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Abstract

Applying convolutional neural networks to spherical im-

ages requires particular considerations. We look to the mil-

lennia of work on cartographic map projections to provide

the tools to define an optimal representation of spherical

images for the convolution operation. We propose a repre-

sentation for deep spherical image inference based on the

icosahedral Snyder equal-area (ISEA) projection, a projec-

tion onto a geodesic grid, and show that it vastly exceeds

the state-of-the-art for convolution on spherical images, im-

proving semantic segmentation results by 12.6%.

1. Introduction and Related Work

Omnidirectional imaging is becoming increasingly pop-

ular thanks to the proliferation of consumer-grade 360◦

cameras and the benefit of the wide field-of-view to a num-

ber of applications. At the same time, deep learning us-

ing convolutional neural networks (CNNs) has never been a

more widely-used tool for computer vision tasks. Yet, ap-

plying CNNs to spherical images is not quite as trivial as

simply training a vanilla CNN on spherical projections onto

an image plane. Any planar representation of a sphere nec-

essarily contains some degree of content deformation. This

violates convolution’s translation equivariance, which re-

quires the convolution kernel and the signal to be uniformly

discretized. To address the unique problems of convolution

on spherical images, several methods have been proposed.

Su and Grauman [13] train a CNN to transfer center-

perspective-projection-trained models to the equirectangu-

lar domain using a learnable adaptive convolutional kernel

to match the outputs. Observation that certain regions of

cube-map faces contain less distortion than others, Xiong

and Grauman [16] develop a content-aware rotation of the

spherical data that “snaps-to” a view where the relevant in-

formation has minimal distortion. Zioulis et al. [17] explore

the use of rectangular filter-banks, rather than square filters,

to horizontally expand the network’s receptive field to ac-

count for distortion in equirectangular images. The spher-

ical convolution derived by Cohen et al. [3, 4] uses a gen-

Figure 1: We show that convolving on a planar geodesic

approximation to a sphere drastically improves results for

the dense prediction task of semantic segmentation.

eralized formulation of convolution to filter rotations of the

feature maps rather than translations. Finally, work from

Coors et al. [5] and Tateno et al. [14] develop a location-

dependent transformation of the planar convolutional ker-

nel using a gnomonic (rectilinear) projection to adapt to the

spatial distortion in spherical images.

We take a slightly different approach than these previ-

ous works. Rather than changing the tools of convolution,

we look to find a better representation of the data. We first

analyze the convolution operation to identify the important

properties that must be considered when applying convolu-

tions to spherical images and use this to determine a more

optimal way to represent the data. We resolve that a pla-

nar geodesic approximation to the sphere is a more optimal

representation and show that its use yields state-of-the-art

performance for dense semantic segmentation.

2. Cartographic Map Projections

First, we briefly review cartographic map projection

properties and explain their relevance to this problem.

2.1. Distortion in map projections

Gauss proved with his Theorema Egregium that it is im-

possible to represent a sphere on a plane without some de-

gree of distortion. The nature of this distortion is dependent

on the projection model used to map the sphere to the plane.

There are numerous cartographic projections that satisfy
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(a) Gnomonic (b) Equirectangular (c) Mercator

(d) Gall-Peters (e) ISEA (Icosphere)

Figure 2: Different map projections with superimposed Tissot’s indicatrices to illustrate the distortion. Ellipse eccentricity

shows conformality, size shows areal equality, and spacing shows equidistance. Note that the Gnomonic projection displayed

only depicts a 90◦ × 90◦ segment of the Earth, as would a face on a cube-map. Earth image from [1].

useful properties for specific applications, like navigation,

but generally, there are three major projection properties to

consider:

• Equal area: Preserves relative scale of objects

• Conformal: Preserves local angles

• Equidistant: Preserves distance between locations on

the sphere

Resulting from Gauss’s theorem, it is impossible for a

projection to be both conformal and equal area, and sim-

ilarly a map cannot be equidistant everywhere [10]. How-

ever, certain projections may provide one or another of these

properties. A typical method for visualizing the distortion

properties of different map projections is to use Tissot’s

indicatrices [10], which illustrate the local distortions at

points on the map. A Tissot’s indicatrix represents the pro-

jection onto a map of a circle with infinitesimal radius on the

surface of the sphere. The result is an ellipse where the ma-

jor and minor axes relate the scale and angular distortions.

