
DSC: Dense-Sparse Convolution for Vectorized Inference of

Convolutional Neural Networks

Alexander Frickenstein

BMW Group

Autonomous Driving

alexander.frickenstein@bmw.de

Manoj Rohit Vemparala

BMW Group

Autonomous Driving

manoj-rohit.vemparala@bmw.de

Christian Unger

BMW Group

Autonomous Driving

christian.unger@bmw.de

Fatih Ayar

Technical University Munich

Electrical and Computer Engineering

fatih.ayar@tum.de

Walter Stechele

Technical University Munich

Electrical and Computer Engineering

walter.stechele@tum.de

Abstract

The efficient applications of Convolutional Neural Net-

works (CNNs) in automotive-rated and safety critical

hardware-accelerators require an interplay of DNN design

optimization, programming techniques and hardware re-

sources. Ad-hoc pruning would result in irregular sparsity

and compression, leading to in very inefficient real world

applications. Therefore, the proposed methodology, called

Dense-Sparse Convolution, makes use of the right balance

between pruning regularity, quantization and the underly-

ing vectorized hardware. Different word-length compute

units, e.g. CPU, are used for low-latency inference of the

sparse CNNs. The proposed open-source1 CPU- kernel is

enabled to scale along with the vector word-length and the

number of cores.

1. Introduction

In the automotive industry, CNNs have become a com-

mon tool for solving complex problems in the field of com-

puter vision, speech recognition and autonomous driving.

CNNs have already proven their superiority in the resource

demanding fields of image classification [1], semantic seg-

mentation [2] and object detection [3]. Albeit impressive

advances in the recent past, the deployment of CNNs on

embedded devices is still challenging. Especially, mod-

ern CNNs in the context of computer vision are computa-

tionally expensive and require immense memory resources

for storing their parameters. For instance, the efficient ob-

ject detection algorithm YOLO [4] requires around 140 bil-

lion multiply-accumulate operations (MACs) and 240MB

1https://github.com/HAPPI-Net/DSC.git

for storing the parameters. When applying DNNs for safety

critical automotive systems, four main challenges can be

identified. (1) A high-performant hardware (HW) and lower

power consumption is needed to allow the prevention of

accidents in real time with minimal latency. (2) The pro-

grammability of automotive HW plays a major role due to

short time to market and cost pressure. (3) Reprogrammable

HW, providing flexibility for being used for different tasks

in the future, is needed. (4) The reliability of AD applica-

tions and HW used in safety critical environments is crucial

to prevent accidents and currently not provided at a satis-

fying level. Consequently, it is clear that there is no single

hardware which is on the top of the list for every criterion.

Making use of CNN optimization techniques combined

with better utilization of HW resources and efficient al-

gorithms, a compact solution would be obtained for effi-

cient deployment. By combining pruning, quantization and

vectorization of convolutional operations, the efficient use

of instruction, data and thread-level parallelism is enabled.

The key contributions of this paper are in particular:

• Making use of CNN optimization techniques (i.e.

pruning and quantization) along with algorithmic opti-

mization (Winograd) for an efficient vectorization.

• A methodology to accelerate the sparse convolutional

layer on different word-length for vectorized compute

units, e.g. CPU, is presented.

• Introduce an open-source CPU-kernel for low latency

inference (batchsize=1) of CNNs.

2. Related Work

Different types of optimization techniques are applied on

a structural, algorithmic and HW-level to reduce computa-

tional complexity and efficiently process DNNs.

1



Pruning simply aims to reduce the number of connec-

tions of a CNN by removing redundant and unused param-

eters. As removing weights weakens the CNN, retrain-

ing of the given model is obligatory to maintain the ac-

curacy. Han et al. [5] initially train the dense network

and gradually prune it, if the individual weight value is

below a certain threshold. They show that a majority of

weights in the CNN can be set to zero with no loss in

accuracy. Extending their element-wise pruning, Han et

al. [6] proposed in Deep Compression further compression

(weight sharing, approximation and data coding) leading to-

wards more irregular memory accesses, which is imprac-

ticable for general purpose computing platforms such as

CPUs. Recently, He et al. [7] proposed an automation tech-

nique for model compression using Reinforcement Learn-

ing (RL). They claim that their automation tool AutoML

results in higher compression rates with better accuracy,

compared to hand crafted rule-based pruning techniques.

