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Abstract

Person re-identification is a crucial task in intelligent
video surveillance systems. It can be defined as recog-
nizing the same person from images of a person taken
from different cameras at different times. In this paper,
we present a camera-aware image-to-image translation us-
ing similarity preserving StarGAN (SP-StarGAN) as the
data augmentation for person re-identification. We pro-
pose the addition of an identity mapping term and a multi-
scale structural similarity term as additional losses for the
generator. SP-StarGAN can learn the relationship among
the multiple cameras with a single model and generate
the camera-aware extra training samples for person re-
identification. We evaluate our proposed method on public
datasets (Market-1501 and DukeMTMC-relD) and demon-
strate the efficacy of our method. We also report competitive
performance with the state-of-the-art methods.

1. Introduction

The number of video surveillance system has grown ex-
ponentially in recent years making the continues monitor-
ing of surveillance data impossible [1]. To automate the
analysis of the surveillance data, intelligent video surveil-
lance system has been an active research area in computer
vision. The goal is to extract meaningful information effi-
ciently from the large volume of surveillance data.

Person re-identification (RelD) is one of the fundamental
task associated with intelligent video surveillance system.
RelD refers to tracking a person across a network of non-
overlapping cameras [5, 12]. Given single/multiple images
or a video sequence of the interested person (query), RelD
is the task of recognizing the same person within the list of
images/videos collected from multiple cameras with non-
overlapping field of view (gallery).

Even though RelD has been intensively studied over the
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Figure 1: Sample Images showing challenges related to
camera variations in the ReID problem

past years, it is still an active research area due to various
challenges. RelD dataset can have intensive illumination
changes, pose variations, occlusions, different scales and
camera viewpoints [12]. In addition, collecting and anno-
tating a large dataset for multiple cameras is a very time-
consuming and expensive process.

Figure 1 shows the challenges in RelD. It demonstrates
that it is challenging to distinguish the same person in the
images taken from different cameras. Most of these chal-
lenges are due to camera variations such as different settings
or environments of multiple cameras. In order to address
these challenges, many RelD methods have been proposed
by adopting new features, using metric learning techniques,
the use of semantic attributes and using deep learning ap-
proaches.

Recent traditional ReID approaches have focused on ap-
pearance modeling and metric learning to learn the repre-
sentations that can be invariant to cameras-related proper-



ties such as illumination and view point changes [21,25,26].
There have been traditional approaches proposed including
KISSME [21], XQDA [25] and GOG [26]. More recently,
deep learning based methods have been described such as
IDE [39], Two Stream Siamese Net [8], SVDNet [29], Re-
Ranking [41] and TJ-AIDL [33].

As deep learning approaches have been studied, large-
scale RelD datasets have been released : Market-1501 [38]
and DukeMTMC-reID [40]. Compare to the other datasets
such as PRID [17], iLIDS-VID [34], Market-1501 and
DukeMTMC-reID have more than 6 different cameras set-
tings and a large number of images and identities. This
means that the same person can show up in more than
two camera views which introduces more challenges to re-
identify the person.

Although larger datasets have been introduced, more
training data is needed. In addition, since the number of
camera is growing in these datasets, more samples for each
cameras are needed in order to learn robust camera invariant
feature representations. It is expensive and time-consuming
to have manual identity annotations across different cam-
eras as we have more cameras and videos to annotate the
identity for RelD tasks.

To alleviate this problem, Zhong et al. [43] proposed a
method for generating camera style-transferred images us-
ing a CycleGAN (CamStyle) [44] as a data augmentation
method for ReID. They trained multiple image-to-image
translation models for each camera pair using CycleGAN.
Then, the model can generate new sample images from the
source camera style to the target camera style. Camera style
means the camera specific settings such as bright or dark il-
lumination. These style-transferred images allow us to have
extra training samples with different camera styles without
additional manual annotation. In addition, label smooth-
ing regularization (LSR) on the style-transferred images to
softly distribute their labels and reduce the noise effect gen-
erated by the extra samples. Due to the limitation of Cycle-
GAN which can model only one-to-one domain mapping,
this method only can learn the mapping for one camera pair
(e.g., camera 1 to camera 2) with the single model. Thus,
using Camstlye [44], multiple models need to be trained
to model an entire camera network. For example, in the
DukeMTMC-relD [40] dataset which has 8 different cam-
eras, 082 = 28 different models need to be trained sepa-
rately. The time complexity as well as the the number of
parameters will be sharply increased as the number of cam-
era increases. In addition, cross-camera relationships will
be ignored in this architecture. To address these limitations,
we propose the use of StarGAN [7] with an additional simi-
larity preserving term in the loss function for camera-aware
image-to-image translation to generate the extra samples for
RelD.

