
Efficient Plane-Based Optimization of Geometry and Texture for Indoor RGB-D

Reconstruction

Chao Wang∗ and Xiaohu Guo

University of Texas at Dallas

800 W Campbell Rd, Richardson, TX 75080, USA

{chao.wang3, xguo}@utdallas.edu

Abstract

We propose a novel approach to reconstruct RGB-D in-

door scene based on plane primitives. Our approach takes

as input a RGB-D sequence and a dense coarse mesh recon-

structed from it, and generates a lightweight, low-polygonal

mesh with clear face textures and sharp features without

losing geometry details from the original scene. Compared

to existing methods which only cover large planar regions

in the scene, our method builds the entire scene by adap-

tive planes without losing geometry details and also pre-

serves sharp features in the mesh. Experiments show that

our method is more efficient to generate textured mesh from

RGB-D data than state-of-the-arts.

1. Introduction

Online and offline RGB-D reconstruction techniques are

developing fast in recent years with the prevalence of con-

sumer depth cameras. State-of-the-art online 3D recon-

struction methods can capture indoor and outdoor scenes in

the real-world environments efficiently with geometry de-

tails [12, 17, 18, 4, 13]. However, resulting 3D models of

these methods are usually too dense with unsatisfying tex-

tures due to many reasons including noisy depth data, incor-

rect camera poses and oversmoothing in data fusion. These

models can not be used directly in most applications with-

out further refinement or post-processing.

In order to lower the density and improve the structure

quality of indoor models, one typical strategy is to introduce

plane primitives into front-end (such as camera tracking in

SLAM or online reconstruction in [5, 9, 7]) or back-end

(such as RGB-D mesh and texture refinement in [6, 10, 16])

of reconstruction pipeline, as typical indoor scenes are pri-

marily composed of planar regions, especially buildings and

houses with structure following Manhattan-world assump-

tion. However, almost all methods take into account only

∗Author now works at Matterport, Inc.

large planar regions such as walls, ceilings, floors and large

table surfaces, and simply ignore and remove other objects

with free form surfaces no matter if they contain planar re-

gions or not, such as various indoor furniture and objects on

or adhering to large planes. Models with only large planes

are too simplified and lack fidelity that they are not appli-

cable to many situations acquiring geometry details. More-

over, geometry details are usually noisy because of noisy

RGB-D raw data, and it is difficult and also time-consuming

to extract plane primitives or other types of geometry pri-

ors from the scene while still preserving the original shape.

Besides this, existing back-end methods are usually time-

consuming and take hours to process a single scan.

In this paper, we present a novel approach to efficiently

reconstruct RGB-D indoor scene using planes and gener-

ate a lightweight and complete 3D textured model without

losing geometry details. Our method takes as input a RGB-

D sequence of indoor scene and a dense coarse mesh re-

constructed by some online reconstruction method on this

sequence. We firstly partition the entire dense mesh into

different planar clusters (Section 2.1), and then simplify the

dense mesh into a lightweight mesh without losing geom-

etry details (Section 2.2). Next we create texture patch for

each plane and sample points on the plane, and run a global

optimization process to maximize the photometric consis-

tency of sampled points across frames by optimizing cam-

era poses, plane parameters and texture colors (Section 2.3).

Finally, we optimize the mesh geometry by maximizing

consistency between geometry and plane primitives, which

further preserves sharp features of original scene such as

edges and corners of plane intersections (Section 2.4).

Our method is highly based on Wang and Guo’s method

in [16]. Compared to their method, the contribution of

our method is to introduce line constraint into both pose-

plane-texture and geometry optimization, and this can pre-

serve sharp feature better. Meanwhile, our method is also

more efficient than [16] by introducing parallel computation

into the optimization. Experiments show that our method

exceeds state-of-the-arts in keeping geometry details and

49

sharp features in the result lightweight 3D textured models.

