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Abstract

In the semantic segmentation of street scenes the relia-

bility of the prediction and therefore uncertainty measures

are of highest interest. We present a method that generates

for each input image a hierarchy of nested crops around the

image center and presents these, all re-scaled to the same

size, to a neural network for semantic segmentation. The

resulting softmax outputs are then post processed such that

we can investigate mean and variance over all image crops

as well as mean and variance of uncertainty heat maps ob-

tained from pixel-wise uncertainty measures, like the en-

tropy, applied to each crop’s softmax output. In our tests,

we use the publicly available DeepLabv3+ MobilenetV2

network (trained on the Cityscapes dataset) and demon-

strate that the incorporation of crops improves the quality of

the prediction and that we obtain more reliable uncertainty

measures. These are then aggregated over predicted seg-

ments for either classifying between IoU = 0 and IoU > 0
(meta classification) or predicting the IoU via linear re-

gression (meta regression). The latter yields reliable per-

formance estimates for segmentation networks, in particu-

lar useful in the absence of ground truth. For the task of

meta classification we obtain a classification accuracy of

81.93% and an AUROC of 89.89%. For meta regression we

obtain an R2 value of 84.77%. These results yield signifi-

cant improvements compared to other approaches.

1. Introduction

In recent years, deep learning has outperformed other

classes of predictive models in many applications. In some

of these, e.g. autonomous driving or diagnostic medicine,

the reliability of a prediction is of highest interest. In

classification tasks, thresholding on the highest softmax

probability or thresholding on the entropy of the classifi-

cation distributions (softmax output) are commonly used

approaches to detect false predictions of neural networks,

see e.g. [9, 14]. Metrics like classification entropy or the

highest softmax probability are also combined with model

uncertainty (Monte-Carlo (MC) dropout inference) or input

uncertainty, cf. [7] and [14], respectively. See [15] for fur-

ther uncertainty metrics. These approaches have proven to

be practically efficient for detecting uncertainty and some

of them have also been transferred to semantic segmentation

tasks. The work presented in [13] makes use of MC dropout

to model the uncertainty of segmentation networks and also

shows performance improvements in terms of segmentation

accuracy. This approach was used in other works to model

the uncertainty and filter out predictions with low reliability,

cf. e.g. [12, 19]. In [10] this line of research was further de-

veloped to detect spacial and temporal uncertainty in the se-

mantic segmentation of videos. In [16] the concept of meta

classification in semantic segmentation, the task of predict-

ing whether a predicted segment intersects with the ground

truth or not, was introduced. This can be formulated as the

task of classifying between IoU = 0 and IoU > 0 for every

predicted segment (the IoU is also known as Jaccard index

[11]). Furthermore a framework for the prediction of the

IoU via linear regression (meta regression) was proposed.

The prediction of the IoU can be seen as a performance es-

timate which, after training a model, can be computed in the

absence of ground truth. Both predictors use segment-wise

metrics extracted from the segmentation network’s softmax

output as its input. A visualization of a segment-wise IoU

rating is given in fig. 1. Apart from the discussed uncer-

tainty related methods, there are also works based on input

image statistics. For instance, in [8] a method for the rejec-

tion of false positive predictions is introduced. Performance

measures for the segmentation of videos, also based on im-

age statistics and boundary shapes, is introduced in [6].

In this work we elaborate on the uncertainty based ap-

proach from [16] which is a method that consists of three

simple steps. First, the segmentation network’s softmax

output is used to generate uncertainty heat maps, e.g. the

pixel-wise entropy (cf. fig. 3). In the second step, these un-



Figure 1. (Left): segmentation predicted by a neural network, (right): a visualization of the IoU which can only be computed in the

presence of ground truth. Green color corresponds to high IoU values and red color to low ones, for the white regions there is no ground

truth available. These regions are excluded from statistical evaluations.

certainty heat maps are then aggregated over the predicted

segments and combined with other quantities derived from

the predicted segments, e.g. the number of pixels per seg-

ment. From this we obtain segment-wise metrics. In the

third step, these metrics are inputs for either a meta classifi-

cation (between IoU = 0 and IoU > 0) or a meta regres-

sion for predicting the IoU . In this paper, we perform the

same prediction tasks, however we improve the method in

all of its three steps.

