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Abstract

We tackle the problem of automatically reconstructing

a complete 3D model of a scene from a single RGB im-

age. This challenging task requires inferring the shape of

both visible and occluded surfaces. Our approach utilizes

viewer-centered, multi-layer representation of scene geom-

etry adapted from recent methods for single object shape

completion. To improve the accuracy of view-centered

representations for complex scenes, we introduce a novel

“Epipolar Feature Transformer” that transfers convolu-

tional network features from an input view to other vir-

tual camera viewpoints, and thus better covers the 3D

scene geometry. Unlike existing approaches that first de-

tect and localize objects in 3D and then infer object shape

using category-specific models, our approach is fully con-

volutional, end-to-end differentiable, and avoids the resolu-

tion and memory limitations of voxel representations. We

demonstrate the advantages of multi-layer depth represen-

tations and epipolar feature transformers on the reconstruc-

tion of a large database of indoor scenes. As Figure 3

shows, our method yields roughly 5x improvement in recall

and 2x increase in precision, providing estimates which are

both more complete and more accurate.

1. Introduction

Early successes at using CNNs for shape prediction

leveraged direct correspondences between the input and

output domain, regressing depth and surface normals at ev-

ery input pixel [2]. However, these so-called 2.5D represen-

tations are incomplete: they don’t make predictions about

the back side of objects or other occluded surfaces. Sev-

eral recent methods instead manipulate voxel-based repre-

sentations [9]. This provides a more complete representa-

tion than 2.5D models, but suffers from substantial storage

and computation expense that scales cubically with resolu-

tion of the volume being modeled (without specialized rep-

resentations like octrees [7]). Other approaches represent

shape as an unstructured point cloud [6, 10], but require de-

velopment of suitable convolutional operators [3, 12] and

fail to capture surface topology. Our approach uses an al-

ternative shape representation that extends view-based 2.5D

representations to a complete 3D representation.

We combine multi-layer depth maps that store the depth

to multiple surface intersections along each camera ray

from a given viewpoint, with multi-view depth maps that

record surface depths from different camera viewpoints.

While multi-view and multi-layer shape representations

have been explored for single object shape completion, for

example by [8], we argue that multi-layer depth maps are

particularly well suited for representing full 3D scenes.

First, they compactly capture high-resolution details about

the shapes of surfaces in a large scene. Voxel-based rep-

resentations ultimately limit shape fidelity to much lower

resolution than is provided by cues like occluding contours

in the input image [9]. Second, view-based depths main-

tain explicit correspondence between input image data and

scene geometry. Much of the work on voxel and point

cloud representations for single object shape prediction has

focused on predicting a 3D representation in an object-

centered coordinate system. Utilizing such an approach for

scenes requires additional steps of detecting individual ob-

jects and estimating their pose in order to place them back

into some global scene coordinate system [11]. In contrast,

view-based multi-depth predictions provide a single, glob-

ally coherent scene representation that can be computed in

a “fully convolutional” manner from the input image.

One limitation of predicting a multi-layer depth repre-

sentation from the input image viewpoint is that the repre-

sentation cannot accurately encode the geometry of surfaces

which are nearly tangent to the viewing direction. In ad-

dition, complicated scenes may contain many partially oc-

cluded objects that require a large number of layers to rep-

resent completely. We address this challenge by predicting

additional (multi-layer) depth maps computed from virtual

viewpoints elsewhere in the scene. To link these predictions

from virtual viewpoints with the input viewpoint, we intro-

duce a novel Epipolar Feature Transformer (EFT) network

module. Given the relative poses of the input and virtual
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Figure 1: Overview of our system for reconstructing a complete 3D scene from a single RGB image. We first predict a multi-

layer depth map that encodes the depths of front and back object surfaces as seen from the input camera. Given the extracted

feature map and predicted multi-layer depths, the epipolar feature transformer network transfers features from the input view

to a virtual overhead view, where the heights of observed objects are predicted. Explicit detection of object instances is not

required, increasing robustness.

cameras, we transfer features from a given location in the

input view feature map to the corresponding epipolar line

in the virtual camera feature map. This transfer process is

modulated by predictions of surface depths from the input

view in order to effectively re-project features to the correct

locations in the overhead view.

To summarize our contributions, we propose a view-

based, multi-layer depth representation that enables fully

convolutional inference of 3D scene geometry and shape

completion. We also introduce EFT networks that provide

geometrically consistent transfer of CNN features between

cameras with different poses, allowing end-to-end train-

ing for multi-view inference. We experimentally character-

ize the completeness of these representations for describing

the 3D geometry of indoor scenes, and show that models

trained to predict these representations can provide better

recall and precision of scene geometry than existing ap-

proaches based on object detection.