However, pruning regularity (see Fig. 1) is an important

metric which is highly related to the actual acceleration

of vectorized compute engines. This holds for most gen-

eral purpose GPUs, CPUs and FPGAs, except for custom

ASIC-architectures, such as Efficient Inference Engine [8]

or SCNN [9], where the irregular sparsity is inefficient for

other target platforms.

Figure 1. Illustration of pruning regularities, From (l) Irregular

data pattern to (r) structured pattern.

Anwar et al. [10] argue that the irregular network prun-

ing cannot achieve equally good speed up rates in terms

of computation, as the compression causes irregular paral-

lelism. Even though the high degree of sparsity could be

achieved with element-wise pruning, deploying the pruned

network on a fixed hardware results in overheads during

computation and the obtained overall acceleration is consid-

erably low. Thus, they analyze structured pruning on vari-

ous scales, namely intra-filter level, filter level and chan-

nel level. Fig. 1 illustrates the pruning regularity occur-

ring during pruning. He et al. [11] use the Lasso regression

method to determine redundant channels instead of individ-

ual weights. They prune the redundant channels iteratively

layer-wise and achieve a 5× speed up for VGG16 with a

0.3% drop in the accuracy. However, as the regularity of

pruning increases, the amount of sparsity decreases [12].

As channel-wise pruning discards entire channels of a CNN

design, the compressed model is dense. Therefore, this pa-

per discusses about sparse convolution including the trade-

off between element-wise pruning, filter-wise pruning and

regularity for vectorized inference.

Quantization is used to reduce the word-length of

weights and activations, thus, resulting in lower external

memory bandwidth and local memory demand. By using

flexible modern vector-compute units, like those of CPUs,

the number of MAC operations, performed in parallel, can

be increased. There are mainly two approaches to quan-

tize a DNN. The first approach is to convert floating-point

to fixed-point without training. This approach is feasible in

real world applications, reducing the time required for fine-

tuning the CNN model. The fixed-point implementation

proposed by Lin et al. [13] focuses primarily on a mixed

precision, which allocates different bit widths and scaling

factors to the weights and activations of different layers in

DNNs. The bit width allocation is based on achieving an

optimal output signal to quantization noise ratio (SQNR).

Zhou et al. [14] convert a floating-point CNN into a net-

work whose weights are either powers of two or zero. The

three operations, namely weight partition, group-wise quan-

tization and retraining, are iteratively performed until all the

weights are converted into low precision. Vogel et al. [15]

argue that the power of two quantization schemes suffer

from high accuracy degradation and represent weights and

input feature maps (activations) with powers of arbitrary

log bases. Without fine-tuning, their approach observes

less than 3% accuracy degradation using VGG-16. As the

emerging target platforms support computation of flexible

bit width for each layer, Wang et al. [16] use RL to de-

termine the fixed-point parameters out of the vast design

space, considering HW latency and model accuracy. How-

ever, most automotive-rated HW accelerators do not support

flexible bit width.

Binary Neural Networks with bipolar parameters and

activations require more intensive training as all the above

quantization schemes. Rastegari et al. [17] use binary

weights and activations to convert the expensive convolu-

tion to groups of XNOR and a pop count operation. How-

ever, there is a significant drop in accuracy levels due to bi-

nary transformation, which is not acceptable for most safety

critical applications in the field of AD.