The main contributions of this paper are :

e We propose a similarity preserving StarGAN (SP-
StarGAN) which is an improvement of StarGAN [7].
To improve the quality of the generated images, we
propose to add a identity mapping term and multi-scale
structural similarity (MS-SSIM) to the generator loss.
SP-StarGAN can be used not only for RelD data aug-
mentation but also for general multi-domain image-to-
image translation. Compare to the previous method
(Camstyle), our method has almost 15 times less pa-
rameters to train while producing competitive gener-
ated image quality as well as competitive accuracy in
RelD.

e For RelD, we use SP-StarGAN to generate more train-
ing samples across different camera settings. In addi-
tion, we propose to employ the Re-Ranking method
[41] for ReID as post processing along with SP-
StarGAN generated samples in order to improve RelD
matching accuracy. We demonstrate that Re-Ranking
shows higher performance in ReID accuracy with bet-
ter quality generated images.

2. Related work

Generative Adversarial Networks. Goodfellow er
al. [13] proposed the Generative Adversarial Networks
(GANSs) which learns generative models through an adver-
sarial process that is training a generative model and a dis-
criminative model simultaneously. In recent years, GANs
has been used many applications including image genera-
tion [27] and image-to-image translation [7, 19, 44]. Rad-
ford et al. [27] introduced deep convolutional generative ad-
versarial networks (DCGANSs) that have some architectural
constraint for stable training and they have demonstrated the
applicability for image generation. One of the extensions of
GANSs, Pix2Pix [19], used a conditional GANs to learn the
relationship between the output and input image for image-
to-image translation. Pix2Pix [19] has the limitation that
it requires paired training data. To overcome this limita-
tion, a coupled generative adversarial network (CoGAN)
was introduced to learn the joint distribution across domains
without having the paired training data. Next, cycle consis-
tency adversarial networks (CycleGAN) employed a cycle-
consistency term in the adversarial loss for image-to-image
translation without having paired samples. CycleGAN has
the limited scalability that it can only learn the mapping
between two domain. This requires multiple models to be
trained in order to translate images across multiple domains.
To address this problem, Choi et al. [7] proposed a unified
generative adversarial networks (StarGAN) which allows us
to learn the mapping between multiple domains with a sin-
gle model.

Deep learning Approaches in ReID. With the release of
larger datasets, [23] demonstrated the feasibility of using of
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Figure 2: Overall Proposed Framework

deep learning for RelD by using a filter pairing neural net-
work (FPNN). After this initial work, many deep learning
methods were proposed to improve RelD accuracy [2,6,37].
Ahmed et al. [2] proposed to use a cross-input neighbor-
hood difference layer to compute the differences in feature
values across different camera views. In [37], a cosine layer
connects two sub-networks and jointly learn color, texture
and a similarity metric. Later, Cheng et al. [6] employed
a multi channel CNN to jointly learn both global and local
features of the human body using triplet loss function. In
[32], a Siamese Long Short-Term Memory (LSTM) model
that can process image parts sequentially is described. The
use of LSTM enables the capability of memorizing the spa-
tial dependency and selectively propagating the context in-
formation throughout the network. Chung ef al. [8] pro-
posed the use of a two stream Siamese network to learn the
spatial and temporal feature representation for RelD. In ad-
dition, Zheng et al. [39] proposed ID-Discriminative Em-
bedding (IDE) using ResNet [15] to train a ReID model as
a classifier. In [41], they propose a re-ranking method using
k-reciprocal Encoding inspired by [4]. This method can be
used with any initial ranking.

More recently, Deng et al. [10] proposed image-to-
image translation across different dataset domains while
preserving self similarity and domain dissimilarity. Their
method consists of an Siamese network and a CycleGAN.
In [33], Transferable Joint Attribute-Identity Deep Learning
(TJ-AIDL) was introduced to learn attribute-semantic and
identity discriminative features simultaneously and trans-
fer them to the target domain without collecting additional
data from the target domain. In order to reduce the dataset
domain discrepancy, Wei et al. [36] proposed a Person
Transfer Generative Adversarial Network (PTGAN) using
a CycleGAN to learn the relationship between two different
dataset domain.