By placing the circles with regular spacing on the sphere,

the indicatrices also depict the distortion of distances in the

projection.

Figures 2a-2d show Earth represented by the gnomonic

(rectilinear) projection used for faces of cube-maps, the

equirectangular (plate carée) projection, the common Mer-

cator projection, and the Gall-Peters projection, respec-

tively, with Tissot’s indicatrices overlaid. The gnomonic

projection is neither conformal, equal areal, nor equidis-

tant, demonstrated by the varied eccentricity and shape of

the ellipses and the spacing between them. The equirectan-

gular projection is an equidistant projection, preserving the

distance between parallels of latitude, but is neither equal-

area nor conformal, so the indicatrices are neither circular

nor equal in size. The Mercator projection is conformal but

not equal-area, and thus relative scale varies throughout the

map. Note how Antarctica appears significantly larger than

Africa, despite actually having less than 50% of Africa’s

area. All indicatrices remain circular as it is conformal,

but they vary in size depending on location. Finally, the

Gall-Peters projection is an equal-area projection, which

addresses this scale imbalance by preserving the relative

size of objects in the map. This method is not conformal,

though, and therefore local angles are not preserved, which

can be observed by the varying eccentricities of the ellipses.

2.2. Relevance to convolution

The 1D discrete convolution of a filter f of size K and a

signal g is given in Eq. (1):

(f ∗ g)[n] =

⌊K

2
⌋

∑

m=−⌊K

2
⌋

f [m]g[n−m]. (1)

The operation has two components: a sampling and a

weighted summation, or more explicitly:

(f∗g)[n] =

⌊K

2
⌋

∑

m=−⌊K

2
⌋

f [m]

(

∞
∑

l=−∞

g[l]δ[l − n+m]

)

(2)

where δ[·] is the Dirac delta function. The Dirac delta

function can be expressed as the limit of a zero-centered,

isotropic Gaussian distribution as the variance goes to zero,

and thus in 2D can be represented by an infinitely small cir-

cle. Hence when convolving with a spherical image, each

sample is an infinitesimal circle on the surface of a sphere.
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Figure 3: Simple encoder-decoder network architecture used for our experiments. Each layer but the last is followed by

an exponential linear unit activation function [2] without batch normalization. The layers are described as (input channel,

output channel, kernel size, up/downsampling) and ‘same’ padding is used for all layers.

As discussed previously, we can examine how this sampling

is affected by distortion using Tissot’s indicatrix.

From the definition of convolution, the kernel must sam-

ple the same area at each location in the data. Thus, there is

an implicit assumption that the data is undistorted (i.e. the

indicatrices are all perfect circles of equal area). As illus-

trated by Figure 2b, this is not the case with equirectangular

projections. Neither does it hold true for cube-maps, which

use the gnomonic projection shown in Figure 2a. These two

common spherical image formats violate this distortion-free

assumption, which explains why the performance of tradi-

tional CNNs on these images falls short when compared to

center perspective images that typically have little to no dis-

tortion. It follows that there are two viable solutions for

resolving this issue: replace the Direct delta function in

Eq. (2) with a bivariate, anisotropic Gaussian with location-

dependent variance, or resample the image to a different

projection with less distortion. The former approach would

slow down convolution on spherical images, as a large vari-

ance at a sample location could require the accumulation of

large regions of pixels, instead of just sampling at one. The

latter approach is thus preferable. We still are blocked by

the theoretical limitations of map projections, but we can

select a compromise projection with the least distortion.

