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Abstract

We present a novel sound localization algorithm for a

non-line-of-sight (NLOS) sound source in indoor environ-

ments. Our approach exploits indirect properties, the re-

flection and diffraction, of sound waves. We suggest a ray

tracing based sound propagation algorithm for modeling

the high order reflections. We then combine a ray tracing

based sound propagation algorithm with a Uniform Theory

of Diffraction (UTD) model, which simulate bending effects

by placing a virtual sound source on a wedge in the envi-

ronment. Our method identifies the convergence region of

those generated acoustic rays as the estimated source posi-

tion based on a particle filter. We have evaluated our algo-

rithm in the scenario consisting of a dynamic NLOS sound

source. In our tested case, modeling reflection sound us-

ing high order reflections improves the localization accu-

racy by 92% compared to only using direction sound. We

also present a novel scheme to model NLOS sources by us-

ing an approximate diffraction formulation and observe the

accuracy improvement of 125%.

1. Introduction

It is getting more imperative to understand environments

in many fields such as computer vision and robotics. There

have been many kinds of research efforts to perceive the en-

vironment by acquiring and using data from hardware sen-

sors (e.g., GPS, CCD or depth cameras, and acoustics). One

of the main research topics for understanding environments

focuses on localizing objects and events occurring in such

objects.

There have been many efforts to recognize and localize

the object in the environment based on visual data [8, 3, 4].

They have focused on the sound accompanied by the event

of the object. The majority of events and accompanied

sounds are highly correlated and it can be a clue to solve

the object localization problem. Based on the correlation

between events and sounds, they tried to train the deep neu-

ral network from unlabeled data to localize the object gen-

erating sound.

Localization is an also fundamental capability required

by an autonomous robot, as the current location is used

to guide the future movement or actions [7, 10]. These

methods reconstruct the environment to the virtual 3D space

from RGB-D sensor data and, then, localize the current lo-

cation of the robot from reconstructed data.

Recently, there are considerable works on using acoustic

sensors for localization. The acoustic sensors use the prop-

erties of sound waves to compute the sound location. As

the sound waves are emitted from a source, they transmit

through the media and either reach the listener or micro-

phone locations as direct paths, or after undergoing differ-

ent wave effects including reflections, interference, diffrac-

tion, scattering, etc. Some of the earliest work on sound

source localization (SSL) makes use of the time difference

of arrival (TDOA) at the receiver [5]. These methods only

exploit the direct sound and its direction at the receiver, and

do not take into account of reflections or other wave effects.

As a result, it does not provide sufficient accuracy for many

applications.

In many scenarios, the sound source is not directly in the

line of sight of the listener, i.e., NLOS (Non-Line-of-Sight),

and is occluded by obstacles. In such cases, indirect sound

propagation paths emitted at the source should be signifi-

cant and prominent for the listener In particular, we focus on

the reflection and diffraction propagation paths, and model

these indirect sound effects based on using ray-based geo-

metric propagation paths. Furthermore, a full version of this

article was published to ICRA 2018 [2] and ICRA 2019 [1],

and we provide a brief summary here.

2. Reflection and Diffraction-Aware SSL

We present a novel sound localization algorithm that

takes into diffraction effects, especially from non-light-

of-sight or occluded sources. Our approach is built on

a ray tracing framework and models diffraction using the

Uniform Theory of Diffraction (UTD) [6] along with the

wedges. During the precomputation phase, we use SLAM

and reconstruct a 3D triangular mesh for an indoor envi-

ronment. The reconstructed 3D triangular mesh is used to

generate the reflection and diffraction acoustic ray at run-
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Figure 1: We show run-time computations using acoustic

ray tracing with diffraction rays for sound source localiza-

tion. The diffraction-aware acoustic ray tracing is high-

lighted in blue and our main contribution in this paper. This

figure refers to Fig. 3 in [1].

time.

2.1. Reflection­Aware Ray Tracing

In this section, we explain how our acoustic ray tracing

technique generates direct and reflection.

At runtime, we first collect the directions of the incom-

ing sound signals from the TDOA algorithm. For each in-

coming direction, we generate a primary acoustic ray in

the backward direction; as a result, we perform acoustic

ray tracing in a backward manner. At this stage, we can-

not determine whether the incoming signal is generated by

one of the states: direct propagation, reflection, or diffrac-

tion. We can determine the actual states of these primary

acoustic rays while performing backward acoustic ray trac-

ing. Nonetheless, we denote this primary ray as the direct

acoustic ray since the primary ray is a direct ray from the

listener’s perspective.

