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1. Introduction

Deciphering human behaviors to predict their future

paths/trajectories and what they would do from videos is

important in many applications. With the advancement in

deep learning, systems now are able to analyze an unprece-

dented amount of rich visual information from videos. An

important analysis is forecasting the future path of pedes-

trians, called future person trajectory prediction. This prob-

lem has received increasing attention in the computer vision

community [5, 1, 3]. It is regarded as an essential build-

ing block in video understanding for many applications like

self-driving cars, socially-aware robots [9, 6, 4], etc.

Humans navigate through public spaces often with spe-

cific purposes in mind, ranging from simple ones like en-

tering a room to more complicated ones like putting things

into a car. Such intention, however, is mostly neglected in

existing work. Consider the example in Fig. 1, the person

(at the top-right corner) might take different paths depend-

ing on their intention, e.g., they might take the green path

to transfer object or the yellow path to load object into the

car. Intuitively, humans are able to read from others’ body

language to anticipate whether they are going to cross the

street or continue walking along the sidewalk. In this exam-

ple, the man at the bottom left corner is waving at the per-

son. Based on common sense, we may agree that the person

will take the green path instead of the yellow path. Inspired

by this, this paper is interested in modeling the future path

jointly with such intention in videos. We model the inten-

tion in terms of a predefined set of routine activities such as

“loading”, “object transfer”, etc.

To this end, we propose a multi-task learning model

called Next 1 which has prediction modules for learning

future paths and future activities simultaneously. As pre-

dicting future activity is challenging, we introduce two new

techniques to address the issue. First, unlike most of the

existing work [5, 1, 3, 12] which oversimplifies a person as
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Figure 1. Joint future person path and activity prediction.

a point in space, we encode a person through rich semantic

features about visual appearance, body movement and in-

teraction with the surroundings, motivated by the fact that

humans derive such predictions by relying on similar vi-

sual cues. Second, to facilitate the training, we introduce

an auxiliary tasks for future activity prediction, i.e. activity

location prediction. In the auxiliary task, we design a dis-

cretized grid which we call the Manhattan Grid as location

prediction target for the system.

To the best of our knowledge, our work is the first on

joint future path and activity prediction in streaming videos,

and more importantly the first to demonstrate such joint

modeling can considerably improve the future path predic-

tion. We empirically validate our model on two bench-

marks: ETH & UCY [11, 7], and ActEV/VIRAT [10, 2].

Experimental results show that our method outperforms

state-of-the-art baselines, achieving the best-published re-

sult on two common benchmarks and producing additional

prediction about the future activity.

2. Approach

Problem Formulation: Following [1, 3, 12], we assume

each scene is first processed to obtain the spatial coordi-

nates of all people at different time instants. Based on the

coordinates, we can automatically extract their bounding

boxes. Our system observes the bounding box of all the

people from time 1 to Tobs, and objects if there are any, and

predicts their positions (in terms of xy-coordinates) for time

Tobs+1 to Tpred, meanwhile estimating the possibilities of
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Figure 2. Overview of our model. Given a sequence of frames containing the person for prediction, our model utilizes person behavior

module and person interaction module to encode rich visual semantics into a feature tensor.

Figure 3. Person behavior module.

future activity labels at time Tpred.

2.1. Network Architecture

Fig. 2 shows the overall network architecture of our Next

model. Unlike most of the existing work [5, 1, 3, 12] which

oversimplifies a person as a point in space, our model em-

ploys two modules to encode rich visual information about

each person’s behavior and interaction with the surround-

ings. Next has the following key components:

Person behavior module extracts visual information from

the behavioral sequence of the person. As opposed to over-

simplifying a person as a point in space, we model the per-

son’s the appearance and body movement. To model ap-

pearance changes of a person, we extract CNN features for

each person bounding box. To capture the body movement,

we extract person keypoint information. See Fig. 3.

Person interaction module looks at the interaction be-

tween a person and their surroundings, i.e. person-scene and

person-objects interactions. See Section 2.2 for details.

Trajectory generator summarizes the encoded visual fea-

tures and predicts the future trajectory by the LSTM de-

coder with focal attention [8].