Efficient convolution algorithms are chosen to accel-

erate the convolutional layer of a CNN. The algorithm

must be based on the target HW platform, the layer type

and optimization schemes. The General Matrix Multiplica-

tion (GEMM) based convolution involves the transforma-

tion of the input and output feature map. Different schemes



Figure 2. Structure of the Dense-Sparse Convolution. A Conv. layer with dense (red), zero (gray) and sparse filter (blue) is shown left. The

vectorized sparse convolution and Winograd convolution is shown right. Feature maps Al are displayed in orange and green.

are analyzed by Anderson et al. [18]. The most common

transformations im2col and col2im are available in the well

known BLAS libraries for CPUs and GPUs with optimized

portioning and memory access strategies. These GEMM

based convolution performs superior when processing large

batches.

The Fast Fourier Transform (FFT) based convolu-

tion [19] converts the convolution operation to element-wise

multiplications in the frequency domain. Additional trans-

formations are required as well (time domain ↔ frequency

domain) and it is ideal for filter sizes close to the spatial

input size.

Winograd convolution, generalized for CNNs by Lavin

and Gray [20], transforms the filter and input feature maps

to perform element-wise multiplication, causing a reduction

between 2.25× and 4× compared to basic convolution. It

also introduces intermediate transformation which can be

computed using addition, subtraction and bit shift opera-

tions. Winograd convolution is useful for small batch and

filter sizes as the transformation is applied to a small 2D

tile. According to the input transformation, it is not able

to utilize sparsity along with Winograd. To overcome this

challenge, Liu et al. [21] proposed to prune the network

in the Winograd domain, taking advantage of the sparsity.

However, pruning in the Winograd domain in not easy to

implement as most of the Deep Learning frameworks do

not provide access to the intermediate transformations.

The direct sparse convolution algorithm proposed by

Park et al. [22] allows to perform the convolution of sparse

CNN models on various CPUs. The sparse matrices are

stored in the Compressed Sparse Row (CSR) format which

specifies the location and value of the non zero element. In

their approach, a high degree of sparsity should be obtained

to achieve a significant speed up, which eventually degrades

the accuracy of a CNN model.

This paper proposes to accelerate irregular pruned

weights by separating them into sparse and dense compo-

nents. The dense weight-filters perform best with the Wino-

grad convolution. The sparse filters follow a similar convo-

lution approach as Direct Sparse Convolution [22]. There-

fore, the proposed approach is called Dense-Sparse Convo-

lution. Another straight forward approach follows a much

simpler path by pruning entire filters. As the Winograd

transformation is a linear operation, a complete zero filter

is also zero in the Winograd domain and does not have to

be computed. In order to take advantage of this property,

the proposed method of this paper prune the network filter-

wise and store the non zero filters in a special format which

is designed to perform Winograd convolution efficiently.

3. Quantization and Vectorization

3.1. Vectorized Compute Units

The approximation of DNNs for a resource-aware imple-

mentation is beneficial for two reasons: (1) Reducing the

memory footprint and (2) increasing arithmetic intensity of

the application. Quantization of parameters can also be seen

as a very structured way of pruning, as the CNN is stored

and computed using less bits. At the same time, bandwidth

requirements are reduced. From a technical point of view,

fetching a 8-bit integer of a 32-bit float from memory de-

mands the same effort. Modern memory systems never

fetch a single data element. For instance, the smallest data

transfer between the memory and an i7 CPU is 64-bits and

for an Altera Arria 10 it is 32-bit which need to be aligned.

Fig. 3 displays the difference between an aligned and an un-

aligned data access, causing different number of fetch oper-

ations. Moreover, the typical size of a CPU data cache line

is 64-bytes (most Intel or ARM processors).

Altera Arria 10’s minimal BRAM2 access is also 64-



Figure 3. Aligned data vs. unaligned data for vectorized memory

access instructions. (Top) Fetching 16×32-bit worlds at once, see

red block. (Bottom) Two read operations are required.

Figure 4. Vectorized processing examined on varying CPUs (128-

bit, 256-bit, 512-bit) and word-lengthes (32-bit, 16-bit, 1-bit).

bytes. That means, 64×8-bit integer or 16×32-bit values

can be fetched to registers in parallel, as they are aligned.