We represent a primary acoustic ray as r0n for the n-th

incoming sound direction. Its superscript denotes the order

of the acoustic path, where the 0-th order denotes the direct

path from the listener. We also generate a (backward) re-

flection ray once an acoustic ray intersects with the scene

information under the assumption that the intersected ma-

terial mainly consists of specular materials [2]. The main

difference from the prior method [2] is that we use a mesh-

based representation, while the prior method used a voxel-

based octree representation for intersection tests. This mesh

is computed during precomputation and we use the triangle

normals to perform the reflections. As a result, for the n-th

incoming sound direction, we recursively generate reflec-

tion rays with increasing orders, encoded by a ray path that

is defined by Rn = [r0n, r
1

n, ...]. The order of rays increases
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Figure 2: This figure illustrates our acoustic ray tracing

method for handling the diffraction effect. Suppose that we

have an acoustic ray rj−1

n satisfying the diffraction condi-

tion, hitting or passing near the edge of a wedge. We then

generate Nd diffraction rays converging the possible incom-

ing direction (especially, in the shadow region) of rays that

cause the diffraction. This figure refers to Fig. 4 in [1].
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Figure 3: The diffraction condition. When a ray rj−1

n passes

close to an edge of a wedge, we consider the ray to be gen-

erated by the edge diffraction. We measure the angle θD
between the ray and its ideal generated ray that hits the edge

exactly, for checking our diffraction condition. This figure

refers to Fig. 5 in [1].

as we perform more reflection and diffraction.

2.2. Diffraction­Aware Ray Tracing

We now explain our algorithm to model the diffraction

effects efficiently within acoustic ray tracing to localize the

sound source. Since our goal is to achieve fast performance

in localizing the sound source, we use the formulation based

on Uniform Theory of Diffraction (UTD) [6]. The incoming

sounds collected by the microphone array consist of contri-

butions from different effects in the environment, including

reflections and diffractions.

Edge diffraction occurs when an acoustic wave hits the

edge of a wedge. In the context of acoustic ray tracing,

when an acoustic ray hits an edge of a wedge between two

neighboring triangles, the diffracted signal propagates into

all possible directions from that edge. The UTD model

assumes that the point on the edge causing the diffrac-



tion effect is an imaginary source generating the spherical

wave [6].

In order to solve the problem of localizing the sound

source, we simulate the process of backward ray tracing.

Suppose that an n-th incoming sound direction denoted by

the ray rj−1

n is generated by the diffraction effect at an

edge. In an ideal case, the incoming ray will hit the edge

of a wedge and generate the diffraction acoustic ray rjn, as

shown in Fig. 2. It is important to note that there can be

an infinite number of incident rays generating diffractions

at the edge. Unfortunately, it is not easy to link the inci-

dent direction exactly to the edge generating the diffraction.

Therefore, we generate a set of Nd different diffraction rays

in a backward manner that covers the possible incident di-

rections to the edge based on the UTD model. This set is

generated based on an assumption that one of those gen-

erated rays might have the actual incident direction caus-

ing the diffraction. When there are sufficient acoustic rays,

including the primary, reflection, and diffraction rays, it is

highly likely that those rays will pass through or near to the

sound source location.

This explanation begins with the ideal case, where the

acoustic ray rj−1

n hits the edge of a wedge. Because our

algorithm works on the real environment containing various

types of errors from sensor noises and resolution errors from

the TDOA method, it is rare that an acoustic ray intersects

an edge exactly.

In order to support various cases that arise in real en-

vironments, we propose using the notion of diffraction-

condition between a ray and a wedge. The diffraction-

condition simply measures how close the ray rj−1

n passes

to an edge of the wedge. Specifically, we define the

diffractability vd according to the angle θD between the

acoustic ray and its ideally generated ray for the diffraction

with the wedge: i.e. vd = cos(θD), where the cos function

is used to normalize the angle θD (Fig. 3).

If the diffractabilty vd is larger than a threshold value,

e.g., 0.95 in our tests, our algorithm determines that the

acoustic ray is generated from the diffraction at the wedge,

and we thus generate the secondary, diffraction ray at the

wedge in the backward manner.

We now present how to generate the diffraction rays

when the acoustic ray satisfies the diffraction-condition.