Activity prediction utilizes rich visual semantics to predict

the future activity label for the person. See Section 2.3.

2.2. Person Interaction Module

Person-scene. To encode the nearby scene of a person,

we first extract pixel-level scene semantic classes such as

roads and sidewalks for each frame. We apply two convo-

lutional layers on the semantic features with a stride of 2 to

get the scene CNN features in two scales. Given a person’s

xy-coordinate, we pool the scene features at the person’s

current location from the convolution feature map. As the

example shown at the bottom of Fig. 4, the red part of the

convolution feature is the discretized location of the person

Figure 4. The person interaction module includes person-scene

and person-objects modeling. See Section 2.2.

at the current time instant. The receptive field of the fea-

ture at each time instant, i.e. the size of the spatial window

around the person which the model looks at, depends on

which scale is being pooled from and the convolution ker-

nel size. In our experiments, we set the scale to 1 and the

kernel size to 3, which means our model looks at the 3-by-3

surrounding area of the person at each time instant.

Person-objects. Unlike previous work [1, 3] which relies

on LSTM hidden states to model nearby people, our module

explicitly models the geometric relation and the object type

of all the objects/persons in the scene. At any time instant,

given the observed box of a person (xb, yb, wb, hb) and K

other objects/persons in the scene {(xk, yk, wk, hk)|k ∈
[1,K]}, we encode the geometric relation into G ∈ R

K×4,

the k-th row of which equals to:

Gk = [log(
|xb − xk|

wb

), log(
|yb − yk|

hb

), log(
wk

wb

), log(
hk

hb

)] (1)

This encoding computes the geometric relation in terms of

the geometric distance and the fraction box size. We use a

logarithmic function to reflect our observation that human

trajectories are more likely to be affected by close-by ob-

jects or people. For the object type, we simply use one-hot

encoding to get the feature.

2.3. Activity Prediction

Since the trajectory generation module outputs one lo-

cation at a time, errors may accumulate across time and the

final destination would deviate from the actual location. Us-

ing the wrong location for activity prediction may lead to

bad accuracy. To counter this disadvantage, we introduce

an auxiliary task, i.e. activity location prediction, in addi-

tion to predicting the future activity label of the person. We

describe the two prediction modules in the following.



Figure 5. Activity location prediction with classification and re-

gression on the multi-scale Manhattan Grid. See Section 2.3.

Activity location prediction with the Manhattan Grid.

To bridge the gap between trajectory generation and activity

label prediction, we propose an activity location prediction

module to predict the final location of where the person will

engage in the future activity. The activity location predic-

tion includes two tasks, location classification and location

regression. As illustrated in Fig. 5, we first divide a video

frame into a discretized h×w grid, namely Manhattan Grid,

and learn to classify the correct grid block and at the same

time to regress from the center of that grid block to the ac-

tual location. Specifically, the aim for the classification task

is to predict the correct grid block in which the final location

coordinates reside. After classifying the grid block, the aim

for the regression task is to predict the deviation of the grid

block center (green dots in the figure) to the final location

coordinate (the end of green arrows). The reason for adding

the regression task are: (i) it will provide more precise loca-

tions than just a grid block area; (ii) it is complementary to

the trajectory prediction which requires xy-coordinates lo-

calization. We repeat this process on the Manhattan Grid of

different scales and use separate prediction heads to model

them. These prediction heads are trained end-to-end with

the rest of the model.

As shown in Fig. 5, we first concatenate the scene CNN

features (see Section 2.2) with the last hidden state of the

encoders . For compatibility, we tile the hidden state Q:Tobs:

along the height and width dimension resulting in a ten-

sor of the size M × d × w · h, where w · h is the to-

tal number of the grid blocks. The hidden state contains

rich information from all encoders and allow gradients flow

smoothly through from prediction to feature encoders. The

concatenated features are fed into two separate convolu-

tion layers for classification and regression. The convolu-

tion output for grid classification clsgrid ∈ R
w·h×1 indi-

cates the probability of each grid block being the correct

destination. In comparison, the convolution output for grid

regression rggrid ∈ R
w·h×2 denotes the deviation, in the

xy-coordinates, between the final destination and every grid

block center. A row of rggrid represents the difference to a

grid block, calculated from [xt−xci, yt−yci] where (xt, yt)
denotes the predicted location and (xci, yci) is the center of