Hence, quantization enables fetching more data, during the

aligned process with the same time and energy effort. From

a transistor level’s point of view, arithmetic operations’ the

low bit width approximations cover less area on the chip

than full precision ones. Therefore, more arithmetic op-

erations can be performed on the same area. Fixed HW,

such as CPU, GPU or DSP is limited to a dedicated word-

length, e.g. 8-bit, 16-bit, 32-bit, 64-bit operations. Through-

out this work, data level parallelism is carried out using

CPU-based SIMD instruction. In particular, different word-

lengths of 128-bit, 256-bit and 512-bit are evaluated on 32

2BRAM called Block-RAM, embedded memory resource in FPGA,

which can be accessed every clock cycle.

full-precision and 16-bit approximations. A SIMD instruc-

tion based data level parallelism is shown in Fig. 4. With the

right HW-support computing a vectorized operation takes

the same time as a scalar one.

3.2. Quantization of the CNN Model

The main concern of low precision representations of

DNNs lies in preserving numerical correctness for the par-

ticular tensors by minimizing the rounding and conversion

errors. Whereas the quantization of a DNN to FP16 or

Int16 works out of the box, the conversion to a shorter

word-length requires more effort. Weights w are quantized

according to the rounding function rd(w). In contrast to

stochastic rounding, applied by Gupta et al. [23], round-to-

nearest is applied as expressed in Eq. 1, where IB and FB

are the integer and fractional-bits. The precision ǫ = 2−FB

is limited by FB and the upper and lower bounds of w̃ are

±2IB−2FB. As the precision range is limited, batch normal-

ization [24] is used before every convolutional layer.

w̃ = rd(w) =



















−2IB − 2FB if w < −2IB − 2FB

2IB − 2FB if w > 2IB − 2FB

⌊w⌋ if ⌊w⌋ ≤ w ≤ ⌊w⌋+ ǫ
2

⌊w⌋+ ǫ if ⌊w⌋+ ǫ
2
< w ≤ ⌊w⌋+ ǫ

(1)

4. Methodology

4.1. Dense Convolution

As the trend for the application of CNNs is moving to-

wards deeper topologies with small filters, the dense convo-

lution can be implemented more efficiently using the Wino-

grad algorithm [20]. Every element in the output feature

map is separately computed, whereas the Winograd-based

convolution generates output maps in tiles. It reduces the

number of multiplication by reusing the intermediate out-

puts and is suitable for small filter sizes and stride val-

ues. In the proposed work, the 2D Winograd Convolution

F (2× 2, 3× 3) is used, where the generated output tile size

is 2×2 and the filter size is 3×3. The required input tile size

is 4× 4 (4 = 3 + 2 - 1). The output of the Winograd convo-

lution for a convolutional layer can be expressed as shown

in Eq. 2. Here, g is a tile of the input feature map and b

is a convolutional filter before the Winograd transformation

respectively. Due to linearity in the Winograd transforma-

tion, Eq. 2 can be expressed as Eq. 3. The transformed fil-

ters and images are flattened into single vectors to fit into

the appropriate register sizes, scalable across various CPU

platforms as demonstrated in Fig. 2. Winograd convolution

is efficient for smaller filters. Larger filters and fully con-

nected layers could profit from common GEMM libraries.

For F (2×2, 3×3), the matrices required for transformation

matrices G, B, and A are shown in Eq. 4. Moreover, g is a



4 × 4 tile of the input feature map and b is a 3 × 3 filter of

the convolutional layer.

Y =
∑

channels

AT
[

GT gG⊙BT bB
]

A (2)

Y = AT
[

∑

densefilters

[GT gG⊙BT bB]
]

A (3)

G =









1 0 0
1

2

1

2

1

2
1

2

−1

2

1

2

0 0 1









B =









1 0 −1 0

0 1 1 0

0 −1 1 0

0 1 0 −1









A =









1 0

1 1

1 −1

0 −1









(4)

A superior data level parallelism can be achieved by us-

ing lower precision data and increasing the arithmetic in-

tensity of the executions. The vector operations can be effi-

ciently applied on the assembly level with low level intrin-

sics. For instance, MMX, SSE, AVX3 extensions exist for

ARM-based CPUs. SSE extension consists of 128-bit wide

register, which can store four single-precision floating-point

numbers. However, the same register can also store two 16-

bit and four 8-bit fixed-point integers. SSE extension only

supports 16-bit, 32-bit, 64-bit multiplication, whereas 8-bit

multiplication is not supported. Other extensions such as

MMX, AVX and AVX-512 support 64-bit, 256-bit and 512-

bit wide registers respectively.

