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Abstract

We present a novel algorithm for geometry and camera

pose reconstruction from image sequences that is special-

ized for indoor Manhattan scenes. Unlike general-purpose

SfM/SLAM, our system represents geometric primitives in

terms of canonically oriented planes. The algorithm starts

by computing multi-planar segmentation and motion esti-

mation from image pairs using constrained homographies.

It then proceeds to recover the relative scale at each frame

and to determine chains of match clusters, where each clus-

ter is associated with a plane in the scene. Motion and

scene geometry (expressed in terms of planar models) are

then optimized using a novel formulation of Bundle Ad-

justment. Compared with other state-of-the-art SfM/SLAM

algorithms, our technique is shown to produce superior

and realistic surface reconstruction for a monocular indoor

scene.

1. Introduction

The problem of joint reconstruction of camera motion

and 3-D scene geometry from images (called Structure from

Motion (SfM) or SLAM, depending on the context) has

been studied for decades. Impressive results have been ob-

tained, both with vast collections of unordered images [13],

and with video sequences taken from a moving camera [10].

Rather than attempting to raise the state of the art in general-

purpose SfM or SLAM, this work proposes a new approach

for a very specific scenario: indoor scenes characterized by

a Manhattan World (MW) geometry. The MW geometry

assumption is appropriate for most indoor environments.

Scenes with vertical walls not intersecting at right angles

can be modeled by weak MW [12], which inherits many

of the general properties of the MW geometry. Of course,

there are cases in which the MW geometry would be inad-

equate, such as in the presence of curved surfaces, ramps,

or generic objects or people visible in the scene; in these

cases, our technique would not be directly applicable.

The MW geometry is inherently simple, which facili-

tates reconstruction. For example, by estimating the three

vanishing points (an operation that is feasible in edge-rich

indoor scenes), one obtains the camera orientation with re-

spect to the “canonical” directions (plane normals) [7]. The

homography induced on images of the same plane seen

by a moving camera has only three degrees of freedom,

which facilitates multi-planar segmentation and estimation

[12]. The images of multiple parallel and coplanar lines can

be characterized by an invariant descriptor (“characteristic

line”) that enables robust co-planar line clustering [4]. Our

work builds on these previous results, and proposes a tech-

nique for SfM/SLAM that makes careful use of the intrinsic

properties of the MW geometry.

The main characteristic of our system lies in the fact that

all surface elements are represented in terms of canonically

oriented planes. Although we use feature points, matched

across image pairs, to estimate the plane locations and to

validate geometric reconstruction, we never maintain a rep-

resentation of individual points in space. This is a major

departure from traditional reconstruction techniques. The

advantage of this approach is highlighted by our novel for-

mulation of Bundle Adjustment, which uses planar primi-

tives, jointly optimized with the camera poses by minimiza-

tion of a specially designed reprojection error. The output

of our algorithm is a set of canonically oriented planes, to-

gether with the reconstructed camera poses and a sparse set

of back-projected feature points. This information can be

used for realistic patch-based reconstruction. Our algorithm

takes around a second (end-to-end) per image on a GPU-

enabled computer. In our experiments, it produced camera

trajectories comparable to the state of the art, with superior

geometric reconstruction. An expanded version of this arti-

cle was published in [6].

2. Related Work

SfM and visual SLAM algorithms can be roughly di-

vided in three categories: those that match specific features

across images (typically points, e.g. [10], or lines, e.g. [4]);

those that use direct image alignment to track the camera

pose (e.g. [1]); and those that use a volumetric representa-
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tion of space (e.g. [11]). Some works explicitly represent

the presence of planes [14, 3]. For example, ORB-SLAM

[10] includes a “model selection” component that decides

whether the scene is planar; in this case, an homography

is more effective at describing view changes than the asso-

ciated epipolar geometry. Pop-up SLAM [17] detects the

extent of the visible ground plane (floor) for each image us-

ing a convolutional network [16], and uses this information

to extract the visible vertical planes.

3. Multi-planar Fitting from Two Views

3.1. Manhattan­constrained Homography Compu­
tation and Multi­Planar Clustering

Saurer et al. [12] introduced the concept of con-

strained homographies for weak Manhattan World scenes

(i.e. scenes that contain horizontal planes and vertical

planes, where the latter are not necessarily mutually paral-

lel or orthogonal). In the more restrictive Manhattan World

case (all visible planes either orthogonal or parallel to one

another), the homography H relating two images of the

same plane has three (rather than eight) degrees of freedom.