2.3. Icosahedral grids

To re-state, we desire a map projection that is: 1) nearly

conformal, preserving the local shape of the data; 2) nearly

equal-area, maintaining the local size of the data; and 3)

nearly equidistant, allowing fixed-size convolutional filters

to retain translational equivariance over the entire image.

This suggests that the best projection should yield a very

close planar approximation to the sphere itself. Stem-

ming from R. Buckminster Fuller’s work on discretizing the

sphere [6], researchers have developed various geodesic ap-

proximations for cartographic map projections. One such

projection, the icosahedral Snyder equal area (ISEA) pro-

jection [11], is particularly well-suited for our task of repre-

senting spherical images. It projects the data on the sphere’s

surface onto the planar faces of a recursively subdivided

icosahedron using a triangle partitioning. This compro-

mise projection is among the least distorted among geodesic

grids [7], which satisfies our aforementioned criteria, and it

is easily represented by a triangular 3D mesh. Therefore,

we propose that this ISEA projection is an ideal spherical

image representation for inference with CNNs.

To perform the ISEA projection, we first create a 7th or-

der “icosphere,” a regular icosahedron subdivided 7 times

using Loop subdivision [9] with the vertices subsequently

normalized to the unit sphere. We choose a 7th order ico-

sphere because the number of vertices (163, 842) is most

similar to the number of pixels (131, 072) in the 256× 512
equirectangular images we use for comparison. Next, we

resample the image to the vertices of the icosphere using

barycentric interpolation on the faces. The result of this

projection is shown in Figure 2e, along with the Tissot in-

dicatrices of deformation on the geodesic’s surface. No-

tice how the indicatrices are all nearly equally-sized circles.

This illustrates that the content deformation is very limited,

and the convolution’s sampling, as described in Section 2.2,

will be nearly unaffected. We use this representation for all

spherical image inputs in our experiments.

3. Semantic Segmentation Evaluation

We evaluate the icosphere representation using semantic

segmentation and demonstrate that limiting distortion in the

representation spawns significant accuracy improvements.

3.1. Dataset

For our experiments, we use the SUMO [15] dataset, a

derivative of SunCG [12] containing 58, 631 RGB-D cube-

maps representing synthetic spherical image captures. We

divide the SUMO dataset into 80% training, 10% valida-

tion, and 10% testing splits and pre-process the data by re-

sampling the images onto an 7th order icosphere. An ex-

ample of this resampling is displayed with a super-imposed

convolutional kernel in Figure 1. As the dataset contains

132 semantic classes, some with high inter-class similar-

ity (e.g. ‘bunk bed’ and ‘baby bed’), we aggregated these

similar classes to balance the data for these experiments.

There is still a very high variance in class frequency even

after aggregation, so we only evaluate performance on the

15 most common classes. For exact comparison with exist-

ing work, we render the predictions on the icosphere back

into an equirectangular image to assess per-pixel accuracy.
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Representation Floor Ceiling Wall Door Cabinet Rug Window Curtain

Equirect. (gnom. kernel) [5, 14] 0.9315 0.9710 0.8597 0.6466 0.6376 0.7284 0.7012 0.4703

Equirect. (equirect. kernel) 0.9327 0.9654 0.8566 0.6692 0.6638 0.7003 0.7180 0.4248

Icosphere (ours) 0.9352 0.9703 0.8797 0.6890 0.7037 0.6970 0.7562 0.5744

Sofa Partition Bed Chair Table Shelving Chandelier All Classes

Equirect. (gnom. kernel) [5, 14] 0.7114 0.4172 0.7133 0.4219 0.4587 0.3278 0.4491 0.5904

Equirect. (equirect. kernel) 0.7337 0.4448 0.7228 0.4415 0.5363 0.2843 0.4566 0.5969

Icosphere (ours) 0.7374 0.4683 0.7776 0.4375 0.5018 0.3733 0.4472 0.6639

Table 1: Semantic segmentation mIOU for the different representations. Classes ordered by descending frequency.

