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Abstract

Neural networks for semantic segmentation can be seen

as statistical models that provide for each pixel of one im-

age a probability distribution on predefined classes. The

predicted class is then usually obtained by the maximum a-

posteriori probability (MAP) which is known as Bayes rule

in decision theory. From decision theory we also know that

the Bayes rule is optimal regarding the simple symmetric

cost function. Therefore, it weights each type of confusion

between two different classes equally, e.g., given images of

urban street scenes there is no distinction in the cost func-

tion if the network confuses a person with a street or a build-

ing with a tree. Intuitively, there might be confusions of

classes that are more important to avoid than others. In this

work, we want to raise awareness of the possibility of ex-

plicitly defining confusion costs and the associated ethical

difficulties if it comes down to providing numbers. We de-

fine two cost functions from different extreme perspectives,

an egoistic and an altruistic one, and show how safety rel-

evant quantities like precision / recall and (segment-wise)

false positive / negative rate change when interpolating be-

tween MAP, egoistic and altruistic decision rules.

1. Introduction

Machines acting autonomously in spaces co-populated

by humans and robots are no longer a futuristic vision, but

are part of the agenda of the world’s technologically most

advanced corporations. Autonomous car driving has seen

spectacular advances due to recent progress in artificial in-

telligence (AI) and therefore is one of the corner-cases for

this development. As street traffic, according to the world

health organization (WHO), causes an annual death toll of

1.35M persons at the time of writing [20], it is expected

that also autonomous driving cars will be involved in such

tragic events. While there are reasons to believe that au-

tonomous driving can reduce the overall numbers of deaths

and heavy injuries, besides being required by e.g. the Ethics

Commission instated by the German Federal Ministry of

Transport and Digital Infrastructure [19], many further eth-

ical issues remain in the choices of programming an au-

tonomous vehicle. Therefore, autonomous cars have been a

much-discussed topic in robot ethics [18], ranging from in-

evitable ethical dilemmas like the trolley problem [13, 16]

to more mundane ethical situations [14].

In most of these ethical situations discussed in the lit-

erature, the robots and the AI algorithms controlling them

are assumed to know the situation they decide on, whereas

most deadly accidents with the involvement of self-driving

cars in some way or another are connected with the (insuf-

ficient) perception of the vehicle’s surrounding (see [4] for

a preliminary report). Whether the AI algorithms of per-

ception themselves depend on choices that involve ethical

decisions is therefore a legitimate question.

For a practitioner in the field it is quite obvious that the

answer is “yes”: In semantic segmentation, the choice of

training data, the selection of classes, potential class imbal-

ance, the amount of data, the capacity of the learning al-

gorithm and the performance of the hardware all determine

what a contemporary AI algorithm is able to “see” and how

error prone its perception will be. As errors in perception

are potential root causes of accidents, ethical implications

clearly exist.

In this work, we draw the attention to one further is-

sue that is connected to the probabilistic output of seman-

tic segmentation neural networks that are mostly used for

the perceptive task. As the softmax output of a segmenta-
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Figure 1. Illustration of semantic segmentation performed on an image of the Cityscapes dataset [10] with a neural network in combination

with (pixel-wise) maximum a-posteriori probability classification.

tion network gives a pixel-wise class distribution, the max-

imum a-posteriori probability (MAP) principle, also known

as Bayes decision rule, selects the class of highest proba-

bility. This is however not the only selection principle, as

one could also apply the Maximum Likelihood (ML) de-

cision rule that picks the class for which the input data is

most representative [12]. While both rules have the appeal

of being mathematically “natural”, they are merely two ex-

amples of cost-based decision rules, where each confusion

event is penalized by a specific quantity c(k̂, k) that valu-

ates the aversion of a decision maker towards the confusion

of the predicted class k̂ with the actual class k. The decision

on the predicted class now minimizes the expected cost.

Seen from this angle, the MAP principle corresponds to

the cost matrix that attributes equal cost to any confusion

event. We call this the robotistic valuation of the segmenta-

tion network’s output. Human common sense would valu-

ate the confusion of the street with a pedestrian differently

from the confusion event with the roles interchanged: an

unjustified emergency brake is a much weaker consequence

as potential harm than overlooking a person on the street

and therefore should come with a significantly lower cost.