One useful characteristic of Manhattan wold scenes is that

the rotation aligning the camera with the canonical Man-

hattan orientation (i.e., with axes mutually parallel to the

three planes normals) can be computed from the three van-

ishing points [7]. This in turns provides a convenient way

to estimate R.

When multiple planar structures are visible in the im-

age, a (constrained) homography can be computed for each

such structure, assuming that the point matches across the

two images have been properly clustered. Kim and Man-

duchi [5] proposed an extension to the T-linkage algorithm

that accounts for the reduced degree of freedom of the ho-

mographies to be computed. Minimal sets of two matches

are sampled. Each such set determines one plane for each

canonical direction (homographies H1,H2,H3). Then,

for each canonical direction, agglomerative clustering of

matches is conducted using T-linkage.

3.2. Translation Vector Regression

Each cluster of point matches C
r(m,k)
m,k = {(xm,xm+1)}

(where m is the image pair index, k is the cluster index,

and r(m, k) identifies the canonical direction of the k-th

planar model) determines its own homography, defined by

the scaled translation vector tm,k/dm,k. Let us denote by

t̄m,k the unit-norm normalized translation, and by d̄m,k the

scaled distance as defined earlier. Since the actual camera

translation is unique, all unit vectors t̄m,k estimated for the

same image pair should be identical. We enforce this con-

straint, and find a common unit-norm translation vector t̄m
while simultaneously refining the planes’ location, by solv-

ing an appropriate constrained minimization problem for

each image pair.

4. Multi-frame Integration

4.1. Recovering Relative Scale

The translation vectors computed for each frame pair are

defined up to an unknown scale. To recover the relative

scale of each translation vector, we define a metric normal-

ized by the distance between the camera locations in the first

two frames (t0). Under this metric, the translation vectors

and plane distances are tm = σmt̄m and dm,k = σmd̄m,k,

respectively (as a reminder, m is the frame number and k
is the index of the cluster, which is associated with a plane

with normal nm,k). We can then recover the sequence of

scale factors {σ1, σ2, . . . } recursively.

4.2. Cluster Chain Determination

Determining chains of pairwise image matches is a crit-

ical step in classical SLAM algorithms [8], as it allows one

to associate a point in space with a number of feature points

detected over multiple images, and thus to compute the re-

projection error for a putative set of poses. In our case,

we are interested in not only finding match chains, but also

cluster chains, which identify the same planar model across

subsequent images. We need to ensure that two separate

planar models don’t get mistakenly merged into one, or that

the same model gets split in two. This is achieved through a

suitable clustering of the directed N -partite graph G, whose

m-th partition contains nodes associated with points de-

tected in the m-th image. Each node in the m-th partition

may be connected to at most one node associated with a

matching point in the previous image (partition m-1) or in

the next image (partition m+1).

4.3. Plane­Constrained Bundle Adjustment

Bundle adjustment (BA) modifies a vector of model pa-

rameters (normally, the set of 3-D points, camera poses, and

possibly intrinsic parameters) with the goal to ensure that

observations are consistent with the model under an appro-

priate metric. Unlike typical BA, we do not attempt to op-

timize the location of individuals 3-D points. Rather, we

modify the location (but not the orientation) of the K planes

to which these points belong.

An image point xk
m,i ∈ Mk

j associated with the plane

(nk, d0,k) defines a 3-D point by the intersection of the line

of sight through the xk
m,i in the m-th camera and the plane.

In the reference frame of the first camera, this point can be

expressed as:

pk
j,(m,i) = RT

0→m

(

dm,k K−1
m x̃k

m,i

nT
kK

−1
m x̃k

m,i

− t0→m

)

(1)

In the equation above, dm,k = d0,k + (nk)
T t0→m is the

distance of the k-th plane to the m-th camera location.
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Figure 1: Computation of the reprojecton error for Bundle

Adjustment (Sec. 4.3)

K−1
m x̃k

m,i represents the line of sight through the pixel, ex-

pressed in terms of the m-th camera frame.

