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Abstract

3D object recognition accuracy can be improved by

learning the multi-scale spatial features from 3D spatial ge-

ometric representations of objects such as point clouds, 3D

models, surfaces, and RGB-D data. Current deep learning

approaches learn such features either using structured data

representations (voxel grids and octrees) or from unstruc-

tured representations (graphs and point clouds). Learn-

ing features from such structured representations is limited

by the restriction on resolution and tree depth while un-

structured representations creates a challenge due to non-

uniformity among data samples. In this paper, we propose

an end-to-end multi-level learning approach on a multi-

level voxel grid to overcome these drawbacks. To demon-

strate the utility of the proposed multi-level learning, we

use a multi-level voxel representation of 3D objects to per-

form object recognition. The multi-level voxel representa-

tion consists of a coarse voxel grid that contains volumetric

information of the 3D object. In addition, each voxel in the

coarse grid that contains a portion of the object boundary

is subdivided into multiple fine-level voxel grids. The per-

formance of our multi-level learning algorithm for object

recognition is comparable to dense voxel representations

while using significantly lower memory.

1. Introduction

A three dimensional object comprises of a different

multi-scale features inherent to its geometry and its over-

all shape. Deep Neural Networks have been used to ex-

tract meaningful information from spatial data and per-

form object recognition. Several works have made sub-

stantial efforts to perform object recognition from 3D data

by extending image recognition principles such as projec-

tion of the 3D information to 2D or 2.5D (depth inclu-

sion) images [18, 15] and multiple 2D views of the 3D ob-

ject [7, 5, 14, 11]. Though this is effective in many appli-

cations including 3D reconstruction, some spatial relation-

ships among the features get lost and this makes it infeasible

for certain problems such as graphics rendering [16], point

cloud labeling [12], design and manufacturing [3]. How-

ever, a major limitation in learning directly from 3D data

is the high memory requirement. The presence of abundant

information in spatial data coupled with the large data re-

quirement for efficient training of deep learning algorithms

render this task impractical for high-resolution 3D data.

Convolutional Neural Networks (CNNs) are natural can-

didates for this task as they have been proven to be effective

for learning features from 3D spatial data [4, 9]. However,

training CNNs using uniform data representations (such as

voxels) become inefficient when spatial features exist on

different physical scales since uniform data representation

cannot effectively accommodate this non-uniformity [1].

Hence, efficient and scalable deep learning techniques that

exploit sparse and hierarchical data representations are nec-

essary to deal with large 3D data sets. The most common

high resolution voxel representation of 3D geometries is

Octree [10], which is a structured representation that recur-

sively divides each voxel into 8 sub-voxels and stores them

in a tree structure. Octree based learning frameworks like

OctNet [13] require custom convolution operations specific

for the octree data structure. This approach facilitates learn-

ing from high-resolution structured data.

In this paper, we present a novel approach to enable hier-

archical learning of features from a flexible multi-level un-

structured voxel representation of spatial data. We achieve

this by adopting the multi-level voxelization framework de-

veloped by Young et. al [20]. A multi-level voxel grid is

defined as a binary occupancy grid at two levels to represent

a 3D object with two independent user-defined resolutions

of voxel grids. We developed a multi-level CNN that can

effectively learn features despite the unstructured nature of

the multi-level data representation.

2. Multi-level Voxelization

In this section, we briefly describe the GPU-accelerated

algorithm [20] we used to generate the multi-level voxeliza-

tion from boundary representation(B-rep) of a 3D model.

The multi-level voxelization is a binary occupancy grid hav-

ing two major components namely, coarse-level voxeliza-

tion and fine-level voxelization. The coarse-level voxel grid

represents the whole 3D CAD model at a coarse resolution



Figure 1: Multi-Resolution Convolutional Neural Network (MRCNN). Our proposed network can learn from a hierarchical

data representation with a coarse level of information and information of boundary voxels which connects to the information

from fine level voxels. For a forward pass (left to right) the information learnt from selected fine level voxels using the fine-

level CNN is embedded in the coarse level input to coarse-level CNN and then the final prediction is obtained. The backward

pass follows the reverse order of the forward pass (right to left).

and the fine-level voxel grid represents the boundary of the

coarse-level voxel grid at a finer resolution in a hierarchi-

cal manner. The two levels of voxel grids are mapped to

each other using a prefix-sum array mapping. For example,

a CAD model can be represented at the coarse-level with

a voxel resolution of 32 × 32 × 32 and each of the coarse

boundary voxels can be further voxelized at a resolution of

4× 4× 4 (see Figure 2). This makes the CAD model to be

represented with an effective resolution of 128× 128× 128

using the multi-level voxelization. We use a multi-level

voxel data structure to store information pertaining to the

geometry of an object in two hierarchical levels, thus ex-

ploiting the sparse nature of the data.