Even though larger RelID datasets are available, the num-
ber of samples are still limited to train CNN models due to

the expensive annotation process. Thus, over-fitting still can
happen due to the lack of training samples in RelD dataset.
To address this problem, some data augmentation methods
have been proposed [40,42,43]. Zhong et al. [42] proposed
a random erasing technique which randomly selects the
rectangle region and erases it with random values to avoid
the over-fitting problem. In [40], DCGAN [27] was used to
generate unlabeled person images. They also proposed the
label smoothing regularization for outliers (LSRO) to assign
the stable labels for the generated images. More recently,
Zhong et al. [43] introduced a camera style transferred im-
age generation using CycleGAN [44] as a data augmenta-
tion method for RelID. They also described improved label
smoothing regularization (LSR) for generated images to ad-
dress small portion of unreliable data. We will refer this
method [43] as Camstyle for the rest of the paper.

3. Proposed Method

Figure 2 shows the overall flow of our proposed method.
First, we train the similarity preserving StarGAN to obtain
the camera-aware image-to-image translation model. This
model learns the mapping across different cameras with a
single model in the RelD dataset. We then generate cam-
era style translated images for all respective camera combi-
nations from this single model. Finally, we train the deep
learning ReID network with both real images and camera
style translated images.

3.1. StarGAN

In this section we briefly revisit the StarGAN [7]. Star-
GAN has a single generator G learning the mappings
among multiple domains and a single discriminator D with
auxiliary classifier to discriminate fake and real images and
control multiple domain simultaneously. In order to sta-
bilize the training process while generating realistic fake
images, the Wassertein GAN loss with a gradient penalty



[3, 14] was used for the adversarial loss and defined as:
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where D is defined as the probability distribution over the
sources, & is uniformly sampled along a straight line be-
tween a pair of a real and a generated image. In addition, G
generates an image G(x, ¢;) mapped from the input image
x to the target domain label c;, while D tries to distinguish
the between real and generated images.

StarGAN [7] has an auxiliary classifier on top of D to
classify images to the respective domain label. For the real
image, a domain classification loss is defined as:

s = EI7CS [_logDcls<Cs|-T)] (2)

cls

where D.;s(cs|z) denotes the probability distribution over
domain labels given the real image x and c, means the
source domain label. For the fake image, a domain clas-
sification loss is described as:

Lf

cls

= Em,ct [—ZOQDcls(Ct|G(9C,Ct))] (3)

where Ds(c:|G(x,ct)) represents a probability distribu-
tion over domain labels given the fake image G(z, ¢;) and
c; refers the target domain label.

In order to preserve the content of the input images while
translating the domain-related information of the image,
StarGAN used a cycle consistency loss [44] which is de-
fined as

LTCC = Ew,ct,csmx - G(G(JZ, Ct)acs)Hl] (4)

where the translated image G(z, ¢;) becomes the input for
the G with the original domain label ¢, and reconstruct the
original image x.
Finally, the overall StarGAN loss function is expressed
as
Lp = —Lagv + Aclstlsa &)

LG = Ladv + Aclst + /\rechec (6)

cls

where A.s, Arec are hyper-parameters for the relative im-
portance of each term.

3.2. Similarity Preserving StarGAN

In this paper, we employ the StarGAN model to gener-
ate camera style translated images as extra training samples
for RelD. However, we observe that the cycle consistency
term, L,.. in Equation 4, was not enough for preserving the
content of the input image related to person identity while
translating the camera domain-related content. For camera-
aware image-to-image translation, we do not want to have
dramatic changes in the image since we need to keep the

same identity while transferring the different camera set-
tings. In order to preserve the same identity while transfer-
ring the image to the different camera setting, we add two
additional terms into StarGAN generator loss (Equation 6).
We present the details of each additional term in the follow-
ing.

Identity Mapping Loss. In order to preserve the color-
consistency between the input and output, we add the iden-
tity mapping loss [30] to regularize the generator to be an
identity mapping when the real image with the source do-
main label is provided.

The identity mapping loss term is defined as

Lid = Ex,cs[
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where G(z, ¢;) is the generated image with the source cam-
era label ¢ and the z is the real image from camera c;.