While it seems reasonable to assume that the confusion cost

should be different from constant, it is ethically much less

evident, which numbers should explicitly be used. In these

situations of moral uncertainty, different ethical schools of

thought may provide different answers, with some refus-

ing to weigh lives at all [5]. In addition, legislation can

put strong constraints on the choice as well. However, as

the MAP principle and the ML decision rule already define

confusion cost matrices, choices about these numbers have

already been made. We, therefore, aim to make more trans-

parent the ethical dimension involved in making a choice

regarding a decision rule with its corresponding cost ma-

trix.

We realize that the ultimate step from probabilities to

perception depends on cost matrices in a high dimensional

value space V and that the selected valuation changes the

perception. Thereby, it also changes the consequences, as,

e.g., the precision and recall rates of specific classes. Fur-

thermore, different cost matrices C ∈ V might express dif-

ferent ethical attitudes, like more egoistic (centred on the

passenger in the (ego-) car) or altruistic (centred on public

safety). Putting drivers first vs. putting the public first has

already been subject to intense public debate [24].

In this paper, we do not intend to resolve the problem

outlined above in any way. We present a numerical study

that demonstrates the practical relevance of the problem by

traveling through the value space within a triangle of robo-

tistic and approximately egoistic and altruistic, respectively,

cost value systems. Here the egoistic and altruistic cost ma-

trices are set up in an ad hoc manner and are not meant

to accurately represent these attitudes. Also, the matrices

are by no means the most extreme ones spanning the value

space. Nevertheless, when traveling through this small tri-

angle in the large space of valuations V , we see signifi-

cant and relevant differences in the perception and measure

consequences like the precision / recall and (segment-wise)

false positive / negative rates for specific classes.

The remainder of this paper is organized as follows: In

section 2 we describe our use-case for decision rules in neu-

ral networks, in particular in semantic segmentation neural

networks. Next, in section 3 we explain the concept of deci-

sion rules in general and how they can be modified by valu-

ating confusion costs between classes. We see various pos-

sibilities of defining the mentioned costs and provide two

concrete examples in form of matrices in section 4. More-

over, we present our spanned value space of confusion cost

matrices and the setup for our experiments which follow in

section 5. We show that different cost matrices are capable

of considerably affecting the perception of a state-of-the-art

semantic segmentation network in the setting of urban street

scenes.

2. Standard decision rule in neural networks

Semantic segmentation is the task of assigning each

pixel of an image to one of the predefined classes K =
{1, . . . , N}. Suppose, we use a neural network for solving

this task. Let x ∈ {(r, g, b)}m×n, (r, g, b) ∈ {0, . . . , 255}3

be an “rgb” (red, green and blue light additively colored) in-

put image with resolutionm×n. After processing the image

x with a neural network we obtain a posterior probability

distribution pij(k|x) over all classes k ∈ {1, . . . N} at lo-

cation (pixel position in the image) (i, j) ∈ {1, . . . ,m} ×
{1, . . . , n}. The 3D tensor pij(k|x) represents the softmax

output of a neural network for semantic segmentation. The



third dimension is given by the choice of k ∈ {1, . . . N}.

This provided probability distribution expresses the confi-

dence of the neural network as statistical prediction model

to label the input correctly given the class k. The pixel-wise

classification is then performed by applying the argmax
function (pixel-wise) on the posterior probabilities / soft-

max output. This kind of decision making is called maxi-

mum a-posteriori probability (MAP) principle.

In the field of Deep Learning, following the MAP as

decision rule is by far the most commonly used one. It

maximizes the overall performance of a neural network,

meaning in cases of large prediction uncertainty, this rule

tends to predict classes that appear frequently in the dataset.

However, classes of potential high importance, like in au-

tonomous driving the classes traffic signs and humans, usu-

ally appear less frequently. These classes are rare in terms

of the number of instances and the number of pixels in the

dataset. This problem is in close connection to the fact that

the MAP estimation considers all prediction mistakes to be

equally serious which is in conflict with human intuition.