In many scenarios, the camera system in use provides

images with very high-resolution which are coarsened be-

fore presenting them to the segmentation network. Thus we

loose information, especially for objects further away from

the camera. Therefore we propose a method that constructs

a hierarchy of nested image crops where all images have a

common center point, see fig. 2. All crops are then resized

to the input size expected by the segmentation network such

that we obtain an equally sized batch of input images. This

can be processed by the neural network in a data parallel

batch mode. Most neural network libraries, like e.g. Ten-

sorflow [1], are well vectorized over the input batch. Thus

the increase in execution time should be below linear. The

outputs of the segmentation network are then scaled back

to its original size. In addition, we add kernel functions

to let the crops smoothly fade into the combination of all

larger crops, that have been merged with their predecessors

recursively in the same way. We do this in order to avoid

boundary effects. From this procedure we obtain a batch of

probability distributions that are inputs to uncertainty mea-

sures, e.g. the entropy, probability margin and variation ra-

tio. These are applied pixel-wise and yield heat maps for

each probability distribution. A mean and a variance over

all image crop heat maps give us additional uncertainty in-

formation compared to the uncertainty information used in

[16].

Furthermore we elaborate on the approach from [16] by

introducing additional metrics that are derived from each

segment’s uncertainty and geometry information. In sum-

mary we end up with 42 metrics (plus 19 predicted class

probabilities averaged over the predicted segments) in con-

trast to the 15 metrics (plus 19 class probabilities) intro-

duced in [16]. In addition to that, we study the incorporation

of neural networks in meta classification and regression.

In our tests, we employ the publicly available

DeepLabv3+ MobilenetV2 network [3, 17] that was trained

on the Cityscapes dataset [4]. We perform all tests on the

Cityscapes validation set. We demonstrate that the mean

probability distribution over all crops provides improved

IoU values and that the additional uncertainty heat maps,

respectively their mean and variance, yield improved un-

certainty information which results in better inputs for meta

classification and regression. For the task of meta classi-

fication we obtain a classification accuracy of 81.93% and

an AUROC of 89.89%. For meta regression we obtain an

R2 value of 84.77%. We also show that these results yield

significant improvements compared to baseline approaches

and the results obtained by the predecessor method intro-

duced in [16].

The remainder of this work is structured as follows: In

section 2 we introduce the construction of the nested im-

age crops, the aggregation of their softmax outputs and the

resulting uncertainty heat maps. This is followed by the

construction of segment-wise metrics using uncertainty and

geometry information in section 3. Afterwards we present

numerical results. First, we study the segmentation perfor-

mance for different numbers of image crops. Then, we

study how useful our segment-wise metrics are for meta

classification and regression. This also includes a vari-

able/metric selection study. Afterwards, we compare the

meta classification and regression performance of our ap-

proach with baseline approaches and previous ones. Lastly,

we study the incorporation of neural networks in meta clas-

sification and regression.



Figure 2. Visualization of a nested image cropping where all crops

have the image center as focal point. This image is part of the

Cityscapes dataset and has a resolution of 2048 × 1024 pixels.

The original image is complemented with 15 crops where each

crop removes cl = 10 rows from the top and the bottom as well as

the 20 left-most and right-most columns of the previous crop.

2. Nested Image Crops and Uncertainty Mea-

sures

Let x ∈ R
Nr×Nc×3 denote an RGB input image. For a

chosen crop distance of cl we define a restriction operator

Ri that removes the i · cl top and bottom rows as well as the

2i · cl left and right most pixels from x, i.e.,

Rix = {xp,q,· : i cl ≤ p < Nr − i cl,

2i cl ≤ p < Nc − 2i cl} . (1)

In order to re-scale a cropped image to a desired resolution,

we define an interpolation operator Iji which performs a bi-

linear interpolation for Rix ∈ R
(Nr−2icl)×(Nc−4icl)×3 such

that

Iji Rix ∈ R
(Nr−2jcl)×(Nc−4jcl)×3

and I0i Rix ∈ R
Nr×Nc×3 . (2)

A segmentation network with a softmax output layer can

be seen as a statistical model that provides for each pixel z
of the image a probability distribution fz(y|x,w) on the C
class labels y ∈ C = {y1, . . . , yC}.