2. Plane-based reconstruction pipeline

Our reconstruction pipeline takes a RGB-D sequence as

input, and firstly uses some state-of-the-art online recon-

struction such as VoxelHashing [12] or BundleFusion [4] to

reconstruct an initial dense mesh.

2.1. Mesh planar partition

We aim to partition the entire mesh into plane primitives

to include all geometry details. In our approach we follow

the same idea of [16] to refer to a state-of-the-art surface

partition algorithm proposed by Cai et al. [1]. This method

proposes a new principle component analysis (PCA) based

energy, whose minimization leads to an optimal piecewise-

linear planar approximation of the entire surface with high

quality. After an input mesh is partitioned into clusters, each

cluster is attached with a plane proxy defined by the cen-

troid and normal as the smallest eigenvector direction from

the covariance matrix of the cluster.

After we get the initial planar partition, we run a further

plane merging step to merge adjacent planes together into

large ones to reduce noisy bumpy points on planar regions.

Here we also follow the same idea in [16] to merge adjacent

planes only if the angle between their normal directions is

small enough, and the average distances between two planes

are also small. Besides this, we add an additional rule to

merge two neighbor planes if the PCA energy increase af-

ter merging is very small compared to the initial energy of

one plane. This is for merging one large plane and a small

neighbor noisy plane together, such as planes on a bumpy

floor.

2.2. Mesh simplification

We simplify the mesh based on clusters to create a

lightweight mesh for further optimization. Even though we

already have a model composed of planes, we still choose

to create a mesh by simplifying the original dense mesh

instead of using some mesh generation algorithm (such as

Delaunay triangulation) on planes like [2, 10, 11], since it

is difficult and also time-consuming to create correct con-

nectivity from complicated plane interceptions in a noisy

model, especially an indoor reconstruction mesh containing

various geometry objects with free-form shapes. Here we

also follow the similar way in [16] that uses QEM to sim-

plify the inner-cluster edges at first and then all border edges

of clusters next. Note that simplification in each cluster is

independent with each other, so we run parallel computation

on all inner-cluster edges to accelerate the simplification in

our experiments.

2.3. Plane, camera pose and texture optimization

Before optimization, we firstly generate an initial texture

mapping for all the faces of the mesh. For each cluster,

considering that vertices inside this cluster on the mesh are

already near co-planar, we simply project these 3D vertices

onto the corresponding plane to get a 2D patch, and sample

grid points inside the patch boundary to get texel points, and

then backproject them to get corresponding 3D texel points.

Another thing is about the keyframes selected from RGB-

D frames. To reduce time complexity and increase texture

quality, we follow the similar idea of color map optimiza-

tion by Zhou and Koltun [19] to select only sharp frames in

every interval, and quatify the blurriness of each image with

the metric by Crete et al. [3].

The input in our optimization process is color images

{Ii} and depth images of keyframes, all texels’ 3D points

{p} sampled on the mesh, initial camera poses T = {Ti}
(global to camera space) and initial plane parameters Φ =
{φj}. During the optimization, we maximize the photo con-

sistency of 3D texels’ projections on corresponding planes

across frames by optimizing camera poses, plane parame-

ters and texture colors by minimizing the objective function

Etex(T,Φ,C) = Ec(T,Φ,C) + λpEp(Φ) + λtEt(T,Φ).
(1)

where λp and λt are constants to balance different terms.

Photometric consistency term. The photometric en-

ergy is designed to measure the photometric error between

color of each texel’s projection point on its corresponding

plane and its target color across frames:

Ec(T,Φ,C) =
∑

i

∑

p∈Pi

||C(p)− Ii(π(Tiq))||
2, (2)

where C(p) is the target color for p, and Pi is set of all

visible 3D texels in frame i, and π is the perspective projec-

tion from 3D position v to 2D color image, and q in Eq. (2)

is the projection point from p onto its corresponding plane

φ(p) represented by 3D normal np and a scalar wp:

q = p− (p⊤np + wp)np, (3)