Multi-scale Structural Similarity. Wang et al. [35]
originally used the structural similarity between two images
across different scales. We add the MS-SSIM term to our
generator loss to preserve the structural similarity. Specif-
ically in camera-aware image translation, we need to pre-
serve the most of the structural information to maintain the
same identity. By using this term, the generator tries to pre-
serve the structural information of the input image.

Let z, = G(G(z,ct),cs) as the reconstructed image
with the source camera label ¢y, ¢; refers to the target cam-
era label and the x as the input image. The SSIM loss can
defined as
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Wxy, x), c(xy, ), $(xr, T), v, B, represent the luminance,
contrast and structure information and their relative impor-
tance, respectively. f,, (15 are the means of z, and x and
0z, 0y are the standard deviations of x, and z. 0, 4 is
the covariance of z,. and z and C; = 0.01%, Cy = 0.032,
C3 = C5/2 are the fixed hyper-parameters.

We defined MS-SSIM [35] as
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Full SP-StarGAN loss function. Finally, the proposed
full generator loss function to optimize can be defined as

LG = Lagv + )\clsL({ls + ActsLrec (13)

+ XNiaLia — AsLvs—ssrv

where Acs, Arec, Aid> As are the relative importance of
domain classification, reconstruction, identity mapping and
MS-SSIM losses, respectively. Note that we have the same
discriminator loss function as in Equation 5.

Network Architecture. We employ the same network
architecture from [7]. The generator is consist of two con-
volutional layers with stride size 2, 6 residual blocks [15]
and two transposed convolutional layers with stride size 2.
The instance normalization [31] was used only for the gen-
erator. For the discriminator, the PatchGANSs [22] was used
to classify the local image patches are real or fake.

3.3. Deep Person RelD Network

Base Deep ReID Model. We use the ID-Discriminative
Embedding (IDE) [39] to train ReID model. In this net-
work, we use ResNet-50 [15] convolutional layers followed
by global max pooling layer. We then add two fully con-
nected layers as stated in [43]. The first layer has 1024 di-
mensions followed by batch normalization [18], ReLU and
Dropout [28]. For the ID-Discriminative Embedding, we
have the second layer that has P (the number of class di-
mensions) in order to use cross-entropy loss.

Loss Function. We use the cross-entropy loss for the
real images. For the generated images, we utilize the la-
bel smoothing regularization (LSR) as suggested in [43] to
reduce the negative effect of some of the noisy generated
images. Even though we have the identity label for the gen-
erated images, some images have transfer noise due to the
occlusions or the noise in the input image. To alleviate this
problem, LSR assigns the small weights to the other classes
and give less confidence in the identity label.

Re-Rank. We employ the re-ranking method [41] as
post processing on our initial ranking results from base deep
ReID model. Zhong et al. proposed to use the k-reciprocal
encoding for RelD re-ranking. Re-rank computes features
by encoding its k-reciprocal neighbors into a single vector.
Then this vector is used to re-rank under the Jaccard dis-
tance. And the final distance is computed with the combi-
nation of the original distance and the Jaccard distance. We
will refer this method as Re-Rank in the rest of the paper.

4. Experiments

4.1. Datasets

Market-1501 [38] contains 32,668 images in total with
1,501 identities from 6 different camera views. From the
video, person images were detected using a deformable part

Method Nia | As | mAP g’;kl
Baseline (IDE¥*) - - 65.87 85.66
StarGAN 0 0 66.1 86.5

1 0 67.2 86.7

StarGAN + Identity 2 0 68.2 87.9
5 0 67.4 87.5

0 1 67.4 87.4

StarGAN + MS-SSISM | 0 2 67.6 87.4
0 5 66.2 85.9

1 1 67 87.2

1 2 67.6 87.5

1 5 67.6 86.9

StarGAN + Both 3 i 68.6 381
2 2 68.5 87.6

2 5 67.6 87.6

Table 1: RelD accuracy evaluation on different proposed
components in SP-StarGAN loss on Market-1501

model [11]. This dataset is partitioned into 12,935 images
(751 identities) for training and 19,732 images (750 iden-
tities) for the gallery. In RelD test, 3,3668 hand-captured
images from 750 identities are pre-selected as queries to
evaluate RelD performance. Single-query evaluation pro-
tocol is used.

DukeMTMC-relID [42] has 36,411 images in total with
1,404 identities from 8 different camera views. It is com-
posed of 16,522 images (702 identities) for training samples
and 17,661 images (702 identities) for the gallery. In ReID
test, 2,228 images from 702 identities are pre-selected as
queries for the evaluation.