Pi =
(

fz(y|I
0
i Rix,w)

)

z∈{1,...,Nr}×{1,...,Nc}
(3)

for i = 0, . . . , Ncrop . Note that, due to eq. (2), i.e., all

inputs being equally shaped, the Pi’s can be computed in

batches which allows for efficient parallelization. In order

to combine the probabilities Pi to a common probability

distribution we reshape them to their original size via

Qi = Ii0Pi . (4)

We could now stack Qi, i = 1, . . . , Ncrop , in a pyramid

fashion, sum them up and normalize the results such that

we get a new probability distribution. However, this distri-

bution would suffer from artifacts on the boundary of each

Qi. To avoid this, we proceed as follows: Let Zi define a

zero padding operator such that ZiQi ∈ R
Nr×Nc×C and Qi

is centered in ZiQi while all other entries are zero. In or-

der to construct a smooth mean probability distribution, we

introduce a kernel function Ki that is zero where ZiQi is

zero and equal to one where the next nested crop Zi+1Qi+1

is not equal to zero. In-between these two regions, Ki in-

terpolates linearly. We can now recursively define our set of

probability distributions, that we will use for further inves-

tigation, by

A0 = P0 and Ai = KiZiQi + (1−Ki)Ai−1 (5)

for i = 1, . . . , Ncrop . Each of the probability distributions

Ai can be viewed as a smooth merge of the current crop and

the combination of all previously merged crops, due to their

recursive definition being merged smoothly as well.

In the following we generate uncertainty heat maps for

each Ai by defining pixel-wise dispersion measures. Let

ŷz(Ai) = argmax
y∈C

Ai,z,y. (6)

denote the predicted class, for each pixel z we define the

entropy (also known as Shannon information [18]) Ez , the

probability margin Mz and the variation ratio Vz by

Ez(Ai) = −
1

log(C)

∑

y∈C

Ai,z,y logAi,z,y , (7)

Mz(Ai) = 1−Ai,z,ŷz(Ai) + max
y∈C\{ŷz(Ai)}

Ai,z,y , (8)

Vz(Ai) = 1−Ai,z,ŷz(Ai) . (9)

For each of these uncertainty measures Uz ∈ {Ez,Mz, Vz}
we define a mean and a variance over the number of crops

µUz =
1

Ncrop

Ncrop
∑

i=0

Uz(Ai)

and vUz = µ(U2
z )− µ(Uz)

2 (10)

Furthermore we also consider a symmetrized version of the

Kullback-Leibler divergence of the mean probabilities A =
1

Ncrop

∑Ncrop

i=0 Ai and the original probabilities A0 without

incorporation of additional crops, i.e.,

Kz(A,A0) =
1

2
(DKL(Az||A0,z) +DKL(A0,z||Az))

=
1

2C

∑

y∈C

Az,y log(
A0,z,y

Az,y

) +A0,z,y log(
Az,y

A0,z,y
) .

(11)

A visualization of µMz and vMz is given in fig. 3. The

heat maps Ez,Mz, Vz and Kz are subject to segment-wise

investigation.



Figure 3. (Top left): segmentation yz(x) predicted by the neural network, (top right): predicted segmentation yz(x) where prediction and

ground truth differ, note that the ego car is excluded from the ground truth, (bottom left): mean µMz of all probability margin heat maps,

(bottom right): variance vMz of probability margin heat maps.

3. Metrics Aggregated over Segments

For a given image x we define the set of connected com-

ponents (segments) in the predicted segmentation Ŝx =
{ŷz(A)|z ∈ x} by K̂x. Analogously we denote by Kx the

set of connected components in the ground truth Sx. For

each k ∈ K̂x, we define the following quantities:

• the interior kin ⊂ k where a pixel z is an element of

kin if all eight neighbouring pixels are an element of k

• the boundary kbd = k \ kin

• the intersection over union IoU : let Kx|k be the set of

all k′ ∈ Kx that have non-trivial intersection with k
and whose class label equals the predicted class for k,

then

IoU (k) =
|k ∩K ′|

|k ∪K ′|
, K ′ =

⋃

k′∈Kx|k

k′

• adjusted IoU adj: let Q = {q ∈ K̂x : q ∩K ′ 6= ∅}, as

in [16] we use in our tests

IoU adj(k) =
|k ∩K ′|

|k ∪ (K ′ \Q)|

• the pixel sizes S = |k|, Sin = |kin|, Sbd = |kbd|

• the mean dispersion D̄, D̄in, D̄bd defined as

D̄♯(k) =
1

S♯

∑

z∈k♯

Dz(x) , ♯ ∈ { , in, bd}

where Dz ∈ {Kz, µUz, vUz : Uz = Ez,Mz, Vz}

• the relative sizes S̃ = S/Sbd, S̃in = Sin/Sbd

• the relative mean dispersions ˜̄D = D̄S̃, ˜̄Din =
D̄inS̃in

• the geometric center k̄ = (k̄1, k̄2) =
1
S

∑

z∈k(z1, z2)
where z1 and z2 are the vertical and horizontal coordi-

nates of the pixel z in x, respectively

• the mean class probabilities for each class y ∈
{1, . . . , C}

Py(k) =
1

S

∑

z∈k

Az,y

• sets of metrics

τU = {τŪ , τ Ūbd, τ Ūin, τ
˜̄U, τ ˜̄Uin}

for τ ∈ {µ, v} and U ∈ {V,M,E} as well as

P = {Py : y = 1, . . . , C}, Σ = {S, Sin, Sbd, S̃, S̃in}

Typically, Dz is large for z ∈ kbd. This motivates the

separate treatment of interior and boundary in all disper-

sion measures. Furthermore we observe that bad or wrong

predictions often come with fractal segment shapes (which

have a relatively large amount of boundary pixels, measur-

able by S̃ = S/Sbd and S̃in = Sin/Sbd ) and/or high dis-

persions D̄in on the segment’s interior. With the exception



all 2048× 1024 pixels 1024× 512 center section

number of crops 1 2 4 8 16 1 2 4 8 16

0: road 95.94% 96.00% 96.04% 96.10% 96.23% 95.00% 95.05% 95.13% 95.25% 95.52%

1: sidewalk 71.83% 72.08% 72.31% 72.63% 73.26% 62.58% 62.88% 63.27% 63.91% 65.30%

2: building 84.83% 85.01% 85.15% 85.32% 85.58% 76.79% 77.07% 77.33% 77.70% 78.43%

3: wall 34.41% 34.48% 34.40% 34.22% 33.92% 32.55% 32.97% 32.98% 33.12% 32.97%

4: fence 49.23% 49.92% 49.96% 50.33% 50.49% 41.07% 41.48% 41.47% 42.24% 42.90%

5: pole 28.97% 29.45% 29.89% 30.55% 31.70% 22.06% 22.50% 22.90% 23.72% 25.59%

6: traffic light 41.70% 42.35% 42.72% 43.28% 44.23% 26.40% 27.56% 28.10% 29.00% 30.85%

7: traffic sign 50.59% 50.94% 51.45% 52.08% 53.27% 39.54% 40.08% 40.95% 41.88% 44.03%

8: vegetation 84.43% 84.58% 84.72% 84.90% 85.23% 77.39% 77.65% 77.92% 78.31% 79.07%

9: terrain 52.88% 53.25% 53.43% 53.44% 53.69% 43.88% 44.46% 45.08% 45.49% 46.25%

10: sky 82.82% 82.91% 82.98% 83.16% 83.40% 64.91% 65.07% 65.25% 65.83% 67.20%

11: person 63.40% 63.85% 64.21% 64.93% 66.11% 63.25% 63.74% 64.20% 65.06% 66.69%

12: rider 43.63% 43.90% 44.08% 44.50% 45.41% 42.53% 42.85% 43.15% 44.01% 45.41%

13: car 85.06% 85.20% 85.40% 85.69% 86.23% 79.38% 79.58% 79.87% 80.37% 81.37%

14: truck 66.64% 66.49% 66.41% 65.82% 64.16% 66.97% 67.54% 67.44% 67.56% 67.00%

15: bus 70.47% 70.56% 70.56% 70.38% 70.22% 70.95% 71.17% 71.46% 71.60% 71.85%

16: train 58.44% 59.63% 59.92% 58.87% 57.63% 58.44% 59.46% 60.51% 60.00% 61.15%

17: motorcycle 48.16% 48.37% 48.63% 49.32% 50.21% 45.21% 45.49% 46.43% 47.28% 48.57%