The diffraction rays are generated along the surface of the

cone (Fig. 2) because the UTD model is based on the princi-

ple of Fermat [6]: the ray follows the shortest path from the

source to the listener. Ideally, we have to generate every set

of the shortest paths on the cone for UTD model. However,

because of the limitation of the resources, we generate the

Nd number of diffraction rays on the cone for UTD model.

In order to accelerate the process, we only generate the

diffraction rays in the shadow region, which is defined by

the wedge; the rest of the shadow region is called the illu-

minated region. We use this process because covering only

the shadow region but not the illuminated region generates

minor errors for a simulation of the sound propagation [9].

Given the new diffraction rays, we apply our algorithm

recursively and generate another order of reflection and

diffraction rays. Given the n-th incoming direction signal,

we generate acoustic rays, including direct, reflection, and

diffraction rays and maintain the ray paths Rn in a tree data

structure. The root of this tree represents the direct acoustic

ray, starting from the microphones. The depth of the tree

denotes the order of its associated ray. Note that we gen-

erate one child and Nd children for handling reflection and

diffraction effects, respectively.

2.3. Estimating the Source Position

We explain our method used to localize the sound source

position using acoustic rays. Our estimation is based on

Monte-Carlo localization (MCL), also known as the parti-

cle filter [2]. Our estimation process assumes that there is

a single sound source in the environment, which causes a

high probability that all those acoustic ray paths pass near

that source. In other words, the acoustic rays converge in a

region located close to the source, and our estimation aims

to identify such a convergence region out of all the gener-

ated rays.

The MCL approach generates initial particles in the

space as an approximation to the source locations. It allo-

cates higher weights to particles that are closer to acoustic

rays and re-samples the particles to get more particles in re-

gions with higher weights [2]. Specifically, we adopt the

generalized variance, which is a one-dimensional measure

for multi-dimensional scatter data, to see whether particles

have converged. When the generalized variance is less than

a threshold (e.g., σc = 0.5), we treat that a sound occurs and

the mean position of those particles as the estimated sound

source position.

3. Result and Discussion

We describe our setup consisting of a robot with micro-

phones and testing environments, and highlight the perfor-

mance of our approach. The hardware platform is based on

Turtlebot2 with a 2D laser scanner, Kinect, a computer with

an Intel i7 process, and a microphone array, which is an

embedded system for streaming multi-channel audios, con-

sisting of eight microphones. For all the computations, we

use a single core, and perform our estimation every 200ms,

supporting five different estimations in one second.

We have evaluated our method in indoor environments

containing a box-shaped object that blocks direct paths from

the sound to the listener. As shown in Fig. 4a, the scenario

contains a moving source and an obstacle. Where the source

moves along the red trajectory, the obstacle cause the NLOS

source while the source is located inside the invisible area.
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(a) A NLOS moving source scene around an obstacle.
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Figure 4: These figures show the testing environment (7m

by 7m with 3m height) (a) and the accuracy error of our

method with the dynamically moving sound source (b).

This figure refers to Fig. 1 in [1].

This scenario is tested on the room that size is 7m×7m and

3m height.

During the precomputation phase, we perform SLAM

and reconstruct a mesh of the testing environment. We en-

sure that the resulting mesh has no holes using the MeshLab

package.

Moving sound source around an obstacle. We evaluate

the accuracy by computing the L2 distance errors between

the positions estimated by our method and the ground-truth

positions. We measure the accuracy for the three cased

(using only direct rays, adding reflection rays, and adding

diffraction rays) to show the efficiency of the proposed

method.

The accuracy graph of the scenario is presented in

Fig. 4b; the average distance errors of three cases

of only using direct rays, adding reflection rays, and

adding diffraction rays are 1.83m, 0.95m, and 0.7m,

respectively, indicating a 92% and 125% improve-

ment in accuracy considering reflection and diffrac-

tion rays. The working videos and more details are

available at (http://sgvr.kaist.ac.kr/~ikan/papers/DA-SSL) and

(http://sgvr.kaist.ac.kr/~ikan/papers/RA-SSL).

Future work. Even if our work can localize the 3D lo-

cation of the NLOS source well, it still needs to be sup-

plemented because the accuracy is relatively low (0.7m).

As we already mentioned in Sec. 1, there are considerable

works that are visual-based localization methods [8, 3, 4].

As a part of future work, we would like to combine our

acoustic-drive localization method and novel audio-visual

localization methods.
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