Method ADE FDE move ADE move FDE
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Linear 32.19 60.92 42.82 80.18

LSTM 23.98 44.97 30.55 56.25

Social LSTM 23.10 44.27 28.59 53.75

SGAN-PV 30.51 60.90 37.65 73.01

SGAN-V 30.48 62.17 35.41 68.77

Ours 17.99 37.24 20.34 42.54

2
0

O
u
tp

u
ts SGAN-PV-20 23.11 41.81 29.80 53.04

SGAN-V-20 21.16 38.05 26.97 47.57

Ours-20 16.00 32.99 17.97 37.28

Table 1. Comparison to baseline methods on the ActEV/VIRAT

validation set. Top uses the single model output. Bottom uses 20

outputs. Numbers denote errors thus lower are better.

the i-th grid block. The ground truth for the grid regression

can be computed in a similar way. During training, only the

correct grid block receives gradients for regression.

Activity label prediction. Given the encoded visual obser-

vation sequence, the activity label prediction module pre-

dicts the future activity at time instant Tpred. We compute

the future activity probabilities using the concatenated last

hidden states of the encoders. The future activity of a per-

son could be multi-class, e.g. a person could be “walking”

and “carrying” at the same time.

3. Experiments

We evaluate the proposed Next model on two com-

mon benchmarks for future path prediction: ETH [11] and

UCY [7], and ActEV/VIRAT [2, 10]. Here we only show

results on ActEV/VIRAT. Please refer to the full paper for

full results.

Baseline methods. We compare our method with the two

simple baselines and two recent methods: Linear is a single

layer model that predicts the next coordinates using a linear

regressor based on the previous input point. LSTM is a sim-

ple LSTM encoder-decoder model with coordinates input

only. Social LSTM [1]: We train the social LSTM model to

directly predict trajectory coordinates instead of Gaussian

parameters. SGAN [3]: We train two model variants (PV &

V) detailed in the paper using the released code from Social-

GAN [3] (https://github.com/agrimgupta92/sgan/).

Aside from using a single model at test time, Gupta et

al. [3] also used 20 model outputs per frame and selected the

best prediction to count towards the final performance. Fol-

lowing the practice, we train 20 identical models using ran-

dom initializations and report the same evaluation results,

which are marked “20 outputs” in Table 1.

Main Results. Table 1 lists the testing error, where the top

part is the error of a single model output and the bottom

shows the best result of 20 model outputs. The “ADE” and

“FDE” columns summarize the error over all trajectories,

and the last two columns further detail the subset trajecto-

ries of moving activities (“walk”, “run”, and “ride bike”).

We report the mean performance of 20 runs of our single

model at Row 7. The standard deviation on “ADE” met-



Figure 6. (Better viewed in color.) Qualitative analysis. Yellow path is the observable trajectory and green path is the ground truth trajectory

during the prediction period. Predictions are shown as blue heatmaps. Our model also predicts the future activity, which is shown in the

text and with the person pose template.

ric is 0.043. As we see, our method performs favorably

against other methods, especially in predicting the trajec-

tories of moving activities. For example, our model out-

performs Social-LSTM and Social-GAN by a large margin

of 10 points in terms of the “move FDE” metric. The re-

sults demonstrate the efficacy of the proposed model and its

state-of-the-art performance on future trajectory prediction.

Qualitative analysis. We provide a qualitative analysis of

our model predictions. (i) Successful cases: In Fig 6(a)

and 6(b), both the trajectory prediction and future activity

prediction are correct. (ii) Imperfect case: In Fig 6(c), al-

though the trajectory prediction is mostly correct, our model

predicts that the person is going to open the door of the car,

given the observation that he is walking towards the side

of the car. (iii) Failed case: In Fig 6(d), our model fails to

capture the subtle interactions between the two persons and

predicts that they will go separate ways, while in fact they

are going to stop and talk to each other.
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