Thus, a natural approach is to weight different prediction

mistakes against each other.

3. Cost-based decision rules in neural networks

Let Ω be a population consisting of N ≥ 2 disjoint sub-

sets. For each element ω ∈ Ω we assume there exists one

feature vector x(ω) ∈ S ⊂ R
n. Let

X : Ω → S (1)

K : Ω → {1, . . . , N} = K (2)

be random variables for feature vector x and class affiliation

k, respectively. A decision rule can be defined as a map

d : S → K (3)

x(ω) 7→ k̂(ω) (4)

which assigns an element from the feature space to one

class. We say, d(x) = k̂ is the predicted class for feature

vector x. Furthermore, we describe the a-posteriori proba-

bility of an object to belong to class k given feature x as

p(k|x) := P (K = k | X = x). (5)

Usually, this probability is not known and needs to be es-

timated. We assume in the following that this is already

accomplished, e.g., p(k|x) is approximated by the softmax

output of a neural network.

Cost-based decision rules follow the idea of assigning

one input to the class which minimizes the expected cost

given one confusion cost function

c : K ×K → R≥0 := [ 0,∞ ).

Considering all possible confusion cases we obtain a confu-

sion cost matrix

C := (c(k̂, k))
k̂,k=1,...,N ∈ V ⊂ R

N×N
≥0 (6)

with k̂ being the predicted class while k being the target

class and

V := { C ∈ R
N×N | Cjj = 0, Cij > 0, i, j ∈ K } (7)

being the value space of all valid matrices C for cost-based

decision rules. Hence, all elements of a valid matrix must

be positive except the diagonal elements, which must equal

0, according to V . Strictly speaking, V consists of equiva-

lence classes since each C in combination with cost-based

decision rules will produce the same output as µC, µ > 0,

i.e., different scales of C do not change the output. There-

fore, rather the costs of the classes relative to each other are

decisive for the output instead of the absolute values.

In order to understand the just stated fact we define the

expected cost with respect to confusion cost functions via

E[ c(k′,K) | X = x ] =

N
∑

k=1

c(k′, k) p(k|x) (8)

and the corresponding cost-based decision rule as

d(x;C) := argmin
k′∈{1,...,N}

N
∑

k=1

c(k′, k) p(k|x) (9)

(6)
= argmin

k′∈{1,...,N}

Ck′ · ~p(x) = k̂ (10)

with Ck := (Ck1, . . . , CkN ) being the k-th row vector of

C ∈ V and ~p(x) := (p(1|x), . . . , p(N |x))T being the pos-

terior probabilities vector conditioned on the feature x. This

rule is optimal considering the expected costs.

Cost-based decision rules are strongly related to proba-

bility thresholding. The aim of probability thresholding is

to make class predictions cost-sensitive during inference by

moving the output threshold towards inexpensive classes.

This is achieved by defining a confusion cost function of

the form

c
(

k̂, k
)

:=

{

0 , if k̂ = k

ψ(k) , if k̂ 6= k
, ψ(k) ∈ R≥0 (11)

with ψ(k) > ψ(k′) if we want the network to prefer pre-

dicting class k to predicting class k′. One special type of c
is the simple symmetric cost function [12]

cs

(

k̂, k
)

:=

{

0 , if k̂ = k

λ , if k̂ 6= k
, λ ∈ R≥0 (12)
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Figure 2. Illustration of two segmentation masks obtained with the

Bayes decision rule (right) and the Maximum Likelihood decision

rule (left). The difference between these two masks lies in the ad-

justment with the (pixel-wise) prior class probabilities in the deci-

sion rule during inference.

whose incorporation in the cost-based decision rule is

equivalent to the MAP principle. Given cs(k̂, k) all ele-

ments in the confusion cost matrix Cs are equal to the con-

stant λ except the diagonal elements which are equal 0. Ac-

cordingly, the cost-based decision rule takes the form:

d(x;Cs)
(12)
= argmin

k∈{1,...,N}

N
∑

k′=1,k′ 6=k

λ · p(k′|x) (13)

= argmin
k∈{1,...,N}

1− p(k|x) (14)

= argmax
k∈{1,...,N}

p(k|x) =: dBayes(x). (15)

In decision theory equation (15) is the definition of the

Bayes decision rule which is equivalent to the MAP prin-

ciple and therefore also to the default classification prin-

ciple in neural networks. However, the simple symmetric

cost function implies an equal class weighting, i.e., weight-

ing every confusion between two classes (or each type of

misclassification) equally. Depending on the purpose, this

setting does not reflect the intuition of most people but is

still applied in most deep learning state-of-the-art models.