The Winograd transform of a sparse filter is not neces-

sarily sparse but the transformation of a completely pruned

filter will be zero and does not need to be multiplied. Thus,

the summation should only cover channels where the corre-

sponding filter is assumed to be dense. The transformed fil-

ters are converted into a single vector and fit into the SIMD

register, based on the quantization parameters of the layer.

4.2. Sparse Convolution

Based on the number of zeros in the filter, the filter is

assigned as a completely sparse matrix. These sparse ma-

trices are stored in the CSR format, and direct sparse con-

volution as presented by [22], is adopted. The data array

only contains the non zero elements, and the core idea lies

in determining the location of these elements and multiply

those with the corresponding input tiles. The data level par-

allelism for the sparse convolution is utilized by duplicating

the non zero elements onto the SIMD registers, as shown in

the Fig. 2.

4.3. DenseSparse Convolution

The element-wise sparsity with magnitude-based prun-

ing results in a reasonable amount of completely pruned

filters, using only direct sparse convolution benefits from

3MMX : Multi Media Extension, SSE : Streaming SIMD Extensions,

AVX : Advanced Vector Extensions

fully removed filters or filters with one or two non zero

elements (see Fig 2 top left). Whereas the convolution of

slightly pruned filters, using a sparse algorithm, reduces the

overall acceleration. Thus, the direct sparse convolution is

performed for the filters with less than a certain number of

non zero elements and dense convolution for the remaining

ones. The threshold, used to consider the filter as sparse,

is a heuristic process which depends on the spatial size of

the input, filter and the overall distribution of sparsity. The

overall algorithm for Dense-Sparse Convolution is demon-

strated in the supplementary material. As the convolution

is based on multiplication and summation through the input

channels, the results of sparse and dense are accumulated

together, as shown in Eq. 5.

Ali,k,x,y =

sparse
∑

c

R
∑

v=1

S
∑

u=1

Al−1i,c,x+u,y+vWlk,c,u,v

+

dense
∑

c

R
∑

v=1

S
∑

u=1

Al−1i,c,x+u,y+vWlk,c,u,v

(5)

These two operations are orthogonal from the HW’s

point of view and they can be simultaneously executed over

different cores. Dense-Sparse Convolution can be imple-

mented for any kind of layers, independent of the regular-

ity of sparsity. This methodology could be further adopted

on various HW platforms like CPUs, GPUs and FPGAs. In

case of Nvidia-GPUs and FPGAs, the partitioning of CUDA

cores and DSP blocks, must be performed for the sparse and

dense operations, respectively. When pruning is performed

filter-wise, the number of completely sparse filters could be

further increased. In this case, the Dense-Sparse Convolu-

tion could be transformed to filter-wise Winograd convolu-

tion.

5. Experimental Results

The CNN design of VGG16 [25] is compressed with re-

spect to structural and algorithmic level optimization. A

batch size of 1 is used for inference. As one level has an

impact on the other level, an ablation study is carried out

hereinafter. Three different CPUs are used throughout the

experiments, which are in particular:

• ARM-Cortex A53 (Raspberry Pi3), which operates at

1.2 GHz and has 4 cores. The CPU has 32 kB L1 and

512 kB L2 caches and supports NEON SIMD exten-

sions of ARM.

• Intel i5-6300, which is a dual-core processor with hy-

perthreading capability and it is operating at 2.4 GHz.

The CPU has 128 kB L1, 512 kB L2 and 3 MB L3

caches and supports AVX2 SIMD extensions.

