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1. Introduction

Audio and visual signals are the most common modal-

ities used by humans to identify other humans and sense

their emotional state. Features extracted from these two sig-

nals are often highly correlated, allowing us to imagine the

visual appearance of a person just by listening to their voice,

or build some expectations about the tone or pitch of their

voice just by looking at a picture of the speaker. When it

comes to image generation, however, this multimodal cor-

relation is still under-explored.

In this paper, we focus on cross-modal visual generation,

more specifically, the generation of facial images given a

speech signal. Unlike recent works, we aim to generate

the whole face image at pixel level, conditioning only on

the raw speech signal (i.e. without the use of any hand-

crafted features) and without requiring any previous knowl-

edge (e.g speaker image or face model).

To this end, we propose a conditional generative ad-

versarial model (shown in Figure 1) that is trained using

the aligned audio and video channels in a self-supervised

way. For learning such a model, high quality, aligned

samples are required. This makes the most commonly

used datasets such as Lip Reading in the wild [6], or Vox-

Celeb [17] unsuitable for our approach, as the position of

the speaker, the background, and the quality of the videos

and the acoustic signal can vary significantly across differ-

ent samples. We therefore built a new video dataset from

YouTube, composed of videos uploaded to the platform

by well-established users (commonly known as youtubers),

who recorded themselves speaking in front of the camera in

their personal home studios. Hence, our main contributions
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The developed model, software and a subset of the dataset are publicly

released at https://imatge-upc.github.io/wav2pix/.

can be summarized as follows: 1) We present a conditional

GAN that is able to generate face images directly from the

raw speech signal, which we call Wav2Pix;

2) We present a manually curated dataset of videos from

youtubers, that contains high-quality data with notable ex-

pressiveness in both the speech and face signals;

3) We show that our approach is able to generate realistic

and diverse faces.

The developed model, software and dataset are publicly

released1.

2. Related works

Generative Adversarial Networks: (GANs) [8] are a state

of the art deep generative model that consist of two net-

works, a Generator G and a Discriminator D, playing a

min-max game against each other. This means both net-

works are optimized to fulfill their own objective: G has to

generate realistic samples and D has to be good at rejecting

G samples and accepting real ones. The way Generator can

create novel data mimicking real one is by mapping samples

z ∈ R
n of arbitrary dimensions coming from some simple

prior distribution Z to samples x from the real data distribu-

tion X (in this case we work with images, so x ∈ R
w×h×c

where w×h are spatial dimensions width and height and c is

the amount of channels). This means each z forward is like

sampling from X . On the other hand the discriminator is

typically a binary classifier as it distinguishes real samples

from fake ones generated by G. One can further condition

G and D on a variable e ∈ R
k of arbitrary dimensions to

derive the the conditional GANs [15] formulation, with the

conditioning variable being of any type, e.g. a class label or

text captions [23]. In our work, we generate images condi-

tioned on raw speech waveforms.

1 https://imatge-upc.github.io/wav2pix/
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Figure 1. The overall diagram of our speech-conditioned face generation GAN architecture. The network consists of a speech encoder,

a generator and a discriminator network. An audio embedding (green) is used by both the generator and discriminator, but its error is

just back-propagated at the generator. It is encoded and projected to a lower dimension (vector of size 128). Pink blocks represent

convolutional/deconvolutional stages.

Numerous improvements to the GANs methodology

have been presented lately. Many focusing on stabilizing

the training process and enhance the quality of the generated

samples [27, 3]. Others aim to tackle the vanishing gradi-

ents problem due to the sigmoid activation and the log-loss

in the end of the classifier [1, 2]. To solve this, the least-

squares GAN (LSGAN) approach [14] proposed to use a

least-squares function with binary coding (1 for real, 0 for

fake). We thus use this conditional GAN variant with the

objective function is given by:

min
D

VLSGAN(D) =
1

2
Ex,e∼pdata(x,e)[(D(x, e)− 1)2]

+
1

2
Ez∼pz(z),e∼pdata(e)[D(G(z, e), e)2].

(1)

min
G

VLSGAN(G) =
1

2
Ez∼pe(e),y∼pdata(y)[(D(G(z, e), e)− 1)2],

(2)

Multi-modal generation: Data generation across

modalities is becoming increasingly popular [22, 23, 18,

26]. Recently, a number of approaches combining audio

and vision have appeared, with tasks such as generating

speech from a video [7] or generating images from au-

dio/speech [5]. In this paper we will focus on the latter.