3. Multi-resolution CNN

The multi-resolution convolutional neural network (MR-

CNN) consists of two 3DCNNs, with each CNN kernels

performing 3D convolution operations, to learn the features

in each level of the voxel grid. One of these 3DCNNs,

named as Coarse-level CNN, takes in the coarse level vox-

els as input while the other 3DCNN called Fine-level CNN

takes the fine level voxels as input. These two neural net-

works are intelligently combined to work together as a sin-

gle unit in both forward pass and backward pass of the al-

gorithm. This facilitates optimal learning from a multi-level

data representation.

The forward computation of MRCNN starts by learning

from the fine-level voxel grids by randomly sampling a sub-

set, φ, of the total boundary voxels, Φ, in a 3D voxelized

model. Each of these φ boundary voxels, with individual

fine voxel grid ϑ2, are used as input to Fine-level CNN.

The Fine-level CNN consists of blocks of convolution - max

pooling layer pairs and fully connected layers connected se-

quentially, each with a ReLU activation function associated

with it. Fine-Level CNN outputs a single real numbered

value ηb for each of the selected boundary voxels Φ. We

replace the original coarse voxel grid values with ηb at the

corresponding voxel positions. This is performed with the

help of the prefix sum based index arrays of the multi-level

voxel grid as explained in [20].

In the next phase of the MRCNN forward computation,

the coarse-level voxel grid with selective embedding of the

fine level voxel information ηb, is used as an input to the

Coarse-level CNN. The architecture of Coarse-level CNN

network comprises of different set of convolution - max

pooling layers. The end of the network has multiple fully

connected layers and the output is the class prediction prob-

ability vector. Categorical cross-entropy loss function is

used to compute the loss of between predicted classes and

true class labels. The forward pass of MRCNN network

algorithm is illustrated in Figure 1.

Once the forward computation of the MRCNN is es-

tablished, the only challenge is to link the two networks

such that the gradients can passed on from the coarse level

network to the fine level network during back-propagation.

This link is essential for obtaining gradients for the weights

of the fine level network. The final loss between the ypred
and ytrue of the coarse level network is first computed us-

ing categorical cross-entropy loss. Back-propagating this

loss through the coarse level network is trivial. Once we

obtain the gradients for input coarse level voxel embedding,

we compute the gradient of ηb and use that to backpropagate

the same in the fine level voxel grid. Let the gradient of the

loss with respect to coarse input be dθ1, using prefix sum,

we track the gradients of the outputs of fine level network

(ηb) and use it to back-propagate through the network.
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Figure 2: Multi-level voxelization of B-rep CAD models. The fine level voxelization is performed only near the boundaries

of the coarse level voxelization. The final resolution is equivalent to having dense level voxels throughout the model.

It is also worthwhile to note that since the same Fine-

level CNN is shared among all the boundary voxels, the gra-

dients of θ2 for Fine-level CNN are computed for all bound-

ary voxels only once.

With the gradients linked, the network could be trained

end-to-end to update its weights θ1 and θ2 in such a way

that the loss L, of the final prediction is minimized. The

network parameters’ update could be performed using the

Adam optimizer [6]. The complete operation of MRCNN is

explained schematically in Figure 1.

4. Experimental Results & Discussion

In this section, we present the classification results of the

proposed MRCNN framework on ModelNet10 and Model-

Net40 datasets [18] that contain 3D geometric models of

10 and 40 different categories respectively. The 3D models

are voxelized using the voxelization scheme mentioned in

Section 2, yielding a set of coarse voxel grid and fine voxel

grids with a single resolution of 8
3 and 32

3 respectively.

Additionally, we also voxelized two sets of multi-resolution

data to test the efficacy of MRCNN; a 8
3 coarse voxel grid

with a 4
3 fine voxel grid giving an effective resolution of

32
3 resolution and a 32

3 coarse voxel grid with a 4
3 fine

voxel grid, resulting in a effective resolution of 1283. We

conducted a set of experiments on the 4 different resolu-

tions of data and compared the classification performance

between a Coarse-Level CNN applied on the coarse and

dense resolution data and MRCNN applied on the multi-

resolution data. For the multi-resolution data, we applied

our proposed MRCNN by randomly sampling 40% of the

coarse-level boundary voxels, and used the fine resolution

voxels of these coarse boundary voxels as input to the Fine-

level CNN. We then selectively embed the output of Fine-

level CNN in the coarse level boundary voxels and continue

the forward pass. Empirically, we find that sampling 40%

of boundary voxels gives a good classification performance

without prolonging the training time excessively.