A mathematically natural way to approach this problem

is exchanging the simple symmetric with the inverse pro-

portional cost function [12] which is another special type of

c. In light of confusion costs the latter cost function

cp

(

k̂, k
)

:=

{

0 , if k̂ = k

λ/p(k) , if k̂ 6= k
, λ ∈ R≥0 (16)

weights each confusion with the inverse prior probability

1/p(k), p(k) ∈ (0, 1) of the potential target class k. In neu-

ral networks the class appearance frequencies in the train-

ing data correspond approximately to the priors. Consider-

ing the priors, we can put more emphasis on finding classes

which are rare, i.e., classes which have a low prior proba-

bility. The decision rule resulting from this is the Maximum

Likelihood (ML) decision rule

dML(x) := argmax
k∈{1,...,N}

p(x|k). (17)
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Figure 3. Class aggregates of Cityscapes classes that we use for

simplicity in our experiments. Note that in the Cityscapes labeling

motorcycles and bicycles in motion adhere to the class “rider”.

Now x is mapped to the class k for which the observed fea-

tures are most typical, independent of a prior belief about

the class frequencies. As presented in [6], with respect to

rare classes the application of the ML rule significantly re-

duces the number of false negative (overlooked) segments

for rare classes, but to the detriment of producing substan-

tially more false positive segment predictions. One might

argue that there is a “sweet spot” where the two error rates,

the positive and negative one, are optimal. However, one

might also argue that certain classes are still underweighted

relative to others. We address both problems by applying

the cost-based decision rule in combination with adjusting

the confusion cost matrix C.

4. Setup of experiments

For our experiments we use the Cityscapes dataset with

19 semantic classes. In order to reduce the number of con-

fusion cost values to be specified for the matrixC we aggre-

gate classes that are treated similarly considering confusion

costs, see figure 3 for a first attempt although refined aggre-

gations are probably more appropriate.

With 6 aggregated classes we define a 6× 6 matrix. For

performance evaluation we map the reduced matrix back to

full 19× 19 size such that all combinations between classes

out of two aggregates have an equal confusion cost, i.e., for

two different non-empty aggregates I,J ⊂ K it holds

I ∩ J = ∅ (18)

⇔ c(i, j) = c(i′, j′) ∀ i, i′ ∈ I, j, j′ ∈ J . (19)

In addition, we set a small ǫ = 0.1 for all confusions be-

tween different classes within an aggregate so that we apply

the Bayes decision rule (only within an aggregate) with-

out affecting the cost-based decision between aggregated

classes, i.e., for each non-empty aggregate I ∈ K it holds

c(i, i′) = ǫ ∀ i 6= i′ ∈ I (20)

c(i, i) = 0 ∀ i ∈ I. (21)
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Figure 4. Regions of interest derived from the priors of the classes

building, road, sidewalk and sky in the Cityscapes dataset.

Note that we suppress the “sky” class in our class aggrega-

tion although it is one of the originally trained classes. The

reason is that we believe that overlooking the sky does not

result in dangerous traffic scenarios. Therefore, we prevent

the network from predicting sky by setting CT
sky = {M}N

with M = 1000 being a sufficiently large cost value. This

implies that the confusion of any (target) class with sky is

valuated with high cost. We set the cost for the converse

confusion, when sky is the target class, to a constant value

in order to not affect the class prediction between the re-

maining classes.

To gain further insight we define image regions of in-

terest (RoI). These regions are derived from the pixel-wise

class frequencies (priors) of the classes “road”, “sidewalk”,

“building” and “sky” in the Cityscapes dataset. We ob-

tain the 4 regions of interest (or 5 regions as the sidewalk

RoI consists of two connected components) by assigning

each pixel to the class with the highest class appearance fre-

quency at the corresponding pixel location, see figure 4.