Plane constraint term. Plane constraint term is to min-

imize the sum of distances from 3D texel points to their

corresponding planes:

Ep(Φ) =
∑

p

||p⊤np + wp||
2 (4)

Line constraint term. We want to maximize the consis-

tence between 2D lines and corresponding 3D lines which

are borders of adjacent planes:

Et(T,Φ) =
∑

t∈Ω

||(T−1
t π−1(t))⊤nt + wt||

2 (5)

50

where Ω is the 2D pixel set with all valid candidate line

segments, π−1 is inverse perspective function of π from 2D

to 3D. Ω is obtained by projecting valid 3D line composed

of the border vertices shared by clusters onto corresponding

visible color image, and then finding its nearest 2D line seg-

ment which are computed by line segment detector (LSD)

[15] within a valid distance range. In experiments we only

use 2D line segments with long enough length, and only use

3D lines shared by two planes between which the normal

direction is large enough.

To minimize the objective function in Eq. (1), we alter-

nate between optimizing different variables with some oth-

ers fixed and use standard Gauss-Newton method. The opti-

mization of each plane is independent with others so we can

solve them in parallel. Compared to [16], our method re-

moves the image correction term in Eq. (1), since we found

that it influences very little to the result but highly increases

the time complexity with more than 700 additional image

correction parameters to optimize per frame. Meanwhile,

we add the line constraint term Et to better preserve sharp

features.

Figure 1. Fused dense mesh from BundleFusion (left) and our sim-

plified mesh after optimization with sharp edges (right).

Figure 2. Mesh result without (left) or with (right) line constraint

terms Et and El. Each color is one cluster.

2.4. Geometry optimization

The final step is to optimize the mesh geometry to fit

the planes as close as possible to reduce noise from mesh

surface and sharpen geometry features, since fused meshes

reconstructed from RGB-D data always contain noise or

oversmoothed surfaces, such as bumpy surfaces on planar

regions and smoothed borders which suppose to be sharp

features.

In order to optimize the consistency between geometry

and planes, we maximize the consistency between mesh

vertices in each cluster and their corresponding planes.

Each 2D texel is located inside a triangular face’s projec-

tion. We utilize the initial barycentric relationship between

each texel and its corresponding face, and try to preserve

this relationship between texel points’ projections on planes

and the optimized vertices in each face:

Evert(V) = Eg(V) + λlEl(V) + λrEr(V), (6)

where Eg is the geometry consistency term

Eg(V) =
∑

p

||q−
2∑

i=0

bp,ivfp,i||
2, (7)

where q is the projection from 3D texel point p onto its

corresponding plane as described in Eq. (3), fp is index of

the face p corresponds to, vfp,i is the ith vertex of face fp,

and bp,i is p’s initial barycentric coordinate corresponding

to the ith vertex in face fp, and λl and λr are constants to

balance different terms.

Compared to [16], we add a new term El which is sim-

ilar to term Et from Eq. (1) that it is to ensure all border

vertices shared by adjacent planes/clusters are as close to

their corresponding planes as possible:

El(V) =
∑

p∈Ψ

||p⊤np + wp||
2 (8)

where Ψ is the border vertex set.

The last term Er in Eq. (6) is a regularization term to

minimize the difference between each vertex and the mass

center of all its neighbors:

Er(V) = ||LX||2F . (9)

Here X = [v1,v2, · · · ,vn]
⊤ is matrix of target vertices

we want to compute, with n the number of vertices on the

mesh. L is n× n matrix denoting the discrete graph Lapla-

cian matrix based on the connectivity of the mesh. That is,

we want to minimize the difference between each optimized

vertex and the average of its neighbor vertices. This term is

added to ensure that problem in Eq. (6) has valid solutions.

The problem in Eq. (6) is actually a sparse linear system

and can be solved by Cholesky decomposition efficiently.