• Intel Xeon Gold 6152 which has 22 cores with hyper-

threading capability. The CPU operates at 2.1 GHz and



has 1.375 MB L1, 22 MB L2 and 30.25 MB L3 caches

and supports AVX512 SIMD extensions.

All kernels are written in low-level C, using Intel or ARM

intrinsic functions and OpenMP library. These aspects are

covered in Sections S2 and S3 of the supplementary mate-

rial. The entire firmware is compiled either using Intel or

Gnu Compiler Collection (GCC).

Ablation Study: Element-wise pruning removes redun-

dant parameters from the filters and between 50-90% spar-

sity is obtained for each layer after pruning, see Fig. 5.

Figure 5. Pruning rate and speed up with varying pruning regular-

ity. Accuracy is preserved for element and filter-wise pruning.

Rather than measuring the acceleration (inference time)

with respect to a basic tile based approach, the performance

of sparse convolution is compared to the fastest dense al-

gorithm. In case of VGG16, using the Winograd algorithm

represents the fastest algorithm (black curve), as shown in

Fig. 6.

Figure 6. Theoretical acceleration of sparse convolution with vary-

ing precision. Model accuracy is not taken into consideration.

The experiment is performed with an input feature size

of 224×224×64 and an filter of size 3×3×64×644. In or-

der to reduce the computation demand, a pruned parameter

4These are layer dimensions of the first convolutional layer in VGG16.

is replaced by zero and is not to be included in the calcu-

lation. The sparse convolution algorithm is based on direct

sparse convolution, as described in Section S1 of the sup-

plementary material. The effect of HW optimization meth-

ods and algorithms on dense convolution is compared, con-

cluding that a significant amount of acceleration is achiev-

able with choosing the suitable algorithm and the appro-

priate optimizations. However, the direct sparse convolu-

tion is faster than the dense Winograd convolution in full-

precision, when the sparsity lies over 92%. The first reason

is that the sparse convolution algorithm is based on basic

tile-based convolution, wherein the Winograd convolution

has the advantage of less multiplications required during

computation. Secondly, while the Winograd convolution

has efficient and regular memory access, sparse convolu-

tion has irregular memory access due to unstructured prun-

ing. In order to further increase bandwidth utilization, we

implemented low-precision convolution with 16-bit weights

and activations. It appears that in low-precision diminishes

the bandwidth problem of sparse convolution. By reduc-

ing the precision from 32-bit floating-point to 16-bit fixed-

point, bandwidth utilization significantly increases and the

amount of cache misses drastically decreases. As a result,

sparse convolution becomes faster than Winograd in case of

70% sparsity.

By keeping the spatial size of the filter fixed as 3×3, one

wide, large feature (224×224) and one small one (28×28)

is analyzed, as illustrated in Fig. 7. Aligned with the first

assumption, one can observe that sparse convolution is not

that efficient on large input features, due to the memory

bandwidth problem. Contrarily, on small input sizes, sparse

convolution becomes faster than Winograd, even with 50%

sparsity in full precision. In conclusion, the convolution

algorithm has to be chosen based on the sparsity and fea-

ture size. Concludingly, rather than utilizing the same al-

gorithm for all convolutional layers, different algorithms

should be chosen for efficient deployment on vectorized

compute units, likewise CPUs.

The threshold is determined heuristically and three con-

volution methods are compared for various layers of VGG-

16 as shown in Fig. 8. The Conv1.2 layer of VGG16

has 80% overall sparsity, however direct sparse convo-

lution leads to the lowest speed, compared to full-dense

and Dense-Sparse Convolutions. Dense-Sparse Convolu-

tion with a threshold equal to zero offers around 2× accel-

eration compared to direct sparse convolution. For Conv3.3,

layer the overall sparsity is 75%. The threshold is cho-

sen as one and Dense-Sparse Convolution performs around

1.5× faster compared to full-dense and direct sparse con-

volutions. Thus, Dense-Sparse Convolutions provides the

optimal computation strategy for convolution of irregularly

sparse filters. Depending on the size of the spatial input and

the filter size, the sparsity rate and distribution of sparsity



Figure 7. Comparison of sparse and dense convolutions with vary-

ing feature sizes.

over the filters an optimum threshold value can always be

determined. For layers where spatial sizes are small and

overall sparsity is high, direct sparse convolution is pre-

ferred. Moreover, layers where the spatial size is large and

the sparsity is low ,e.g. conv1.1, can be computed with full

dense convolution.

