
A Novel Algorithm for Skeleton Extraction From Images

Using Topological Graph Analysis

Liping Yang Diane Oyen Brendt Wohlberg

Los Alamos National Laboratory

Los Alamos, NM, USA

{liping.yang,doyen,brendt}@lanl.gov

Abstract

Skeletonization, also called thinning, is an important

pre-processing step in computer vision and image pro-

cessing tasks such as shape analysis and vectorization.

It is a morphological process that generates a skeleton

from an input image. Many thinning algorithms have

been proposed, but accurate and fast algorithms are still

in demand. In this paper, we propose a novel algorithm

using embedded topological graphs and computational

geometry that can extract skeletons from input binary

images. We compare three well-known thinning algo-

rithms with our method, with the experimental results

showing effectiveness of the proposed method and algo-

rithms.

1. Introduction and Related Work

Thinning of binary images is an important pre-

processing technique in computer vision and image pro-

cessing. Thinning generates a compact representation of

images called a skeleton. A skeleton is a central line ex-

traction of an object via thinning [11]. The skeleton can

be useful for feature extraction, and representation of

objects’ topology, because a skeleton captures essential

topology and shape information of an object in a simple

form [10]. The thinning process reduces redundant in-

formation in images and thus reduces image complexity

for tasks such as shape analysis and scene understand-

ing.

Thinning algorithms are categorized into two classes

[7, 9, 5, 1]: iterative (pixel-based), and non-iterative

(non-pixel based). The proposed algorithm in this paper

is non-iterative. We compare our algorithm against the

three most commonly cited algorithms in the literature

[17, 12, 8].

The Zhang-Suen Thinning algorithm [17], proposed

in 1984, is the most widely used and well-proved thin-

ning algorithm, because of its robustness. A number

of variants of the Zhang-Suen algorithm have also been

proposed, e.g. [12, 3, 2]. Zhang-Suen and its follow-

ing algorithms are raster-based, making it very compu-

tationally expensive. Our method takes advantage of

vector-based methods (i.e., topological graphs and com-

putational geometry) to extract skeletons of input binary

images. Our results show the effectiveness of our ap-

proach and algorithms based on graphs and computa-

tional geometry (i.e., visibility polygon, kernel, and lo-

cal kernel [16]).

2. Approach and Algorithms

In this paper, we propose an algorithm based on topo-

logical graphs and computational geometry algorithms

(i.e., kernel and local kernel) for skeleton extraction

from binary images. We use the idea of the kernel of

a polygon, which is the set of all points of polygon P

from which the entire interior of P is visible; that is,

a straight line segment contained entirely within P can

connect any point in the kernel with any point in P . If P

is concave, then the kernel may or may not be empty. If

the kernel is empty, then we use the idea of a local ker-

nel. See Figure 1 for a brief explanation and examples

of kernels and local kernels. The formal definitions of

the kernel and local kernel is given in [16]. The algo-

rithm for finding the kernel and local kernels is provided

in Algorithm 1.

Once the kernel or local kernels are found, we di-

vide the binary image into a set of neighboring convex

polygons including the kernel, local kernels and the re-

maining polygons that make up the complete image. The

image is now represented as a graph in which nodes rep-

resent the region polygons and links connect nodes rep-



(a) kernel (b) local kernel

Figure 1: Examples of a kernel and local kernels. A

kernel is a sub-polygon that can see all the parts of an

input polygon. Not every polygon has a kernel. The

region outlined in white in (a) provides an example of a

kernel of the polygon “X”. The local kernel, as its name

implies, is a localized kernel; it is a set of regions that

can see most of the input region, when the kernel does

not exist. For example, the three white outlined regions

in (b) are the local kernels of the polygon “W”. Formal

definitions of kernel and local kernel can be found in

[16].

resenting polygons that share an edge (neighboring re-

gions in the image are also neighbors in the graph). The

skeleton is then constructed by connecting a straight line

segment between the centroids of each neighboring pair

of nodes. Leaf nodes have only one neighbor, and thus

the skeleton would end at the center of the node; there-

fore we extend the line segment beyond the centroid of

the leaf node to the boundary of the polygon represented

by the node. See Figure 2 for the skeletons extracted us-

ing our algorithm corresponding to the kernel and local

kernels shown in Figure 1.