Figure 1 shows comparison between original dense mesh

by BundleFusion [4] and our mesh on a scan ‘office0’ from

BundleFusion dataset. Our method can preserve the sharp

features in the final lightweight mesh very well. Compared

to the method in [16], we add another line constraint term

El to better preserve the line features. Figure 2 shows re-

sult mesh comparison with or without line constraints on

the same scene as Figure 1.

3. Results

We tested our method on the same 10 scans in [16] from

three popular RGB-D dataset: 6 models from BundleFusion

51

Figure 3. Comparison of textured meshes on scan ‘office3’ by BundleFusion [4], 3DLite [10] and our method.

[4] (the first 6 rows in Table 1), 2 from ICL-NUIM [8] (the

following 2 rows) and 2 from TUM RGB-D dataset [14]

(the last 2 rows). Table 1 shows quantitative data of each

scan and our result models. Note that the number of faces or

vertices of each result model is only 1%-3% of that of orig-

inal dense model. Figure 3 shows textured mesh between

our method and two state-of-the-art systems: BundleFusion

[4] and 3DLite [10], while more strictly speaking, the dense

models by BundleFusion are the input of both 3DLite and

our method.

We implemented our method in C++1 and tested on a

desktop with Intel Core i7 2.5GHz CPU and 16 GB mem-

ory. The running time on each scan is in Table 1. Our av-

erage running time is only about 5-10 minutes compared to

the average time of several hours in 3DLite [10], and ap-

proximately 30 minutes in Wang and Guo’s method [16] on

the same dataset. We use OpenMP on simplifying differ-

ent clusters and GPU in computing the Jacobian matrix in

plane, texture and pose optimization for acceleration.

Limitations. Our method has some similar limitations

as [16]. Firstly, our face textures are not as sharp as

3DLite’s since the latter introduces many techniques to op-

timize texture, such as texture sharpening and color correc-

tion across frames. However, these steps are very time-

1Result models and part of source code are already open in: https:

//github.com/chaowang15/plane-opt-rgbd.

Table 1. Quantitative data of RGB-D scans and our results. Here

|V | is number of vertices, |F | is the number of faces, |K| is the

number of keyframes, t is the total running time of our entire

pipeline in seconds excluding data I/O.

Scan Input Result

|V | |F | |K| |V | |F | t(s)

copyroom 3.70M 7.28M 895 55.2K 104K 450

apt0 7.83M 15.4M 860 84.6K 160K 521

office0 5.71M 11.3M 616 68.5K 130K 362

office1 6.03M 11.9M 573 69.1K 129K 329

office2 5.63M 11.0M 700 73.6K 135K 467

office3 6.36M 12.6M 763 56.7K 108K 485

of kt2 1.20M 2.36M 176 14.9K 27.4K 244

lr kt2n 1.14M 2.25M 176 22.1K 41.9K 251

fr2/desk 1.37M 2.69M 372 37.6K 73.4K 187

fr3/loh 2.42M 4.75M 243 43.0K 83.7K 126

consuming and possibly takes hours in [10], and we plan

to find a faster way to further optimize textures with sim-

ilar results as 3DLite. Moreover, our method still cannot

fill holes and gaps that always appears in the RGB-D scans,

while 3DLite can generate a complete geometry from ex-

tracted large planes by extrapolating existing planes and fill-

ing holes.

52

References

[1] Yiqi Cai, Xiaohu Guo, Yang Liu, Wenping Wang, Weihua

Mao, and Zichun Zhong. Surface approximation via asymp-

totic optimal geometric partition. IEEE transactions on visu-

alization and computer graphics, 23(12):2613–2626, 2017.

[2] Anne-Laure Chauve, Patrick Labatut, and Jean-Philippe

Pons. Robust piecewise-planar 3d reconstruction and com-

pletion from large-scale unstructured point data. In Com-

puter Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, pages 1261–1268. IEEE, 2010.

[3] Frederique Crete, Thierry Dolmiere, Patricia Ladret, and

Marina Nicolas. The blur effect: perception and estimation

with a new no-reference perceptual blur metric. In Human vi-

sion and electronic imaging XII, volume 6492, page 64920I.