4.2. Experiment Setup

Similarity Preserving StarGAN. We first resize the im-
ages to 178x178 and then crop them randomly to 128x128.
The horizontal random flip is used with a probability of 0.5
as the data augmentation. As described in [7], all models are
trained using Adam [20] with 5; = 0.5 and 83 = 0.999.
The generator updates after five discriminator updates as
in [3]. The initial learning rate is 0.0001 for the first 100,000
iterations and linearly decays to the learning to O over the
next 100,000 iterations. The batch size is 16. We use the
fixed hyper-parameter values for A\gp = 10, Acls = 1,
Arec = 10 in Equation 13. We describe the analysis to
select the best value for \;4, A in Section 4.3.

Finally, for inference, we generate all combinations of
different cameras per image with the image size 128x128.
For example, if the real image is taken from camera 1 and
we have K different cameras in the dataset, then generate
the translated images with target camera domain label from
2t0 K.



Base Base
Component Augmentation Base + RE Base + Re-Rank + RE + Re-Rank
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1
StarGAN 66.1 86.5 69.8 88.4 82.1 88.9 85.6 90.9
StarGAN + Identity 68.2 87.9 71 88.9 83.3 89.8 86.7 91.3
StarGAN + MS-SSIM 67.6 87.4 71 88.7 82.8 89.3 85.6 91.2
StarGAN + Both 68.6 88.1 70.9 88.5 83 89.5 86.3 91.1

Table 2: RelD accuracy evaluation on different proposed pre/post processing methods on Market-1501

Deep Person RelD Network. We follow the training
general strategy in [43] to train the base deep reID model
except for the learning rate policy. All images are resized to
256x128. Two base data augmentation method were used
for the training : random cropping and random horizontal
flipping. A model is trained with SGD solver. The initial
learning rate is set to 0.01 for the ResNet-50 convolutional
layers and 0.1 for the two additional fully connected layer
since we use ImageNet [9] pre-trained ResNet-50 layers as
the initialization. In our experiments, the initial learning is
divided by 10 after first 30 epochs out of 60 epochs in total.
The batch size is set to 128 and the dropout probability is
set to 0.5.

In the RelD test, we extract the feature from the pooling
layer and use Euclidean distance to compute the similarity
between the gallery and query images. We use the generated
images as the extra training samples and follow the strategy
of [43] in the selection of the generated images. We ran-
domly select M real images and N generated images in a
training mini-batch. We set the A/ : NV ratio to 3 : 1 for all
experiments. We evaluate the ReID performance in terms of
mean Average Precision (mAP) and Top-1 Rank matching
accuracy.

4.3. Component Evaluation

In this section, we investigate the significance of the
components in GAN part and ReID Network Part of the
proposed method.

Similarity Preserving StarGAN. We first investigate
the effect of the additional loss terms in SP-StarGAN on
RelD accuracy metrics. We evaluate for different hyper-
parameter settings such as StarGAN + identity, StarGAN +
MS-SSIM and StarGAN + Both when \;; and )4 are vary-
ing from 1 — 5. Note that this evaluation was done with-
out any additional augmentation or post-processing in Deep
Re-ID network. In [43], they defined IDE* with the im-
proved learning rate policy while keeping the same network
architecture from IDE [39]. IDE* is used as the baseline
to evaluate the proposed components. As shown in Table
1, the usage of original StarGAN [7] improved around 1%
from the baseline in both mAP and Top-1 Rank accuracy.
When we included the additional loss terms into the gen-

erator loss function, we obtain around 2% improvement in
RelD accuracy depending on the hyper-parameters \;q and
As. This improvement is coming from the generating better
quality images which results that having less noise in gen-
erated samples. We also observe that we do not have the
continuing improvement as we increase the contributions of
the additional loss terms.

Deep Person RelD Network. We evaluate the differ-
ent components in Deep RelD network including Random
Erasing (RE) and Re-Rank. For this evaluation, we fix the
hyper-parameters for the GAN part as A;; = 2 and A\; = 1.
For any type of proposed GANSs, we observe the significant
improvement in RelD accuracy by employing both RE and
Re-Rank. This result demonstrates that using Random Eras-
ing as extra data augmentation along with the Re-Rank as
the post processing has significant positive effect on RelD
accuracy. Thus, our final proposed method version in the
following section will be including both RE and Re-Rank
as well as StarGAN + Both method with the parameters
Aig = 2and A\; = 1.

