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Abstract

Person re-identification is a crucial task in intelligent

video surveillance systems. It can be defined as recog-

nizing the same person from images of a person taken

from different cameras at different times. In this paper,

we present a camera-aware image-to-image translation us-

ing similarity preserving StarGAN (SP-StarGAN) as the

data augmentation for person re-identification. We pro-

pose the addition of an identity mapping term and a multi-

scale structural similarity term as additional losses for the

generator. SP-StarGAN can learn the relationship among

the multiple cameras with a single model and generate

the camera-aware extra training samples for person re-

identification. We evaluate our proposed method on public

datasets (Market-1501 and DukeMTMC-reID) and demon-

strate the efficacy of our method. We also report competitive

performance with the state-of-the-art methods.

1. Introduction

The number of video surveillance system has grown ex-

ponentially in recent years making the continues monitor-

ing of surveillance data impossible [1]. To automate the

analysis of the surveillance data, intelligent video surveil-

lance system has been an active research area in computer

vision. The goal is to extract meaningful information effi-

ciently from the large volume of surveillance data.

Person re-identification (ReID) is one of the fundamental

task associated with intelligent video surveillance system.

ReID refers to tracking a person across a network of non-

overlapping cameras [5, 12]. Given single/multiple images

or a video sequence of the interested person (query), ReID

is the task of recognizing the same person within the list of

images/videos collected from multiple cameras with non-

overlapping field of view (gallery).

Even though ReID has been intensively studied over the
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Figure 1: Sample Images showing challenges related to

camera variations in the ReID problem

past years, it is still an active research area due to various

challenges. ReID dataset can have intensive illumination

changes, pose variations, occlusions, different scales and

camera viewpoints [12]. In addition, collecting and anno-

tating a large dataset for multiple cameras is a very time-

consuming and expensive process.

Figure 1 shows the challenges in ReID. It demonstrates

that it is challenging to distinguish the same person in the

images taken from different cameras. Most of these chal-

lenges are due to camera variations such as different settings

or environments of multiple cameras. In order to address

these challenges, many ReID methods have been proposed

by adopting new features, using metric learning techniques,

the use of semantic attributes and using deep learning ap-

proaches.

Recent traditional ReID approaches have focused on ap-

pearance modeling and metric learning to learn the repre-

sentations that can be invariant to cameras-related proper-
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ties such as illumination and view point changes [21,25,26].

There have been traditional approaches proposed including

KISSME [21], XQDA [25] and GOG [26]. More recently,

deep learning based methods have been described such as

IDE [39], Two Stream Siamese Net [8], SVDNet [29], Re-

Ranking [41] and TJ-AIDL [33].

As deep learning approaches have been studied, large-

scale ReID datasets have been released : Market-1501 [38]

and DukeMTMC-reID [40]. Compare to the other datasets

such as PRID [17], iLIDS-VID [34], Market-1501 and

DukeMTMC-reID have more than 6 different cameras set-

tings and a large number of images and identities. This

means that the same person can show up in more than

two camera views which introduces more challenges to re-

identify the person.

Although larger datasets have been introduced, more

training data is needed. In addition, since the number of

camera is growing in these datasets, more samples for each

cameras are needed in order to learn robust camera invariant

feature representations. It is expensive and time-consuming

to have manual identity annotations across different cam-

eras as we have more cameras and videos to annotate the

identity for ReID tasks.

To alleviate this problem, Zhong et al. [43] proposed a

method for generating camera style-transferred images us-

ing a CycleGAN (CamStyle) [44] as a data augmentation

method for ReID. They trained multiple image-to-image

translation models for each camera pair using CycleGAN.

Then, the model can generate new sample images from the

source camera style to the target camera style. Camera style

means the camera specific settings such as bright or dark il-

lumination. These style-transferred images allow us to have

extra training samples with different camera styles without

additional manual annotation. In addition, label smooth-

ing regularization (LSR) on the style-transferred images to

softly distribute their labels and reduce the noise effect gen-

erated by the extra samples. Due to the limitation of Cycle-

GAN which can model only one-to-one domain mapping,

this method only can learn the mapping for one camera pair

(e.g., camera 1 to camera 2) with the single model. Thus,

using Camstlye [44], multiple models need to be trained

to model an entire camera network. For example, in the

DukeMTMC-reID [40] dataset which has 8 different cam-

eras, C2

8
= 28 different models need to be trained sepa-

rately. The time complexity as well as the the number of

parameters will be sharply increased as the number of cam-

era increases. In addition, cross-camera relationships will

be ignored in this architecture. To address these limitations,

we propose the use of StarGAN [7] with an additional simi-

larity preserving term in the loss function for camera-aware

image-to-image translation to generate the extra samples for

ReID.

The main contributions of this paper are :

• We propose a similarity preserving StarGAN (SP-

StarGAN) which is an improvement of StarGAN [7].

To improve the quality of the generated images, we

propose to add a identity mapping term and multi-scale

structural similarity (MS-SSIM) to the generator loss.

SP-StarGAN can be used not only for ReID data aug-

mentation but also for general multi-domain image-to-

image translation. Compare to the previous method

(Camstyle), our method has almost 15 times less pa-

rameters to train while producing competitive gener-

ated image quality as well as competitive accuracy in

ReID.