18: bicycle 61.74% 62.09% 62.44% 63.01% 63.94% 55.22% 55.73% 56.28% 57.09% 58.65%

mIoU 61.85% 62.16% 62.35% 62.55% 62.89% 56.01% 56.44% 56.83% 57.34% 58.36%

Table 1. The (classical) IoU for each class over the whole dataset as well as the mean IoU (mIoU ) over all classes, both as a function

of the number of crops. These numbers are computed once for the entire images of 2048× 1024 pixels (left half) and once for the center

section containing 1024× 512 pixels (right-hand half). The best results for each class are highlighted.

µĒ -0.71340 vĒ∗ -0.18668 µM̄ -0.84358 vM̄∗ -0.30971

µĒbd -0.43822 vĒ∗
bd -0.14376 µM̄bd -0.48518 vM̄∗

bd +0.08374

µĒin -0.71422 vĒ∗
in -0.19332 µM̄in -0.83183 vM̄∗

in -0.32423

µ ˜̄E +0.34611 v ˜̄E∗ +0.33995 µ ˜̄M +0.30129 v ˜̄M∗ +0.34914

µ ˜̄Ein +0.40510 v ˜̄E∗
in +0.37059 µ ˜̄Min +0.34028 v ˜̄M∗

in +0.35836

µV̄ ∗ -0.79546 vV̄ ∗ -0.36141 K̄∗ -0.33353 S +0.45958

µV̄ ∗
bd -0.50218 vV̄ ∗

bd -0.05362 K̄∗
bd -0.12983 Sbd +0.60367

µV̄ ∗
in -0.78578 vV̄ ∗

in -0.36814 K̄∗
in -0.32906 Sin +0.45705

µ ˜̄V ∗ +0.25307 v ˜̄V ∗ +0.29991 ˜̄K∗ +0.17631 S̃ +0.68636

µ ˜̄V ∗
in +0.31223 v ˜̄V ∗

in +0.32238 ˜̄K∗
in +0.21686 S̃in +0.68636

k̄∗1 -0.05955 k̄∗2 +0.14190

Table 2. Pearson correlation coefficients for all constructed segment-wise

metrics. All metrics marked with a ∗ were not used in [16]. All results with

bsolute values greater than 0.5 are highlighted.
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Figure 4. Meta classification accuracy and meta re-

gression R2, both as a function of the number of met-

rics (sets stated in table 4). Results averaged over

10 runs, the shaded regions depict the corresponding

standard deviation.

of IoU and IoU adj, all scalar quantities defined above can

be computed without the knowledge of the ground truth.

Our aim is to analyze to which extent they are suited for

the tasks of meta classification and meta regression for the

IoU adj.

4. Numerical Experiments: Street Scenes

In this section we investigate the properties of the nested

crops and the metrics defined in the previous sections for

the example of a semantic segmentation of street scenes.

To this end, we consider the DeepLabv3+ network [3] with

MobilenetV2 [17] encoder for which we use a reference im-

plementation in Tensorflow [1] as well as weights pretrained

on the Cityscapes dataset [4] (available on GitHub). As pa-

rameters for the DeepLabv3+ framework we use an output

stride of 16, the input image is evaluated within the frame-

work only on its original scale. These parameters result in a

mean IoU of 61.85% on the Cityscapes validation set, here

mean refers to mean over all classes. We refer to [3] for a

detailed explanation of the chosen parameters.