Figure 8. Comparison of sparse, dense and dense-sparse convolu-

tions.

It is clear that the main performance improvement goes

along with entirely pruned filters, see Fig. 2 (Zero Filter).

By adopting the filter-wise pruning approach from the be-

ginning, higher sparsity can be attained on the filter level.

That would solve two main challenges of unstructured prun-

ing: memory required to store indexes and deceleration aris-

ing from decoding compressed parameters. With filter-wise

pruning, fully pruned and fully dense filters are obtained.

Thus, the Dense-Sparse Convolution does not have to per-

form sparse convolution for filters with only a few pruned

weights. Only dense convolution is calculated on filters, re-

maining after pruning, see Fig.5. The performance of the

Dense-Sparse Convolution algorithm is measured by evalu-

ating its acceleration with respect to the filter-wise sparsity

ratio.

Benchmark: The results in this work are compared to

those of several other works in Table. 1. The results ob-

tained from different HW are compared to the Dense-Sparse

variants run on an Intel i5 CPU. The accuracy is maintained

similar to the full precision dense model throughout all ex-

periments. The execution time is at its best by applying the

filter-wise pruning strategy on the CNN model combined

with highly optimized Winograd-based dense convolutional

algorithm. The performance of CPU based realization of

the Dense-Sparse methodology is very competitive against

state-of-the-art dedicated HW solutions.

Table 1. Low latency application of VGG16 trained on ImageNet

with different optimization methods. Usually, accuracy is main-

tained throughout our experiments, which is 68.5% Top1 and

88.7% Top5. Irregular pruning has 76.7% sparsity and regular

pruning 68.5% sparsity.

Implementation Prec. Lat. [ms] Acc. [%]

FPGA Virtex-7 [26] Int16 151.8 66.5/86.9

FPGA XC7Z045 [27] Int16 224.6 64.6/86.9

FPGA Stratix-V [28] Int8/16 262.9 66.5/87.5

GPU JTX1 [29] Fp32 200 68.5/88.7

CPU (Intel i7) [30] Fp32 858 –.-/88.7

Ours, Intel i5-6300:

Irreg. Pr., Dense Conv. Fp32 529 68.4/88.7

Irreg. Pr., Sparse Conv. Int16 403 68.5/88.7

Filt. Pr., Dense-Sparse Fp32 295 68.3/88.6

Filt. Pr., Dense-Sparse Int16 174 68.5/88.7

6. Conclusion

Network optimization techniques, such as pruning and

quantization, can reduce computational and memory de-

mand. However, there is no significant advantage without

realizing an efficient convolution scheme. It is evident that

the dense Winograd convolution can simply outperform di-

rect sparse convolution during inference, even with sparse

filters. This work develops a novel algorithm called Dense-

Sparse Convolution which enables the acceleration of irreg-

ularly pruned CNNs. By providing the flexibility of sep-

arating sparse and dense filters, we are able to accelerate

sparse convolution. Furthermore, handcrafted HW-level op-

timizations maximize the efcient resource utilization, using

vectorized SIMD intrinsics and multithread parallelization.

The best performance can be extracted by incorporating the

structured filter-wise pruning in the pruning strategy. Fi-

nally, a comparison of the proposed Dense-Sparse Convo-

lution with state-of-the-art papers reveals a 2.6× accelera-

tion on an Intel i5 and 5× speedup on an embedded ARM

Cortex-A53.