Ideally, the lines of sight through all pixels in Mk
j should

intersect at the same point, pk
j , in the k-th plane. In practice,

some amount of dispersion of the points {pk
j,(m,i)} should

be expected. Our BA procedure is designed to minimize a

measure of such dispersion, defined as follow (see Fig. 1).

We first compute the mean over the indices (m, i) in Mk
j

of the back-projected points {pk
j,(m,i)}. We then reproject

this mean point, p̄k
j , onto the individual cameras at their

estimated poses, obtaining:

x̄k
m,j = EN

(

Km(R0→mp̄k
j + t0→m)

)

(2)

Finally, we compute the reprojection errors ekm,i = x̄k
m,j −

xk
m,i for all xk

m,i ∈ Mk
j . We minimize, over camera poses

and plane locations (and, optionally, camera focal lengths),

the norm of ekm,i as measured by the Huber loss, summed

over all planes and all matched point chains.

5. Implementation and Experiments

5.1. Implementation Details

Vanishing points detection. Vanishing points are com-

puted using the technique of [15] on line segments detected

by the LSD algorithm [2]. Following [5], line segments with

length of 20 pixels or more are clustered using T-linkage [9]

(implemented on GPU). A candidate set of vanishing points

is found, which is then refined by minimizing a form that

penalizes geometric discrepancies.

Multi-planar clustering. SIFT features are matched across

subsequent frames, then plane-constrained T-linkage (im-

plemented on GPU) is run starting from non-minimal sets

of matches identified using the region-based sample selec-

tion scheme of [5].

Non-linear minimization. Minimization of the reprojec-

tion errors with Huber loss (Sec. 4.3) is accomplished using

Figure 2: Bird-eye view of reconstructed points from the

Corridor 1 sequence. Left: our algorithm (points in differ-

ent detected planes are shown with different color). Center:

ORB-SLAM [10]. Right: SfM Revisited [13]. Note that the

sky blue and cinnamon points in our result represent planar

surface induced by frontal surfaces of trashcan and printer.

Figure 3: 3-D textured rendering of one of the walls of the

reconstructed Corridor 2 scene.

the “Schur complement trick” as implemented by the Ceres

solver.

Bundle Adjustment sequence. We first run a round of

BA optimizing only plane locations and camera locations.

Then, the plane merging procedure described at the end of

Sec. 4.3 is applied. Finally, another round of BA is run, this

time optimizing all parameters (plane locations, camera lo-

cations, camera rotation, and optionally focal lengths).

5.2. Experiments

We collected a number of sequences of corridors in our

buildings using an iPhone 6 (1024 × 768 pixels). Each

sequence contains 20 images, which were taken by hand

at each step of walking approximately 0.4 meters of dis-

tance from each other. Our reconstructions have been com-

puted without optimization of the camera’s focal length.

We show reconstruction results for two scenes: Corridor
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(a) (b)

Figure 4: 3-D textured renderings of the reconstructed Cor-

ridor 3 scene. (a) our algorithm. (b) SfM Revisited [13]

with dense reconstruction option turned on.

1 (Figs. 2, bird-eye views) and Corridor 2 (Fig. 3, 3-D

view). For Corridor 1, we also show the result using the

open source implementation1 of the ORB-SLAM algorithm

[10], as well as the result using the open source implementa-

tion2 of the “SfM Revisited” algorithm of [13]. The recon-

structed points are shown on top of the floor plan, which was

manually adjusted in all three cases to best fit the points.

A 3-D textured rendering of a third scene (Corridor 3) is

shown in Fig. 4 and compared with the result of SfM Re-

visited.

6. Conclusions

We have introduced a technique for motion recovery

and surface reconstruction that makes use of the Manhat-

tan World geometry at every step of the way. Our approach

relies on pairwise matching of feature points, but repre-

sents geometric primitives in terms of planes. This enables

a novel formulation of Bundle Adjustment that optimizes

plane locations, rather than point locations. The result is

expressed in terms of planar structures, a natural represen-

tation for indoor scenes.

Our algorithm has shown very promising results in rel-

atively short sequences with a few dozen images. Further

work will be needed to evaluate its performances in very

long data sets (including loop closure), as well as in situa-

tions with multiple non-planar objects.
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