2. Reconstruction with Multi-Layer Depth

We perform multi-hit ray tracing on the ground-truth

models from the SUNCG dataset [9] and represent the 3D

Figure 2: Epipolar transfer of features from the input image

to a virtual overhead view.

scene geometry by recording multiple surface intersections.

As illustrated in Figure 2(a), some rays may intersect many

object surfaces and require several layers to capture all de-

tails. But as the number of layers grows, multi-layer depths

completely represent 3D scenes with multiple non-convex

objects. We use experiments (Table 1) to empirically deter-

mine a fixed number of layers that provides good coverage

of typical indoor scenes, while remaining compact enough

for efficient learning and prediction. Another challenge is

that surfaces that are nearly tangent to input camera rays are

not well represented by a depth map of fixed resolution. To

address this, we introduce an additional virtual view where

tangent surfaces are sampled more densely (see Section 3).

Multi-Layer Depth Maps from 3D Geometry. To cap-

ture the overall extent of the space within the viewing frus-

tum, we define the depth D5 of the room envelope to be

the last layer of the scene. We then model the shapes of

observed objects by tracing rays from the input view. The

first intersection D1 resembles a standard depth map but

excludes the room envelope. If we continue along the same

ray, it will eventually exit the object at a depth we denote

by D2. To predict occluded structure behind foreground

objects, we continue the same procedure and define layers

D3, D4 as the depths of the next object intersection and the

exit from that second object instance, respectively. We let

(D̄1, D̄2, D̄3, D̄4, D̄5) denote the ground truth multi-layer

depth maps derived from a complete 3D model. We also

define a binary mask M̄ℓ which indicates the pixels where

D̄1 D̄1,2 D̄1,2,3 D̄1..4 D̄1..5 D̄1..5 +Ovh.

0.237 0.427 0.450 0.480 0.924 0.932

Table 1: Scene surface coverage (recall) of ground truth

depth layers with a 5cm threshold. Our predictions cover

93% of the scene geometry inside the viewing frustum.
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Figure 3: Precision and recall of scene geometry as a func-

tion of match distance threshold. Left: Reconstruction qual-

ity for different model layers. Dashed lines are the per-

formance bounds provided by ground-truth depth layers.

Right: Accuracy of our model relative to the state-of-the-art

The upper and lower band indicate 75th and 25th quantiles.

The higher variance of Tulsiani et al. [11] may be explained

in part by the sensitivity of the model to having the correct

initial set of object detections and pose estimates.

layer ℓ ∈ {1, 3} has support. Note that M̄1 = M̄2, and

M̄3 = M̄4, due to symmetry. Experiments in Figure 3 eval-

uate the relative importance of different layers in modeling

realistic 3D scenes.

Predicting Multi-Layer Depth Maps. To learn to predict

the five-channel depths given a single image as input, we

train a standard encoder-decoder network with skip connec-

tions and minimize the Huber loss. Our pixel-wise multi-

layer depth prediction is agnostic to high-level semantic in-

formation, so we also predict a layer-wise semantic segmen-

tation. Mℓ is defined as the non-background pixels at pre-

dicted segmentation layer ℓ. The purpose of the foreground

labels, though not required, is to be used as a supervisory

signal for feature extraction in our EFT network.

3. Epipolar Feature Transformer Networks

To allow for richer view-based scene understanding, we

would like to relate features visible in the input view to

feature representations in other views. To achieve this, we

transfer features computed in input image coordinates to the

coordinate system of a “virtual camera” placed elsewhere in

the scene. This approach more efficiently covers some parts

of 3D scenes than single-view, multi-layer depths.

Figure 1 shows a block diagram of our Epipolar Feature

Transformer (EFT) network. Given features F extracted

from the image, we choose a virtual camera location with

transformation mapping T and transfer weights W , and use

these to warp F to create a new “virtual view” feature map

G. Like spatial transformer networks (STNs) [4] we per-

form a parametric, differentiable “warping” of a feature

map. However, EFTs incorporate a weighted pooling op-

eration informed by multi-view geometry.

Epipolar feature mapping. Image features at spatial lo-
cation (s, t) in an input view correspond to information

about the scene which lies somewhere along the ray
(

x
y
z

)

=

zKI
−1

(

s
t
1

)

for z ≥ 0, where KI ∈ R
3×3 encodes the in-

put camera intrinsic parameters. z is the depth along the
viewing ray, whose image in a virtual orthographic camera
is given by

[

u(s, t, z)
v(s, t, z)

]

= KV



zRKI
−1





s

t

1



 + t





Here KV ∈ R
2×3 encodes the virtual view resolution and

offset, and R and t the relative pose.1 Let T (s, t, z) =
(u(s, t, z), v(s, t, z)) denote the forward mapping from

points along the ray into the virtual camera, and Ω(u, v) =
{(s, t, z) : T (s, t, z) = (u, v)} be the pre-image of (u, v).