Most works on audio conditioned image generation

adopt non end-to-end approaches and exploit previous

knowledge about the data. Typically, speech has been en-

coded with handcrafted features which have been very well

engineered to represent human speech. At the visual part,

point-based models of the face [11] or the lips [24] have

been adopted. In contrast to that, our network is trained en-

tirely end-to-end solely from raw speech to generate image

pixels.

3. Youtubers Dataset

Our Youtubers dataset is composed of two sets: the com-

plete noisy subset automatically generated, and a clean sub-

set which was manually curated to obtain high quality data.

In total we collected 168,796 seconds of speech with

the corresponding video frames, and cropped faces from a

list of 62 youtubers active during the past few years. The

dataset was gender balanced and manually cleaned keep-

ing 42,199 faces, each with an associated 1-second speech

chunk.

Initial experiments indicated a poor performance of our

model when trained with noisy data. Thus, a part of the

dataset was manually filtered to obtain the high-quality data

required for our task. We took a subset of 10 identities, five

female and five male, from our original dataset and manu-

ally filtered them making sure that all faces were visually

clear and all audios contain just speech, resulting in a total

of 4,860 pairs of images and audios.

4. Method

Since our goal is to train a GAN conditioned on raw

speech waveforms, our model is divided in three modules

trained altogether end-to-end: a speech encoder, a gener-

ator network and a discriminator network described in the

following paragraphs respectively. The speech encoder was

adopted from the discriminator in [20], while both the im-

age generator and discriminator architectures were inspired

by [23]. The whole system was trained following a Least

Squares GAN [14] scheme. Figure 1 depicts the overall ar-

chitecture.

Speech Encoder: We coupled a modified version of the

SEGAN [20] discriminator Φ as input to an image generator

G. Our speech encoder was modified to have 6 strided one-

dimensional convolutional layers of kernel size 15, each one

with stride 4 followed by LeakyReLU activations. More-

over we only require one input channel, so our input sig-

nal is s ∈ R
T×1, being T = 16, 384 the amount of wave-

form samples we inject into the model (roughly one second

of speech at 16 kHz). The aforementioned convolutional

stack decimates this signal by a factor 46 = 4096 while in-

creasing the feature channels up to 1024. Thus, obtaining
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a tensor f(s) ∈ R
4×1024 in the output of the convolutional

stack f . This is flattened and injected into three fully con-

nected layers that reduce the final speech embedding dimen-

sions from 1024 × 4 = 4096 to 128, obtaining the vector

e = Φ(s) ∈ R
128.

Image Generator Network: We take the speech embed-

ding e as input to generate images such that x̂ = G(e) =
G(Φ(s)). The inference proceeds with two-dimensional

transposed convolutions, where the input is a tensor e ∈

R
1×1×128 (an image of size 1× 1 and 128 channels), based

on [22]. The final interpolation can either be 64× 64× 3 or

128 × 128 × 3 just by playing with the amount of trans-

posed convolutions (4 or 5). It is important to mention

that we have no latent variable z in G inference as it did

not give much variance in predictions in preliminary exper-

iments. To enforce the generative capacity of G we fol-

lowed a dropout strategy at inference time inspired by [10].

Therefore, the G loss, follows the LSGAN loss presented in

Equation 2 with the addition of this weighted auxiliary loss

for identity classification.