For our experiments we further define two confusion cost

matrices representing two extreme views in traffic scenes.

On the one hand, we define the “altruistic” matrix CA that

prioritizes all traffic participants and particularly humans.

On the other hand, we define the “egoistic” matrix CE that

only prioritizes the safety and comfort of the passenger in-

side the (ego-) car. The chosen cost values can be viewed

in figure 6. We compare the corresponding predictions

with each other and also with the Bayes rule’s prediction,

respectively. The Bayes decision rule implies the matrix

CR := (cs(k̂, k))k̂,k=1,...,N which we term in the follow-

ing the “robotistic” confusion cost matrix. This method is

robotistic in the sense that, in any event, the only goal is to

minimize all error rates. The convex combinations of these

three presented matrices span a confusion value space

V := { C ∈ V | αCR + βCA + γCE = C,

α+ β + γ = 1, α, β, γ ≥ 0 }
(22)

(see figure 7 and figure 8). It is important to emphasize

that V ⊂ V is only one subspace of a far bigger possible

value space. There are even more extreme cost matrices that

enlarge the space dramatically. There are also cost matri-

ces expressing views in a completely different direction and

Cost matrix Class RoI Precision Recall

Altruistic Person 1 41.12% 99.81%
Robotistic Person 1 89.87% 94.98%
Egoistic Person 1 93.88% 70.07%
Altruistic Person 2 39.42% 99.86%
Robotistic Person 2 88.36% 93.93%
Egoistic Person 2 95.07% 54.81%
Altruistic Building 1 22.56% 93.65%
Robotistic Building 1 80.99% 94.94%
Egoistic Building 1 15.15% 99.93%
Altruistic Building 2 24.94% 95.22%
Robotistic Building 2 87.76% 94.58%
Egoistic Building 2 18.48% 99.90%

Table 1. Precision and recall rates for the three different cost ma-

trices. The rates are computed for the classes person and building

in the street and the sidewalk RoIs, i.e., RoI 1 and 2.

therefore increasing the dimensionality of the space. How-

ever, our presented V is sufficient in order to show that it is

already capable of changing our model’s perception signif-

icantly.

5. Experiments

As part of autonomous car driving systems, interpret-

ing visual inputs is crucial in order to obtain a full under-

standing of the car’s environment. The inference of an im-

age in semantic segmentation [10, 11] is performed at pixel

level combining object detection and localization. In re-

cent years, deep learning has achieved great success in a

wide range of problems including semantic segmentation.

Most state-of-the-art models are built on deep convolutional

neural networks (CNNs) [15, 23]. One important contribu-

tion to CNNs for semantic segmentation is the Fully Convo-

lutional Network (FCN) [22] which introduces end-to-end

training taking input of arbitrary size and producing out-

put of equal size. The network is one of the first using

an encoder-decoder structure [3, 21] whose encoder part is

a classification network followed by the decoder part that

projects convolved learned features back onto full pixel res-

olution. With the integration of atrous (also called dilated)

convolutions [25], that allows an exponential increase of the

network’s receptive field without loss of resolution, the per-

formance of semantic segmentation networks is further sig-

nificantly improved. One advanced module based on the

latter operation is atrous spatial pyramid pooling (ASPP)

[7]. It is one of the main contributions to the network

DeepLabv3+ [8] which we use in the following in our ex-

periments.

We demonstrate the performance of cost-based deci-

sion rules with different confusion cost matrices on the

Cityscapes [10] validation dataset. DeepLabv3+ is already

pretrained on the latter dataset and implemented in Tensor-

Flow [1]. The implementation and tuned weights are pub-
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Figure 5. Illustration of three semantic segmentation masks and different perception obtained by the application of cost-based decision

rules with an altruistic, a simple symmetric (robotistic) and an egoistic cost matrix.
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Figure 6. Two extreme confusion cost matrices that we study in our experiments. CA represents the altruistic view prioritizing all traffic

participants and particularly pedestrians. CE represents the egoistic view prioritizing only the passenger in the (ego-) car. One element in

the matrix expresses the cost that arises if we predict the class corresponding to the row and we confuse it with the potential target class

corresponding to the column.

licly available on GitHub. As network backbone, we choose

the modified version of the Xception model [9] that attains

an mIoU score of 79.55% on the Cityscapes validation set

with the application of the MAP / Bayes decision rule.