Algorithms 1 and 2 provide details of our method.

When implementing the algorithms, we use NetworkX

[6] to store the polygon as a graph, because it is eas-

ier to update and merge the subdivided contour polygon

according to its local kernel(s) when represented and

stored as a graph, and the topological relations between

polygons are represented and reserved in graphs. The

skeleton graph is the dual graph of the subdivided con-

tour structure graph (see an illustrated example in Figure

3).

3. Experiments and Results

The results of our method can be found in Figure

4. The implementation used OpenCV, SymPy [13], and

NetworkX [6]. The local kernel is implemented by the

Algorithm 1: Computing local kernels

Input: An embedded graph Gp representing a

concave polygon P

/* embedded graph means each node of the

graph contains coordinates, so it is

drawable on a plane. */

Output: a list of local kernel polygons of P

1 C ← list(concave nodes of Gp) in CCW order

// only concave node nodes to calculate

local kernel, there is one local kernel

for each concave node

// CCW means counter-clockwise

2 Lk ← null /* initialize a list to store

local kernels */

/* if concave node list C is not empty */

3 while C do

4 c← current first node in C

5 calculate visibility polygon of P at c

6 Pvc← visibility polygon of P at c

7 kc ← calculate local kernel of Pvc

8 append kc to Lk

9 if kc contains nodes in C then

10 remove the concave node from C /* if a

concave node can see another

concave node, it is not necessary

to calculate the local kernel for

that concave node, because it is

redundant. */

11 return Lk

(a) (b)

Figure 2: Skeletons extracted using our algorithm corre-

sponding to the kernel and local kernels shown in Figure

1.

authors. We can see that the skeletons extracted using

our method keep the topology of the image objects very

well. Since the algorithm is not raster-based, it is much



(a) (b) (c)

Figure 3: Graphs corresponding to the skeleton shown in Figure 2 (a). (a) structure graph generated from contours of

input image, (b) updated structure graph (subdivided by the kernel), and (c) skeleton graph (i.e., the graph with blue

nodes) overlaid by updated structure graph.

(a) (b)

(c) (d)

Figure 4: Results and comparison. (a) and (c) are generated by Zhang-Suen [17] algorithm (the other two algorithms

we compared with produce very similar results as those using Zhang-Suen algorithm, thus we only provide the results

using Zhang-Suen algorithm here). (b) and (d) show the results from our algorithm.



Algorithm 2: Skeleton extraction using graphs

Input: Binary image M

Output: Skeleton of M

1 C ← contours of M // M is a binary image

with White as the target, if not, invert

it

/* for each contour */

2 foreach c ∈ C do

3 if c is concave then

4 calculate local kernel of c

5 K ← local kernels of c

6 subdivide the contour polygon c according

to K

7 P = a set of subdivided convex polygons

/* the set of convex polygons are

stored in graph format */

8

9 find centroid of each convex polygon

10 connect all centroids /* it is a graph,

we call it skeleton graph */

11 L← leaf nodes of the skeleton graph

foreach leaf node l ∈ L do

12 extend the lines and intersect with the

contour poly c

13 add the intersection node and connect

it to the corresponding leaf node

14 return skeleton graph

/* The embedded graph is the

skeleton of the input binary

image M */

faster than the commonly-used thinning algorithms such

as Zhuang-Suen [17].

4. Conclusion, Limitation and Future Work

We have proposed a novel skeleton extraction algo-

rithm that can keep the topological relations among ob-

jects in images well. The skeleton extracted using our

algorithm is not raster-based, thus it retains more infor-

mation for further advanced shape and scene analysis in

images compared with raster-based skeleton extraction

methods. From Figure 4, it is obvious that our current

skeleton extraction algorithm works very well for im-

ages with line boundaries, and its main limitation is that

it does not deal with curve skeleton extraction. In the

future, we will extend our algorithm to solve the cases

with curves. Potential solutions to improve our current

algorithm to be able to cope with curve skeletons are: (1)

use Douglas-Peucker algorithm [14, 4] or Visvalingam’s

algorithm [15] to simplify complex shapes (e.g., those

with curves) to poly-lines. While Douglas-Peucker is

the most well-known for simplifying geometry, Vis-

valingam’s algorithm [15] is more effective and has a re-

markably intuitive explanation, becuase it progressively

removes points with the least-perceptible change. We

will use both algorithms to simplify complex shapes and

evaluate which one works best for skeleton extraction;

or (2) use Bézier curve to model the curve skeleton via

storing the curve parameters (e.g., control points) into

graphs.