Image Discriminator Network: The Discriminator D

is designed to process several layers of stride 2 convolution

with a kernel size of 4 followed by a spectral normalization

[16] and leakyReLU (apart from the last layer). When the

spatial dimension of the discriminator is 4× 4, we replicate

the speech embedding e spatially and perform a depth con-

catenation. The last convolution is performed with stride 1

to obtain a D score as the output.

5. Experiments

Model training: The Wav2Pix model was trained on the

cleaned dataset described in Section 3 combined with a data

augmentation strategy. In particular, we copied each im-

age five times, pairing it with 5 different audio chunks of

1 second randomly sampled from the 4 seconds segment.

Thus, we obtained ≈ 24k images and paired audio chunks

of 1 second used for training our model. Our implemen-

tation is based on the PyTorch library [21] and trained on

a GeForce Titan X GPU with 12GB memory. We kept the

hyper-parameters as suggested in [23], changing the learn-

ing rate to 0.0001 in G and 0.0004 in D as suggested in [9].

We use ADAM solver [13] with momentum 0.1.

Evaluation: Figure 4 shows examples of generated im-

ages given a raw speech chunk, compared to the original

image of the person who the voice belongs to. Different

speech waveform produced by the same speaker were fed

into the network to produce such images. Although the

generated images are blurry, it is possible to observe that

the model learns the person’s physical characteristics, pre-

serving the identity, and present different face expressions

depending on the input speech 2. Other examples from six

2 Some examples of images and it correspondent speech as well as more

generated images are available at: https://imatge-upc.github.io/wav2pix/

different identities are presented in Figure 2.

To quantify the model’s accuracy regarding the identity

preservation, we fine-tuned a pre-trained VGG-Face De-

scriptor network [19, 4] with our dataset. We predicted

the speaker identity from the generated images of both the

speech train and test partitions, obtaining an identification

accuracy of 76.81% and 50.08%, respectively.

We also assessed the ability of the model to generate re-

alistic faces, regardless of the true speaker identity. To have

a more rigorous test than a simple Viola & Jones face detec-

tor [25], we measured the ability of an automatic algorithm

[12] to correctly identify facial landmarks on images gener-

ated by our model. We define detection accuracy as the per-

centage of images where the algorithm is able to identify

all 68 key-points. For the proposed model and all images

generated for our test set, the detection accuracy is 90.25%,

showing that in most cases the generated images retain the

basic visual characteristics of a face. This detection rate is

much higher than the identification accuracy of 50.08%, as

in some cases the model confuses identities, or mixes some

of them in a single face. Examples of detected faces to-

gether with their numbered facial landmarks can be seen in

Figure 3.

6. Conclusions

In this work we introduced a simple yet effective cross-

modal approach for generating images of faces given only

a short segment of speech, and proposed a novel generative

adversarial network variant that is conditioned on the raw

speech signal.

As high-quality training data are required for this task,

we further collected and curated a new dataset, the Youtu-

bers dataset, that contains high quality visual and speech

signals. Our experimental validation demonstrates that the

proposed approach is able to synthesize plausible facial im-

ages with an accuracy of 90.25%, while also being able to

preserve the identity of the speaker about 50% of the times.

Our ablation experiments further showed the sensitivity of

the model to the spatial dimensions of the images, the du-

ration of the speech chunks and, more importantly, on the

quality of the training data. Further steps may address the

generation of a sequence of video frames aligned with the

conditioning speech, as well exploring the behaviour of the

Wav2Pix when conditioned on unseen identities.
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Figure 2. Generated samples conditioned to raw speech produced by our model.

Figure 3. Examples of the 68 key-points detected on images gener-

ated by our model. Yellow circles indicate facial landmarks fitted

to the generated faces, numbered in red fonts.

Figure 4. Examples of generated faces compared to the original

image of the person who the voice belongs to. In the generated

images, we can observe that our model is able to preserve the phys-

ical characteristics and produce different face expressions. In the

first row we can see examples of the youtuber Javier Muiz. In the

second row we can see examples of the youtuber Jaime Altozano.
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this research.
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