Figure 3 shows the mean test accuracy of object classi-

fication using MRCNN on ModelNet10 test dataset by run-

ning multiple inferences with various network hyperparam-

eters. Variance in the classification accuracies are repre-

sented by the shaded region. We see that there is a clear

trend showing better performance for higher effective res-

olution. Comparing the performance of a regular CNN on

the coarse 8
3 resolution data with the performance of MR-

CNN on multi-resolution data, it is evident that MRCNN

enables has better performance. Subsequently, a regular

CNN applied on a dense voxel grid of 323 is able to achieve

a slightly better classification accuracy than both. Due to

memory constraints of GPUs, we are unable to demonstrate

the performance of a Coarse-level CNN applied on dense

Figure 3: Mean classification accuracies with different in-

put resolutions on ModelNet10 dataset. Coarse and dense

resolutions are trained with a conventional 3DCNN while

the multi-level voxel grids are trained with MRCNN.



Table 1: Comparison of deep learning frameworks with

voxel based representation for ModelNet10 object recog-

nition. ∗ represents value interpreted from plot

Method Data Representation Accuracy %

MRCNN Multi-level voxels 91.3

OctNet [13] Octree Voxels 91.0
∗

3D Shapenets [18] Voxels 83.5

VoxNet [9] Voxels 92.0

Beam Search [19] Voxels 88.0

3DGAN [17] Voxels 91.0

binVoxNetPlus [8] Voxels 92.3

LightNet [21] Voxels 93.9

resolution data of 1283. Nonetheless, using MRCNN, we

are able to train and achieve the best classification perfor-

mance using an effective resolution of 1283 represented by

a coarse resolution of 323 and a finer resolution of 43.

Comparisons of our object classification results with the

performance of other spatial deep learning methods are tab-

ulated in Tables 1 and 2 for ModelNet10 and ModelNet40

dataset respectively. We highlight the performance of MR-

CNN with respect to OctNet due to the similarities in data

representation (high resolution voxel grid) and classifica-

tion task that exploits the sparsity in spatial data in both the

frameworks. In addition to that, we compare MRCNN per-

formance with other voxel based methods employed on the

ModelNet datasets. We can see that MRCNN (91.3%) out-

performs some of the voxel based methods and is better at

classification than OctNet (91.0%) for ModelNet10. A sim-

ilar trend is seen in ModelNet40 classification accuracies.

An additional advantage of the MRCNN framework is

lower GPU memory utilization during training of the net-

work. In Figure 4, we show a comparison between the

memory requirements of the GPU for training on four dif-

Table 2: Comparison of deep learning frameworks with

voxel based representation for ModelNet40 object recog-

nition. ∗ represents value interpreted from plot.

Method Data Representation Accuracy %

MRCNN Multi-level voxels 86.2

OctNet Octree Voxels 85.5∗

3D Shapenets Voxels 77.3

VoxNet Voxels 83.0

Beam Search Voxels 81.26

3DGAN Voxels 83.3

binVoxNetPlus Voxels 85.47

LightNet Voxels 88.93

Figure 4: GPU memory usage of MRCNN training &

equivalent CNN training on specified voxel grid resolutions.

Red horizontal line shows the current prominent GPU ca-

pacity. Blue hatched bar depicts the anticipated memory

usage while training a 128
3 dense voxel grid on CNN.

ferent resolutions of voxel data with constant batchsize. The

memory required by a GPU scales polynomially (n3) with

the voxel grid resolution n, hence we were unable to train

a dense-level network on 128
3 voxel resolution (shown as a

blue hatched bar). We can see that MRCNN training with

multi-level voxel grid representations utilizes considerably

less memory than a dense CNN network training on the

same effective resolution dense voxel grid.This highlights

the effect of sparsity where the increase in classification per-

formance scales non-linearly with data resolution.

5. Conclusions

In this paper, we explore a novel deep learning archi-

tecture, MRCNN, to learn from 3D data in a hierarchical

manner using multi-level voxel-based data structures. Our

object recognition results show that MRCNN performance

is significantly better and robust compared to that of the reg-

ular CNNs trained on coarse-resolution data while having

similar memory requirements. MRCNN also performs al-

most as well as CNNs trained on dense data with equivalent

resolution while keeping the memory requirements signifi-

cantly lower. Future works will include exploring efficacies

of MRCNN on various object recognition datasets as well

as other relevant computer vision problems where extrac-

tion of multi-scale features is critically important.
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