3.2. CNN Training

We follow the method of Coors et al. [5] and Tateno et al.

[14] to sample the spherical data using a gnomonic projec-

tion of the planar filter. However, as our data is no longer in

a 2D image, we project the planar filter onto the icosphere’s

surface and sample from the faces using barycentric inter-

polation. We set the filter resolution to the mean distance

between adjacent vertices on the icosphere, to maintain

analogy with the notion of resolution of the planar filter be-

ing set to the distance between adjacent pixels. During con-

volution, we apply this filter at each vertex of the icosphere

and sample from the faces using barycentric interpolation of

the data at the 3 vertices. For up- and down-sampling, we

leverage different subdivision orders, which, similar to pix-

els in 2D images, vary roughly by a factor of 4 in the number

of vertices. We compare convolving with our icosphere rep-

resentation to the method of [5, 14], which convolves with

equirectangular images. We use the encoder-decoder archi-

tecture given in Figure 3 for both methods. We train for 10

epochs using Adam [8] with an initial learning rate of 10−4,

reduced by half every 3 epochs. Our training criterion is the

cross-entropy loss weighted by inverse class frequency.

3.3. Results and Discussion

Results of our semantic segmentation experiments are

given in Table 1 as the per-class mean intersection-over-

union (mIOU). While certain classes perform marginally

better in the equirectangular format, we see an 12.6% im-

provement in the overall mIOU compared to [5, 14] simply

by resampling the image. There are two reasons for this

jump. The first is that the gnomonic projection used for

the kernel in [5, 14] is not optimal for modeling the distor-

tion in an equirectangular image. In fact, an equirectangular

projection of the kernel would be a more appropriate, as it

would correctly adapt the sampling locations to equirect-

angular distortion. The difference in the sampling patterns

is slight, though, as shown in Figure 4, and the quantita-

tive result is only slightly better (second row in Table 1).

It is worth mentioning that the gnomonic kernel does make

sense for sampling from the icosphere, as it represents the

projection of a tangent plane onto a sphere. In our case, the

planar filter is tangent to our icosahedral spherical approx-
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Figure 4: Comparing convolutional kernel sampling pat-

terns using gnomonic and equirectangular projections.

imation. Nevertheless, the more important consideration is

that neither the gnomonic nor equirectangular filter projec-

tions correct for the information imbalance caused by the

distortion. The filter projection method of [5, 14] dynami-

cally adjusts where the kernel samples, but it only accounts

for the conformality and equidistance properties of distor-

tion. It does not address the areal inequality. Unequal area

projections disrupt the distribution of information through-

out the image. For example, all of the pixels along the top

row in an equirectangular images are essentially redundant,

having all been sampled from the pole. That whole row

carries the same information capacity of a single pixel at

the equator. For convolutions, this means that the amount

of information aggregated at each pixel varies throughout

the image. The ISEA projection, being nearly equal-area,

corrects for this, ensuring that predictions at each vertex of

the icosphere are made by accumulating equivalent quanti-

ties of information. This translates to better inference. It is

also worth noting that the objects for which the equirectan-

gular representation perform marginally better are typically

found at the top (ceiling, chandelier) or bottom (rug) of an

image. The equirectangular format’s pixel redundancy in-

creases the number of training samples for these objects,

which would explain the better performance at test time.

4. Conclusion

Borrowing from the field of cartography, we have iden-

tified three key principles of local distortion that impact our

ability to convolve on spherical data. Applying these prin-

ciples to our choice of data representation, we have pro-

posed the ISEA projection on an icosphere as an ideal spher-

ical image representation. We demonstrated that by sig-

nificantly limiting distortion, this representation provides a

12.6% boost in semantic segmentation performance.
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