For our tests we produced Ncrop = 15 crops, i.e.,

we have 16 nested images for each original image. The

Cityscapes validation dataset contains 500 images with a

resolution of 2048 × 1024 pixels. Each crop is obtained

from the previous one by removing the 20 left-most and



Meta Classification IoUadj = 0, > 0

entropy probability margin class probabilities

µE ∪ vE µE µM ∪ vM µM P

ACC 77.82%(±0.26%) 77.06%(±0.26%) 78.49%(±0.28%) 76.99%(±0.27%) 64.70%(±0.36%)

AUROC 85.39%(±0.21%) 84.66%(±0.19%) 85.47%(±0.21%) 85.06%(±0.22%) 64.65%(±0.34%)

Meta Regression IoUadj

σ 0.162(±0.001) 0.163(±0.001) 0.147(±0.001) 0.150(±0.001) 0.276(±0.001)

R2 73.59%(±0.29%) 73.10%(±0.28%) 78.27%(±0.24%) 77.34%(±0.23%) 22.92%(±0.32%)

Meta Classification IoUadj = 0, > 0

variation ratio segment sizes all metrics

µV ∪ vV µV Σ ∪ {k̄1, k̄2} Σ with variances without

ACC 78.14%(±0.25%) 76.96%(±0.24%) 77.60%(±0.17%) 77.25%(±0.23%) 79.58%(±0.15%) 79.30%(±0.11%)

AUROC 85.41%(±0.21%) 84.89%(±0.21%) 84.94%(±0.17%) 84.36%(±0.25%) 87.38%(±0.16%) 87.08%(±0.16%)

Meta Regression IoUadj

σ 0.154(±0.001) 0.156(±0.001) 0.174(±0.001) 0.179(±0.001) 0.135(±0.001) 0.136(±0.001)

R2 76.12%(±0.26%) 75.50%(±0.26%) 69.41%(±0.27%) 67.79%(±0.27%) 81.71%(±0.20%) 81.36%(±0.19%)

Table 3. Comparison of sets of metrics. Each of the uncertainty heat map based set of metrics is used once including the variance metrics

(µU ∪ vU for U = E,M, V ) and once without variance based metrics (µU for U = E,M, V ). We state results for the segments sizes Σ
including the geometric center k̄ and without. The average predicted class probabilities P are given by 19 metrics, one for each class. All

results are calculated on the metrics’ validation set, the best results are highlighted.

number of metrics 1 2 3 4 5 6 7 8 9 10 11 12 61

classification accuracy (in %) 0.7725 0.7801 0.7845 0.7884 0.7889 0.7901 0.7918 0.7928 0.7933 0.7938 0.7941 0.7944 0.7958

added metric S̃ vM̂in k̄2 P4 P5 v
˜̂
Ein P14 P17 P15 P3 µM̄bd v

˜̂
E all

regression R2 (in %) 0.7195 0.7501 0.7776 0.7929 0.8000 0.8023 0.8059 0.8086 0.8101 0.8107 0.8112 0.8117 0.8171

added metric µM̄ S̃ µM̄bd k̄2 µM̄in vM̂bd v
˜̂
E P5 P11 P18 P0

˜̄Kin all

Table 4. Metric selection using a greedy method that adds in each step one metric that maximizes the meta classification/regression

performance. The upper part of the table contains the sequence of metrics added corresponding to classification accuracy maximization,

the lower one corresponding to R2 maximization. All results are calculated on the metrics’ validation set.

the 20 right-most columns as well as the 10 top and the

10 bottom rows. In all tests we only consider segments

with non-empty interior. For the combined prediction us-

ing all 16 crops, MobilenetV2 predicts 46896 segments of

which 38811 have non-empty interior. From those segments

with non-empty interior, 24354 have IoU adj > 0. This

gives a meta classification accuracy baseline of 62.75% if

we predict that each segment has IoU adj > 0. Note that,

when only using the prediction of the original image, we ob-

tain 53424 components, 42261 with non-empty interior of

which 24590 have IoU adj > 0 (resulting in 58.19% meta

classification baseline accuracy). Thus, meta classification

results for different numbers of crops are not straight for-

ward comparable. Hence, we focus on results for 16 crops

in the following studies.

All results, if not stated otherwise, were computed from

10 repeated runs where training and validation sets (both of

the same size) were re-sampled. We give mean results as

well as corresponding standard deviations in brackets.