Topological graph-based skeleton extraction has

clear and intuitive advantages for further shape analy-

sis, and also for automation of effective feature extrac-

tion for machine learning algorithms for image analysis.

Thus, many potential applications could benefit from

the algorithm and approach proposed in this paper, such

as intelligent image interpretation for visually impaired

people (it is much easier to describe the spatial arrange-

ments and spatial relationships among objects appeared

in an image, compared with raster-based methods).

References

[1] Lynda Ben Boudaoud, Basel Solaiman, and Abdelkamel

Tari. Implementation and comparison of binary thinning

algorithms on GPU. Computing, pages 1–27, 2018.

[2] Lynda Ben Boudaoud, Basel Solaiman, and Abdelkamel

Tari. A modified ZS thinning algorithm by a hybrid ap-

proach. The Visual Computer, pages 1–18, 2018.

[3] Wei Chen, Lichun Sui, Zhengchao Xu, and Yu Lang.

Improved Zhang-Suen thinning algorithm in binary line

drawing applications. In 2012 International Conference

on Systems and Informatics (ICSAI2012), pages 1947–

1950. IEEE, 2012.

[4] David H Douglas and Thomas K Peucker. Algorithms

for the reduction of the number of points required to rep-

resent a digitized line or its caricature. Cartographica:

the international journal for geographic information and

geovisualization, 10(2):112–122, 1973.

[5] Matús Gramblicka and Jozef Vasky. Comparison of thin-

ning algorithms for vectorization of engineering draw-

ings. Journal of Theoretical and Applied Information

Technology, 94(2):265, 2016.

[6] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.

Exploring network structure, dynamics, and function us-

ing NetworkX. In In Proceedings of the 7th Python in

Science Conference (SciPy), pages 11–15, 2008.

[7] Erin Hastings. A survey of thinning methodologies. Pat-

tern analysis and Machine Intelligence, IEEE Transac-

tions, 4(9):869–885, 1992.

[8] Anil Kumar and Vinaya Teja. Edge detection based

on Otsu method and Stentiford algorithm. Interna-



tional Journal of Engineering Research Technology,

3(11):1527–1530, 2014.

[9] Harish Kumar and Paramjeet Kaur. A comparative study

of iterative thinning algorithms for BMP images. Inter-

national journal of computer Science and information

Technologies (IJCSIT), 2011.

[10] J. Komala Lakshmi and M. Punithavalli. A survey on

skeletons in digital image processing. In 2009 inter-

national conference on digital image processing, pages

260–269. IEEE, 2009.

[11] Louisa Lam, Seong-Whan Lee, and Ching Y Suen.

Thinning methodologies-a comprehensive survey. IEEE

Transactions on pattern analysis and machine intelli-

gence, 14(9):869–885, 1992.

[12] H. E. Lü and Patrick Shen-Pei Wang. A comment on a

fast parallel algorithm for thinning digital patterns. Com-

munications of the ACM, 29(3):239–242, 1986.

[13] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki,

Ondřej Čertı́k, Sergey B Kirpichev, Matthew Rocklin,

AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj

Singh, et al. SymPy: symbolic computing in Python.

PeerJ Computer Science, 3:e103, 2017.

[14] Urs Ramer. An iterative procedure for the polygonal ap-

proximation of plane curves. Computer graphics and im-

age processing, 1(3):244–256, 1972.

[15] Maheswari Visvalingam and James D Whyatt. Line gen-

eralisation by repeated elimination of points. The carto-

graphic journal, 30(1):46–51, 1993.

[16] Liping Yang and Michael Worboys. Generation of navi-

gation graphs for indoor space. International Journal of

Geographical Information Science, 29(10):1737–1756,

2015.

[17] T. Y. Zhang and Ching Y. Suen. A fast parallel algo-

rithm for thinning digital patterns. Communications of

the ACM, 27(3):236–239, 1984.