In the following, we perform our analysis for the classes

“person” and “building” which are key classes in our prob-

lem setting of autonomous driving for the altruistic and ego-

istic view, respectively. Furthermore, we focus our studies

on the regions of interest 1 & 2, the near field perception in

front of the (ego-) car and to the side of the (ego-) car.

Pixel-wise precision vs. recall. For evaluation we first

consider precision and recall. These two metrics are closely

connected to the quantities false positive and false negative

pixel predictions. A predicted pixel is a false positive (FP)

if it falsely indicates an object’s presence. A predicted pixel

ignoring the presence of a present object is a false negative

(FN). Therefore, precision is the percentage of a model’s

predicted pixels that match the ground truth, while recall is

the percentage of ground truth pixels that a model predicts

correctly, i.e.,

prc = TP / (TP + FP ) (23)

rec = TP / (TP + FN) (24)

with TP being the true positives (pixels correctly classified

according to the ground truth). The two evaluation metrics

can be formulated as maps

prc,rec : V → [ 0, 1 ] (25)

expressing the neural network’s predictive power depending

on C ∈ V . The higher the value, the less prediction mis-

takes we obtain regarding falsely detected and non-detected

pixels, respectively. The precision and recall scores of the

different cost matrices in different regions of interest can be

found in table 1.

For the class person we observe that the recall is max-

imized when using CA. Compared to CR the reduction is

4.83 percent points in the street RoI and even 5.93 percent

points in the sidewalk RoI. Even if the recall of person in-

stances is already impressively high, CA is still capable of

boosting the performance in this metric such that nearly no

person pixels are missed. However, to a striking detriment,

the precision is reduced by about 48 percent points in both

RoIs down to 41.12% and 39.42%, respectively. When us-

ing CE persons are ignored to a large extent leading to a

recall reduction of 24.91 percent points in the frontal RoI

and 39.12 percent points in the sidewalk RoI in comparison

to CR. Consequently, the precision is increased by 4.01 and

6.71 percent points, respectively. With CE DeepLabv3+

only predicts persons if the network indicates a high con-

fidence about its decision. As expected there is a trade off

between the metrics, i.e., increasing one performance mea-

sure decreases the other and vice versa. Also noteworthy
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Figure 7. Confusion cost matrix space V spanned by our exem-

plary altruistic (CA) and egoistic (CE) cost matrix and the robo-

tistic (CR) cost matrix. Inside the triangle as heatmap the behavior

of rec( V (C) | person ), the recall of person pixels. Blue indicates

high recall, red indicates low recall.

from this analysis is that DeepLabv3+ confuses only per-

sons which are not completely visible, e.g., persons stand-

ing behind cars or around corners. Only small parts of per-

son instances are mainly overlooked, see also figure 9.

For the class building we also observe this trade off but

only between CE and CR. CE improves the recall by 4.99
and 5.32 percent points while reducing the precision sub-

stantially by 65.84 and 69.28 percent points, respectively,

for the street and the sidewalk RoI.

The behavior is different with respect to CA. Regarding

building segments, CR performs better in both metrics in

the frontal RoI. The recall is reduced by 1.29 and the pre-

cision by significant 58, 43 percent points. In the sidewalk

RoI, the recall of CA is slightly improved (0.64%) but the

precision is again drastically reduced to 24.94%. Notewor-

thy from this analysis is that DeepLabv3+ has difficulties

in detecting separated ground truth segments of building in-

stances which arise from objects in front of buildings and

splitting the instance’s actual connected component in the

ground truth, see also figure 10.

Segment-wise false-detection vs. non-detection. An-

other interesting quantity are the entire false-detections and

non-detections of person and building segments when us-

ing the different cost matrices. In this regard, we now

define a segment to be, depending on the considered pre-

diction or ground truth mask, a false positive / negative if

the segment’s intersection over union (IoU) equals 0. Fig-

ure 9 and figure 10 visualize the segments with IoU = 0
in the prediction mask and ground truth mask, respectively,

again for the classes person and building. The presented

heatmaps visibly confirm the findings from the precision

and recall analysis. The application of cost-based decision

rules changes the perception of DeepLabv3+ significantly.