Given a feature map computed from the input view
F (s, t, f), where f indexes the feature dimension, we syn-
thesize a new feature map G corresponding to the virtual
view. We consider general mappings of the form

G(u, v, f) =

∑

(s,t,z)∈Ω(u,v) F (s, t, f)W (s, t, z)

∑

(s,t,z)∈Ω(u,v) W (s, t, z)
,

where W (s, t, z) ≥ 0 is a gating function that may depend

on features of the input image.2 When Ω(u, v) is empty,

we set G(u, v, f) = 0 for points (u, v) outside the viewing

frustum of the input camera, and otherwise interpolate fea-

ture values from those of neighboring virtual-view pixels.

If the frontal view network features at a given spatial lo-

cation encode the presence, shape, and pose of some object,

then those features really describe a whole volume of the

scene behind the object surface. In our experiments, we

transfer the input view features to the entire expected vol-

ume in the overhead representation. To achieve this, we

use the multi-layer depth representation predicted by the

frontal view to define a range of scene depths to which

the input view feature should be mapped. If D1(s, t) is

the depth of the front surface and D2(s, t) is the depth at

which the ray exits the back surface of an object instance,

we define a volume-based gating function: Wvol(s, t, z) =
δ[z ∈ (D1(s, t), D2(s, t))]. We use this gating to generate

features for (D1, D2) and concatenate them with a feature

map generated using (D3, D4).

4. Experiments

Because we model complete descriptions of the ground-

truth 3D geometry corresponding to RGB images, which is

not readily available for natural images, we learn to predict

1For a perspective model the righthand side is scaled by z′(s, t, z), the

depth from the virtual camera of the point at location z along the ray.
2For notational simplicity, we have written G as a sum over a discrete

set of samples Ω. To make G differentiable with respect to the virtual

camera parameters, we perform bilinear interpolation.
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Figure 4: Illustration of our 3D precision-recall metrics.

Top: We perform a bidirectional surface coverage evalu-

ation on the reconstructed triangle meshes. Bottom: The

ground truth mesh consists of all 3D surfaces within the

field-of-view and in front of the room envelope. See Fig-

ure 1 for the corresponding input and output images.

Precision Recall

D1,2,3,4,5 & Overhead 0.221 0.358

Tulsiani et al. [11] 0.132 0.191

Table 2: We quantitatively evaluate the synthetic-to-real

transfer of 3D geometry prediction on the ScanNet dataset

(threshold of 10cm). We measure recovery of true object

surfaces and room layouts within the viewing frustum.

multi-layer and multi-view depths from physical renderings

of indoor scenes [13] provided by the SUNCG dataset [9].

We test our models on 4000 SUNCG scenes as well as

ScanNet [1] and NYU [5]. We evaluate precision and re-

call of points uniformly sampled from the ground-truth and

predicted surfaces (Figure 4). ScanNet contains more com-

plete geometry of real-world scenes, so we can provide a

real-world quantitative evaluation as well.

To reconstruct 3D surfaces from the output of our net-

work model, we first convert the predicted depth images

into a point cloud and triangulate vertices that correspond

to a 2 × 2 neighborhood in image space within a threshold

relative to the pixel footprint in camera coordinates.

Our model is trained entirely synthetically, and we pro-

vide quantitative results for both synthetic (Figure 3 and

Table 3) and real-world (Table 2) scenes that significantly

outperform the object-based approach [11]. Results sum-

marized in Table 3 show that the addition of multiple depth

layers significantly increases recall with only a small drop

in precision, and the addition of overhead EFT predictions

boosts both precision and recall. Figure 5 visualizes the out-

put reconstruction of our models on synthetic images. Fig-

ure 6 shows a qualitative comparison on real-world images

against the obeject-based approach [11].
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Figure 5: Estimates of the front (green) and back (cyan)

surfaces of objects are complemented by heights estimated

by a virtual overhead camera (dark green). Room envelope

estimates are rendered in gray.
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Figure 6: Evaluation of 3D reconstruction on the

NYUv2 [5] and ScanNet [1] dataset, where green regions

are predicted geometry and pink regions are ground truth.

Tulsiani et al. [11] are sensitive to the performance of 2D

object detectors, and their voxelized output is a coarse ap-

proximation of the true 3D geometry.

Precision Recall

D1 0.525 0.212

D1 & Overhead 0.553 0.275

D1,2,3,4 0.499 0.417

D1,2,3,4 & Overhead 0.519 0.457

Table 3: Augmenting the frontal depth prediction with the

predicted virtual view height map improves both precision

and recall (match threshold of 5cm).
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