4.4. Complexity Analysis

Table 3 shows the comparison of the complexity of the
model between CamStyle [43] and proposed method. Note
that this experiment was done using a NVIDIA Titan Xp
GPU. CamStyle has around 792 M parameters to train while
our proposed method has only 52.23 M parameters to train
as shown in Table 3a. For training and inference process-
ing time as shown in Table 3b, CamStyle takes around
150 more hours in training than the proposed method for
DukeMTMC-relD [40] dataset. Camstyle can only learn
the mapping between two different camera domains at one
time due to the limitation of CycleGAN. This results the
dramatic increase in the complexity since we need to train
multiple models. On the other hand, proposed method can
model the mapping between multiple camera domains with
the single model while showing the competitive ReID accu-
racy.

4.5. Comparisons

Visual Evaluation Comparison We compare the sam-
ple generated images from Camstlyle and our proposed



Sub-Network Number of Parameters [M]
CamStyle Ours
Generator 637.17M 8.44 M
Discriminator | 154.84 M 4479 M
Total 79201 M 5323 M

(a) Number of Parameters on DukeMTMC-reID [40]

Processing Time [hours]
Mode CamStyle Ours
Training 304.17 12.84
Inference 2.16 0.12

(b) Processing Time on DukeMTMC-relD [40]

Table 3: A complexity comparison on CamStyle [43] and
Our Proposed Method

method. Both Camstlye and our proposed method can
generate competitive quality of person images. However,
as shown in Figure 3, in this particular sample, proposed
method can generate better quality images especially in per-
son’s leg compare to Camstyle [43] and the original Star-
GAN [7]. This particular sample has a lot of noise in the
input image and it demonstrates that proposed method can
create better quality image even with the noisy input.

RelID Evaluation Comparison For the full version of
proposed method, we use the StarGAN + Both where ;4 =
2 and A; = 1 with RE and Re-Rank. We compare our pro-
posed method with the state-of-the-art methods on Market-
1501 and DukeMTMC-reID in Table 4 and 5. In both
datasets, our proposed method outperforms all the other
methods in terms of both mAP and Top-1 Rank accuracy.
We achieve significant improvement in especially mAP (15-
72%) by employing Re-Rank with SP-StarGAN. We also
achieve the highest accuracy in terms of Top-1 Rank accu-
racy in both datasets.

5. Conclusions

In this paper, we propose the camera-aware mul-
tiple domain image-to-image translation using Similar-
ity Preserving StarGAN (SP-StarGAN) for person re-
identification(ReID). We propose the SP-StarGAN which
has identity mapping loss and Multi-scale Structural Simi-
larity loss in the generator loss function. The SP-StarGAN
can learn the mapping among all different camera settings
in RelD dataset and generate the camera-aware translated
images as the extra training samples in ReID with a sin-
gle model. We demonstrate that having two additional loss
terms helps address the quality problem in generated images
as well as RelD performance. Our experimental results also
demonstrate that by using SP-StarGAN along with Random
Erasing and Re-Rank improves the ReID performance. In

Top-1
Methods mAP Rank
LOMO + XQDA [25] 14.09 344
IDE [39] 46 72.54
Re-rank [41] 63.63 77.11
SVDNet [29] 62.1 82.3
TriNet [16] 69.14 84.92
DIL [24] 65.5 85.1
DCGAN [40] 66.07 83.97
IDE* [43] 65.87 85.66
IDE* + CamStyle [43] 68.72 88.12
IDE* + CamStyle + RE [42] 71.55 89.49
Ours (full version) 86.3 91.1

Table 4: A RelD accuracy comparison on Market-1501

Top-1
Methods mAP Rank
BOW + KISSME [21] 12.17 25.13
LOMO + XQDA [25] 17.04 30.75
IDE [39] 44.99 65.22
SVDNet [29] 56.8 76.7
TriNet [16] 72.44 53.5
DCGAN [40] 47.13 67.68
IDE * [43] 51.83 72.31
IDE * + CamStyle [43] 53.48 75.27
IDE* + CamStyle + RE [42] 57.61 78.32
Ours (full version) 65 82.1

Table 5: A RelD accuracy comparison on DukeMTMC-
relD

the future, we want to extend this work to cross-domain
RelD problem.
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