Performance depending on the number of crops. Ta-

ble 1 contains the values for the classical IoU over the

whole Cityscapes validation dataset for the different classes

as a function of the number of crops (1,2,4,8,16), for the en-

tire image (2048×1024 pixels) as well as for the 1024×512
center pixels. In both cases the mIoU increases continu-

ously when adding further crops. For the whole image the

mIoU increases from 61.85% to 62.89% (i.e., by 1.04 per-

centage points (pp)) and for the center section from 56.01%
to 58.36% (by 2.35 pp). This demonstrates that our crop

based method indeed has the desired effect on smaller ob-

jects further away from ego car. For classes of particu-

lar interest, like person, rider and traffic sign, we observe

improvements in the center section of 2.88 (for rider) to

4.49 pp (for traffic sign). We make these observations even

though the original image is presented to the segmentation

network at full resolution and the zoomed crops do not con-

tain any additional information. In summary these results

already justify the deployment of our approach which can

be nicely parallelized over the data batch. In addition we

obtain further uncertainty information which we investigate

in the subsequent paragraphs.

Correlation of segment-wise metrics with the IoU adj.

Table 2 contains the Pearson correlation coefficients for all

segment-wise metrics for all 16 available image crops con-

structed in section 3. We observe strong correlations for the

measures D̄ and D̄in where D ∈ {µM,µV, µE} and for the



Figure 5. Prediction of the IoU adj via linear regression. (bottom left): ground truth, (bottom right): predicted segments, (top left): true

IoU adj for the predicted segments and (top right): predicted IoU adj for the predicted segments. In the top row, green color corresponds

to high IoU adj values and red color to low ones, for the white regions there is no ground truth available. These regions are excluded from

the statistical evaluation.

Meta Classification IoUadj = 0, > 0

all metrics metrics from [16] entropy baseline

train val train val train val

ACC 79.88%(±0.21%) 79.58%(±0.15%) 77.37%(±0.28%) 77.24%(±0.29%) 70.16%(±0.22%) 70.16%(±0.22%)

AUROC 87.61%(±0.16%) 87.38%(±0.16%) 85.32%(±0.22%) 85.18%(±0.20%) 77.73%(±0.21%) 77.69%(±0.21%)

Meta Regression IoUadj

σ 0.135(±0.001) 0.135(±0.001) 0.144(±0.001) 0.144(±0.001) 0.213(±0.001) 0.213(±0.001)

R2 81.72%(±0.22%) 81.71%(±0.20%) 79.00%(±0.20%) 79.08%(±0.20%) 54.30%(±0.40%) 54.43%(±0.28%)

Table 5. Results for all for meta classification and regression for three different sets of metrics. The best results for the validation set are

highlighted.

relative size measures S̃ and S̃in. All other size measures

as well as µDbd for D ∈ {M,V,E} also show increased

correlation coefficients. The variances and the Kullback-

Leibler measures seem to play a minor role, however they

might contribute additional information for a model that

predicts the IoU adj.

Metric selection for meta classification and meta regres-

sion. In table 3 we compare different subsets of metrics.

For the tasks of meta classification, we do so in terms of

meta classification accuracy (IoU adj = 0 vs. IoU adj > 0)

and in terms of the area under curve corresponding to the re-

ceiver operator characteristic curve (AUROC, see [5]). The

receiver operator characteristic curve is obtained by vary-

ing the decision threshold of the classification output for

deciding whether IoU adj = 0 or IoU adj > 0. For the task

of meta regression we state resulting standard deviations σ
of the linear regression fit’s residual as well as R2 values.

We observe that the probability margin heat map yields the

most predictive set of metrics, closely followed by the vari-

ation ratio. Altogether all heat maps yield fairly similar re-

sults and also the segment sizes yield a strong predictive set.

The mean class probabilities P by itself are not predictive

enough, at least for linear and logistic regression models as

being used here. In all cases we observe a significant perfor-

mance increase when incorporating the variance based heat

maps, also the geometric center yields valuable extra infor-

mation. When using all metrics together, another signifi-

cant increase in all performance measures can be observed.

Noteworthily, we obtain AUROC values of up to 87.38% for

meta classification and R2 values of up to 81.71% for meta

regression which demonstrates the predictive power of our



metrics. When omitting the variance based metrics, the per-

formance can not be maintained entirely, i.e., we observe a

slight decrease of 0.28 to 0.35 pp in all accuracy measures.

A visual demonstration of the meta regression performance

can be found in fig. 5.

In order to further analyze the different subsets of met-

rics, we perform a greedy heuristic. We start with an empty

set of metrics and add iteratively a single metric that im-

proves meta prediction performance maximally. We per-

form this test twice, once for meta classification accuracy

and once for meta regression R2. Figure 4 depicts both per-

formance measures as functions of the number of metrics.

