0.492 0.219

L1 p = 6 12.81 29.05 14.78 0.697 0.564 17.06 38.06 19.56 0.607 0.475

L2 p = 6 15.13 37.43 18.12 0.671 0.521 20.90 51.97 25.02 0.563 0.394

Huber p = 6 12.58 29.18 14.72 0.708 0.584 16.18 36.76 18.76 0.622 0.488

Huber RNN 14.01 31.37 16.12 0.686 0.570 19.62 44.63 22.71 0.577 0.442
Table 1. Displacement error and IoU scores for future prediction using different confidence-weighted objectives and functional regressions,

averaged over all testing samples. The middle columns consider all testing samples, and the right columns consider only “hard” samples.

DE, ADE, and IoU results are shown in Table 1, along

with two reference models, one of which predicts no bound-

ing box motion (“constant”), and another which uses simple

linear extrapolation of the transformation from t = −0.1s
to t = 0s (“linear”). We report the average statistic over

all test samples, as well as the average over only “hard” test

cases (54% of the test samples). The latter ignores “easy”

test cases, where the t = +1.0s bounding box can be pre-

dicted with IoU greater than 0.5 using simple linear extrap-

olation. From the table, we observe that the transformation

means predicted by the L2 loss are, on average, less accu-

rate than those predicted by the L1 or Huber losses. How-

ever, we argue that these statistics only tell part of the story

in terms of how the different predictions compare.

Distribution of IoU scores and inadequacy of exact

evaluation metrics. DE and IoU are scores of future pre-

diction: They measure how often the predicted bounding

box distribution mean B(t) happened to match well with the

actual future bounding box. Neither measure takes into ac-

count the estimated uncertainty, σ(t), and effectively, these

metrics model the future as deterministic. This can readily

be observed if we visualize the distribution of IoU scores,

rather than simply assessing their mean. As shown in Fig. 2,

the L1 loss achieved a higher rate of “exactly correct” pre-

dictions compared to the Huber loss, and the Huber loss had

a slightly higher rate of “mostly right” (IoU around 0.75)

predictions. We can conclude that the L1 loss was more

effective at exactly regressing certain cases. However, this

says very little about the underlying aleatoric encodings of

the networks: e.g., both losses exhibit a similar number of

complete failure cases (IoU = 0) that may still fit within a

comfortable confidence interval given σ(t).

To glean a broader picture of network uncertainty, Bhat-

tacharyya et al. [4] propose to evaluate the relationship be-

tween estimated uncertainty and the distance of the pre-

dicted mean from the ground-truth future observation. They

note that the predicted uncertainty provides an upper bound

on the error of the predictive mean and conclude that the

model is thus useful in its prediction. While this is correct,

the correlation of the uncertainty and error only demon-

strates that the uncertainty model is behaving as intended:
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Figure 2. IoU distributions for our network trained with an L1 loss

and p = 6 (left) and a Huber loss with p = 6 (right) at t = +1.0s.

The peaks at IoU = 1 are partly due to stationary test instances.

The model is accurate in that it has a sense of when it might

be wrong, but this observation says nothing about the effi-

ciency of the model, that is, how correct it is about what the

possible future states of a scenario may be. For instance,

the uncertainty for the lower image in Fig. 1 might be larger

than that for the top image, but if the uncertainty captures

highly unlikely bounding box transformations that, say, al-

low the car to drastically change its size or vertical position

in the image, then the underlying model is inefficient. We

therefore argue that network models must be compared on

the basis of how well their predictions match the probabil-

ity space of actual future scenarios for a given input, rather

than based on the a posteriori evaluation of their regressed

mean against the known future occurrence.

4.3. Test Set Distribution Matching

When assessing the “understanding” of the future that

our networks have learned, a proper statistic should relate

how accurately and efficiently the distribution (B(t), σ(t))
describes the probabilistic space of all possible future states

for a given scenario. If the underlying generative models

were well understood, this could be assessed for each test

case separately by repeatedly simulating future states for

the given input and performing a statistical test on this sam-

pling versus the regressed distribution. In lieu of a viable

per-instance sampling approach, the next-best solution is

to evaluate how well the space of regressed distributions

matches the distribution of test samples. A regressor that

is accurate will closely match the ground-truth values.