For instance, for the class person the altruistic cost matrix

overproduces false positives but there are almost no over-

looked person segments. On the contrary, the egoistic cost

matrix almost completely refuses to predict the class person

CR

CA CE

Figure 8. Confusion cost matrix space V spanned by our exem-

plary altruistic (CA) and egoistic (CE) cost matrix and the robo-

tistic (CR) cost matrix. Inside the triangle as heatmap the behavior

of rec( V (C) | building ), the recall of building pixels. Blue indi-

cates high recall, red indicates low recall.

but is mostly correct in case it predicts a person segment.

The robotistic cost matrix offers a balanced compromise

between both prediction mistakes. Depending on people’s

individual sense of how the cost matrix should be defined,

the presented observations will change again. Thus, what

will remain open is a concrete suggestion to the inevitable

definition of a confusion cost matrix.

6. Discussion

In this paper we illustrated the impact of cost-based de-

cision rules on the perception of a state-of-the-art semantic

segmentation neural network. In this framework, we dis-

cussed options for setting up cost-based decision rules rang-

ing from the classical “robotistic” maximum a-posteriori

probability principle over probability thresholding and the

Maximum Likelihood decision rule to ad hoc “egoistic” and

“altruistic” cost assignments to confusion events. Within

the triangle of robotistic, egoistic and altruistic attitudes, we

investigated precision and recall and also false positive and

negative rates in two regions of interest for the classes “per-

son” and “building” in the Cityscapes dataset. We demon-

strated the metrics’ dependence on the convex combination

of the cost matrices from the three mentioned ethical atti-

tudes spanning a triangle within a larger space of values.

On the technical side, many questions concerning the use

of cost-based decision rules have to be clarified, e.g. the

adaptation of cost matrices to prior probabilities or the im-

pact on “downstream” modules like data fusion with other

sensors and trajectory planning.

Let us turn to the ethical side of the discussion. The

probabilistic nature of the output of the segmentation net-

work makes a decision rule necessary. As different decision

rules have non-converging consequences, a choice for a de-

cision rule amounts to a choice where in the long run hu-

man lives are weighted against other considerations. This

choice is therefore not one to be made from a purely tech-

nical side (by e.g. choosing the mathematically “natural”

decision rule) but one that needs to recognize its ethical di-
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Figure 9. Falsely detected (false positive) person (top row) and building (bottom row) segments.
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Figure 10. Non-detected (false negative) person (top row) and building (bottom row) segments.

mension. While technological advances may have an im-

pact on these considerations they will not make the need for

a decision rule obsolete.

This leads to the question: Which decision rule is the

“right” one? As in most cases of moral uncertainty, different

normative ethical schools of thought will provide different

answers (see [17, Ch.3] for a short non-technical introduc-

tion in the context of robot ethics). A deontological strategy

would try to justify a certain choice of a decision rule by

arguing for the rule itself being ethically “good”, not con-

sidering what may follow from that choice. For instance, a

strict rule-based implementation of the requirement by the

ethics commission that “[t]he protection of individuals takes

precedence over all other utilitarian considerations.” [19]

may be interpreted to lead to a cost function that is never

allowed to confuse a human for another object. A conse-

quentialist strategy justifies a cost function by focusing on

the consequences of a certain choice. This would involve

the above analysis of the consequences of the egoistic and

altruistic cost functions. Another approach refers to polling,

using the ethical intuition of the majority of the people be-

ing asked. This can lead to strong cultural differences, as re-

sulted in an analysis of Awad et al. in the context of trolley-

like problems [2].

It is not the aim of this paper to defend any specific

approach or to provide an alternative answer to the above

problem of choosing the “right” decision rule, but to make

transparent the underlying ethical dimension of what may

seem as mathematically innocuous “natural’ choices. This

transparency is a precondition for a responsible handling

and open debate on these issues.
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