In both cases the curves stagnate quite quickly, indicating

that a small set of metrics might be sufficient for a good

model. This is confirmed by the results stated in table 4. For

the meta regression four of the first six metrics are variants

of the probability margin. Combined with the geometric

center k2 and the relative segment size S̃, this set obtains an

R2 of 80.23%. Adding the rest of the metrics to this set only

results in an increase of 1.48 pp to the final R2 of 81.71%.

For the meta classification we start with S̃ at 77.25% classi-

fication accuracy which is only 2.33 pp below the accuracy

for all metrics. Six out of the first ten added metrics are class

probabilities and already after the seventh metric we obtain

a classification accuracy of 79.18%. In both cases, for meta

classification and regression, a small subset of metrics can

be determined such that the corresponding performance is

close to the performance for the full set of metrics. Also in

both cases the variation ratio heat map Vz is not required.

Comparison with baseline approaches and others. In

table 5 we compare our results for all metrics with the set

metrics introduced in [16] (cf. table 2) and an entropy base-

line where only a single entropy metric µĒ is employed. We

do so as the entropy is a very commonly used uncertainty

measure. In terms of AUROC we obtain an improvement

of 2.20 pp and in terms of R2 of 2.63 pp. When comparing

the full set of metrics with the entropy baseline we obtain

very pronounced gaps, 9.69 pp in AUROC and 27.28 pp in

R2. In all three cases training and validation accuracies are

tight, i.e., we do not observe any overfitting issues.

Meta classification and regression with neural networks.

We repeat the tests from table 5 for all metrics, however

this time we use neural networks for meta classification

and regression. Our neural networks are equipped with two

hidden layers containing 61 neurons each and we employ

ℓ2 regularization with λ = 0.005, results are stated in ta-

ble 6. The difference between training and validation ac-

curacies indicates that the neural network is slightly over-

fitting. When deploying neural networks instead of linear

models, the validation accuracy increases by 2.35 pp and

the validation AUROC by 2.51 pp. For the meta regres-

Classification IoUadj = 0, > 0

neural networks linear models

train val val

ACC 83.22%(±0.15%) 81.93%(±0.22%) 79.58%(±0.15%)

AUROC 91.00%(±0.11%) 89.89%(±0.07%) 87.38%(±0.16%)

Regression IoUadj

σ 0.120(±0.000) 0.123(±0.001) 0.135(±0.001)

R2 85.48%(±0.07%) 84.77%(±0.30%) 81.71%(±0.20%)

Table 6. Results obtained from a neural network used for meta

classification and meta regression with all metrics. For simpler

comparison we state the validation accuracies for linear models.

The best results for the validation set are highlighted.

sion, the standard deviation σ is reduced by 0.012 and the

R2 value is increased significantly by 3.06 pp. Note that,

the results for σ may lack interpretability when using a neu-

ral network, just as the whole model trades transparency for

performance.

5. Conclusion and Outlook

In this paper we extend the approach presented in [16].

Firstly, we introduce an approach that generates a batch of

nested image crops that are presented to the segmentation

network and yield a batch of probability distributions. The

aggregated probabilities show improved mIoU values, es-

pecially with respect to the far range section in the center

of the input image. Secondly, we add segment-wise met-

rics constructed from variation ratio, Kullback-Leibler di-

vergence, geometric center and crop variance based met-

rics. Thirdly, for the meta classification and meta regres-

sion, we replace the linear model with neural networks. All

three aspects contribute to a significant improvement over

the approach presented in [16]. More precisely, we obtain

an increase in meta classification accuracy of 4.69 pp and

an increase of AUROC of 4.80 pp. The R2 for meta regres-

sion is increased by 5.69 pp. Currently we are working on

time-dynamic meta classification and regression approaches

which make predictions from time series of metrics. As we

only presented an approach for false positive detection we

also plan to combine this with approaches for false negative

detection, see e.g. [2]. Combining these approaches might

eventually result in improved segmentation performance, at

least with respect to certain classes. The source code of our

method is publicly available at https://github.com/

mrottmann/MetaSeg/tree/nested_metaseg.
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