More specifically, we analyze the distribution of all 4D

bounding box transformations T̂ (+1.0s) in our test set. We

bin the transformation space into voxels of size {0.1}4 units

in each dimension, corresponding to a 10% shift in x and y

relative to the anchor box size and a 10% log-scale change

in width and height. Ground-truth test-set transformations

are then aggregated in this space using quadrilinear inter-

polation. The first images of Figs. 3 and 4 show the log-

marginals of this aggregation for (x, y) and (w, h), respec-

tively. More likely distributions appear brighter, and black

regions correspond to voxels containing no transformations.

Next, we compare the aggregated predicted distribu-

tion of each analyzed network against this 4D test-set

distribution. To obtain an aggregated predicted distri-

bution for a given network, we first calculate the pre-

dicted distribution p(k)(T̂ (k)|T (k)(+1.0s), σ(k)(+1.0s)) =
∏

d p
(k)
d (T̂

(k)
d |T (k)

d (+1.0s), σ
(k)
d (+1.0s)) for each test in-

stance k, where p
(k)
d (·) follows Eq. 8 in the case of the

Huber loss, a Gaussian distribution for the L2 loss, and a

Laplace distribution for the L1 loss. We then compute the

probability of the transformation at each voxel center in the

binned 4D space and normalize the integral of the space to

sum to one. We calculate the average probability over all

test cases to arrive at the final distribution for the 4D space.

Figs. 3 and 4 show aggregations for different confidence-

weighted loss functions, and also using an RNN.

In Table 2, we compare the predicted distribution T to

the ground-truth distribution T̂ using the squared Hellinger

distance H2(T , T̂ ) [3], which summarizes the overall dis-

tance between distributions. The metric is computed as
1
2 ||

√
T −

√

T̂ ||22, where
√
T denotes the element-wise

square root of the discrete probability volume; this metric

summarizes the overall distance between distributions.

As can be seen in the table, the L2 loss still displays the

worst performance – being a less robust metric, it evidently

failed to adequately capture the edges of the distribution,

which can be qualitatively observed in Figs. 3 and 4. The L1

metric is more robust, but it has higher error than our pro-

posed confidence-weighted Huber loss. Fig. 3 also qualita-

tively suggests that the L1 loss yields slightly lower predic-

tive confidences near the distribution tails. Interestingly, the

RNN model, which has a much larger set of learned param-

eters and should theoretically be able to characterize a much

wider set of future motions, does not outperform our poly-

nomial models. On some level, this may be due to the nature

of the dataset, which has a relatively short time horizon and

captures objects with highly dynamic but smooth trajecto-

ries. We conclude that the complexity of RNNs is ultimately

not necessary for modeling near-future vehicle localization,

and due to their need to be iteratively applied to compute

future states and their computational overhead, we advocate

for the simpler polynomial regression proposed here.

Config. L1 L2 Huber Huber (RNN)

H2(T , T̂ ) 0.568 0.607 0.562 0.562
Table 2. Squared Hellinger distance between the ground-truth

and predicted test-set transformation distributions, using different

confidence-weighted objectives and functional regressions.
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Figure 3. Marginal log-probability distributions for the space

of (Tx(+1.0s), Ty(+1.0s)) transformations. Top: Ground-truth

distribution. Other rows: Distributions for different confidence-

weighted losses and predictive function parameterizations.
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Figure 4. Marginal log-probability distributions for the space

of (Tw(+1.0s), Th(+1.0s)) transformations. Tw (x-axis) ranges

from -0.9 to 1.4, and Th (y-axis) ranges from -0.6 to 1.2.

5. Conclusion

In this paper, we introduced a robust neural network

framework for predicting future vehicle localizations while

accounting for inherent aleatoric uncertainty. We demon-

strated that networks trained using a confidence-weighted

Huber loss have better efficiency for modeling real-world

future scenarios versus confidence-weighted L1 and L2

losses, and we argued for a distribution-based approach to

compute this difference. Our results also showed that using

RNNs to regress future vehicle states, which has been a re-

cent trend, is at minimum no more performant than using a

simpler polynomial model. In the future, our proposed ap-

proach could perhaps be extended to better model the inter-

relationship between the dimensions of bounding box trans-

formations, rather than considering each as having a sepa-



rate underlying probability distribution. We are also excited

about the future integration of predictive machine-learning

approaches like ours into planning and tracking systems,

which is an open goal for the AVs [28] that could further

the field towards full vehicle autonomy.
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