References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 10437–10453, 2016. 1

[2] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. TPAMI,

2017. 1

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NIPS. 2015. 1

[4] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,

and Ali Farhadi. You only look once: Unified, real-time ob-

ject detection. In CVPR, 2016. 1

[5] Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-

ing both weights and connections for efficient neural net-

works. NIPS, 2015. 2

[6] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural network with prun-

ing, trained quantization and huffman coding. CoRR,

abs/1510.00149, 2016. 2

[7] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and accel-

eration on mobile devices. In ECCV, September 2018. 2

[8] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-

dram, Mark A. Horowitz, and William J. Dally. Eie: Effi-

cient inference engine on compressed deep neural network.

ISCA, 2016. 2

[9] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, An-

tonio Puglielli, Rangharajan Venkatesan, Brucek Khailany,

Joel Emer, Stephen W. Keckler, and William J. Dally. SCNN:

An accelerator for compressed-sparse convolutional neural

networks. ISCA, 2017. 2

[10] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Struc-

tured pruning of deep convolutional neural networks. JETC,

2017. 2

[11] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In ICCV, Oct

2017. 2

[12] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu,

Yu Wang, and William J. Dally. Exploring the regularity

of sparse structure in convolutional neural networks. CoRR,

abs/1705.08922, 2017. 2

[13] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Anna-

pureddy. Fixed point quantization of deep convolutional net-

works. In ICML, pages 2849–2858. JMLR.org, 2016. 2

[14] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong

Chen. Incremental network quantization: Towards lossless

cnns with low-precision weights. CoRR, abs/1702.03044,

2017. 2

[15] Sebastian Vogel, Mengyu Liang, Andre Guntoro, Walter

Stechele, and Gerd Ascheid. Efficient hardware acceleration

of cnns using logarithmic data representation with arbitrary

log-base. ICCAD, pages 1–8, 2018. 2

[16] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song

Han. HAQ: hardware-aware automated quantization. CoRR,

abs/1811.08886, 2018. 2

[17] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In ECCV, 2016. 2

[18] Andrew Anderson, Aravind Vasudevan, Cormac Keane, and

David Gregg. Low-memory gemm-based convolution algo-

rithms for deep neural networks. CoRR, abs/1709.03395,

2017. 3

[19] Michaël Mathieu, Mikael Henaff, and Yann Lecun. Fast

training of convolutional networks through ffts. In ICLR,

2014. 3

[20] Andrew Lavin and Scott Gray. Fast algorithms for convolu-

tional neural networks. In CVPR, pages 4013–4021, 2016.

3, 4

[21] Xingyu Liu, Jeff Pool, Song Han, and William J. Dally. Effi-

cient sparse-winograd convolutional neural networks. CoRR,

abs/1802.06367, 2018. 3

[22] Jongsoo Park, Sheng R. Li, Wei Wen, Hai Li, Yiran Chen,

and Pradeep Dubey. Holistic sparsecnn: Forging the trident

of accuracy, speed, and size. CoRR, abs/1608.01409, 2016.

3, 5

[23] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and

Pritish Narayanan. Deep learning with limited numerical

precision. ICML, 2015. 4

[24] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, pages 448–456. JMLR.org, 2015. 4

[25] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 5

[26] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo,

and Jason Cong. Energy-efficient cnn implementation on a

deeply pipelined fpga cluster. In ISLPED, pages 326–331,

New York, NY, USA, 2016. ACM. 7

[27] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li,

Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song,

Yu Wang, and Huazhong Yang. Going deeper with em-

bedded fpga platform for convolutional neural network. In

FPGA, pages 26–35, New York, NY, USA, 2016. ACM. 7

[28] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash

Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and

Yu Cao. Throughput-optimized opencl-based fpga accelera-

tor for large-scale convolutional neural networks. In FPGA,

pages 16–25, New York, NY, USA, 2016. ACM. 7

[29] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello.

An analysis of deep neural network models for practical ap-

plications. CoRR, abs/1605.07678, 2016. 7

[30] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun.

Accelerating very deep convolutional networks for classifi-

cation and detection. TPAMI, 38(10):1943–1955, October

2016. 7