International Society for Optics and Photonics, 2007.

[4] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram

Izadi, and Christian Theobalt. Bundlefusion: Real-time

globally consistent 3d reconstruction using on-the-fly sur-

face reintegration. ACM Transactions on Graphics (TOG),

36(3):24, 2017.

[5] Mingsong Dou, Li Guan, Jan-Michael Frahm, and Henry

Fuchs. Exploring high-level plane primitives for indoor 3d

reconstruction with a hand-held rgb-d camera. In Asian Con-

ference on Computer Vision, pages 94–108. Springer, 2012.

[6] Maksym Dzitsiuk, Jürgen Sturm, Robert Maier, Lingni Ma,

and Daniel Cremers. De-noising, stabilizing and completing

3d reconstructions on-the-go using plane priors. In Robotics

and Automation (ICRA), 2017 IEEE International Confer-

ence on, pages 3976–3983. IEEE, 2017.

[7] Maciej Halber and Thomas Funkhouser. Fine-to-coarse

global registration of rgb-d scans. Proc. Computer Vision

and Pattern Recognition (CVPR), IEEE, 2017.

[8] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A

benchmark for RGB-D visual odometry, 3D reconstruction

and SLAM. In IEEE Intl. Conf. on Robotics and Automation,

ICRA, Hong Kong, China, May 2014.

[9] Ming Hsiao, Eric Westman, Guofeng Zhang, and Michael

Kaess. Keyframe-based dense planar slam. In Robotics

and Automation (ICRA), 2017 IEEE International Confer-

ence on, pages 5110–5117. IEEE, 2017.

[10] Jingwei Huang, Angela Dai, Leonidas Guibas, and Matthias

Nießner. 3dlite: towards commodity 3d scanning for content

creation. ACM Transactions on Graphics, 2017, 2017.

[11] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei

Sharf, Daniel Cohen-Or, and Niloy J Mitra. Globfit: Con-

sistently fitting primitives by discovering global relations. In

ACM Transactions on Graphics (TOG), volume 30, page 52.

ACM, 2011.

[12] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and

Marc Stamminger. Real-time 3d reconstruction at scale us-

ing voxel hashing. ACM Transactions on Graphics (ToG),

32(6):169, 2013.

[13] Victor Adrian Prisacariu, Olaf Kähler, Stuart Golodetz,

Michael Sapienza, Tommaso Cavallari, Philip HS Torr, and

David W Murray. Infinitam v3: A framework for large-

scale 3d reconstruction with loop closure. arXiv preprint

arXiv:1708.00783, 2017.

[14] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A benchmark for the evaluation of rgb-d slam systems.

In Proc. of the International Conference on Intelligent Robot

Systems (IROS), Oct. 2012.

[15] Rafael Grompone Von Gioi, Jeremie Jakubowicz, Jean-

Michel Morel, and Gregory Randall. Lsd: A fast line

segment detector with a false detection control. IEEE

transactions on pattern analysis and machine intelligence,

32(4):722–732, 2010.

[16] Chao Wang and Xiaohu Guo. Plane-based optimization

of geometry and texture for rgb-d reconstruction of indoor

scenes. In 2018 International Conference on 3D Vision

(3DV), pages 533–541. IEEE, 2018.

[17] Thomas Whelan, Stefan Leutenegger, R Salas-Moreno, Ben

Glocker, and Andrew Davison. Elasticfusion: Dense slam

without a pose graph. Robotics: Science and Systems, 2015.

[18] Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, An-

drew J Davison, and Stefan Leutenegger. Elasticfusion:

Real-time dense slam and light source estimation. The Inter-

national Journal of Robotics Research, 35(14):1697–1716,

2016.

[19] Qian-Yi Zhou and Vladlen Koltun. Color map optimization

for 3d reconstruction with consumer depth cameras. ACM

Transactions on Graphics (TOG), 33(4):155, 2014.

53