• For ReID, we use SP-StarGAN to generate more train-

ing samples across different camera settings. In addi-

tion, we propose to employ the Re-Ranking method

[41] for ReID as post processing along with SP-

StarGAN generated samples in order to improve ReID

matching accuracy. We demonstrate that Re-Ranking

shows higher performance in ReID accuracy with bet-

ter quality generated images.

2. Related work

Generative Adversarial Networks. Goodfellow et

al. [13] proposed the Generative Adversarial Networks

(GANs) which learns generative models through an adver-

sarial process that is training a generative model and a dis-

criminative model simultaneously. In recent years, GANs

has been used many applications including image genera-

tion [27] and image-to-image translation [7, 19, 44]. Rad-

ford et al. [27] introduced deep convolutional generative ad-

versarial networks (DCGANs) that have some architectural

constraint for stable training and they have demonstrated the

applicability for image generation. One of the extensions of

GANs, Pix2Pix [19], used a conditional GANs to learn the

relationship between the output and input image for image-

to-image translation. Pix2Pix [19] has the limitation that

it requires paired training data. To overcome this limita-

tion, a coupled generative adversarial network (CoGAN)

was introduced to learn the joint distribution across domains

without having the paired training data. Next, cycle consis-

tency adversarial networks (CycleGAN) employed a cycle-

consistency term in the adversarial loss for image-to-image

translation without having paired samples. CycleGAN has

the limited scalability that it can only learn the mapping

between two domain. This requires multiple models to be

trained in order to translate images across multiple domains.

To address this problem, Choi et al. [7] proposed a unified

generative adversarial networks (StarGAN) which allows us

to learn the mapping between multiple domains with a sin-

gle model.

Deep learning Approaches in ReID. With the release of

larger datasets, [23] demonstrated the feasibility of using of
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Figure 2: Overall Proposed Framework

deep learning for ReID by using a filter pairing neural net-

work (FPNN). After this initial work, many deep learning

methods were proposed to improve ReID accuracy [2,6,37].

Ahmed et al. [2] proposed to use a cross-input neighbor-

hood difference layer to compute the differences in feature

values across different camera views. In [37], a cosine layer

connects two sub-networks and jointly learn color, texture

and a similarity metric. Later, Cheng et al. [6] employed

a multi channel CNN to jointly learn both global and local

features of the human body using triplet loss function. In

[32], a Siamese Long Short-Term Memory (LSTM) model

that can process image parts sequentially is described. The

use of LSTM enables the capability of memorizing the spa-

tial dependency and selectively propagating the context in-

formation throughout the network. Chung et al. [8] pro-

posed the use of a two stream Siamese network to learn the

spatial and temporal feature representation for ReID. In ad-

dition, Zheng et al. [39] proposed ID-Discriminative Em-

bedding (IDE) using ResNet [15] to train a ReID model as

a classifier. In [41], they propose a re-ranking method using

k-reciprocal Encoding inspired by [4]. This method can be

used with any initial ranking.

More recently, Deng et al. [10] proposed image-to-

image translation across different dataset domains while

preserving self similarity and domain dissimilarity. Their

method consists of an Siamese network and a CycleGAN.

In [33], Transferable Joint Attribute-Identity Deep Learning

(TJ-AIDL) was introduced to learn attribute-semantic and

identity discriminative features simultaneously and trans-

fer them to the target domain without collecting additional

data from the target domain. In order to reduce the dataset

domain discrepancy, Wei et al. [36] proposed a Person

Transfer Generative Adversarial Network (PTGAN) using

a CycleGAN to learn the relationship between two different

dataset domain.

Even though larger ReID datasets are available, the num-

ber of samples are still limited to train CNN models due to

the expensive annotation process. Thus, over-fitting still can

happen due to the lack of training samples in ReID dataset.

To address this problem, some data augmentation methods

have been proposed [40,42,43]. Zhong et al. [42] proposed

a random erasing technique which randomly selects the

rectangle region and erases it with random values to avoid

the over-fitting problem. In [40], DCGAN [27] was used to

generate unlabeled person images. They also proposed the

label smoothing regularization for outliers (LSRO) to assign

the stable labels for the generated images. More recently,

Zhong et al. [43] introduced a camera style transferred im-

age generation using CycleGAN [44] as a data augmenta-

tion method for ReID. They also described improved label

smoothing regularization (LSR) for generated images to ad-

dress small portion of unreliable data. We will refer this

method [43] as Camstyle for the rest of the paper.

3. Proposed Method

Figure 2 shows the overall flow of our proposed method.

First, we train the similarity preserving StarGAN to obtain

the camera-aware image-to-image translation model. This

model learns the mapping across different cameras with a

single model in the ReID dataset. We then generate cam-

era style translated images for all respective camera combi-

nations from this single model. Finally, we train the deep

learning ReID network with both real images and camera

style translated images.

3.1. StarGAN

In this section we briefly revisit the StarGAN [7]. Star-

GAN has a single generator G learning the mappings

among multiple domains and a single discriminator D with

auxiliary classifier to discriminate fake and real images and

control multiple domain simultaneously. In order to sta-

bilize the training process while generating realistic fake

images, the Wassertein GAN loss with a gradient penalty



[3, 14] was used for the adversarial loss and defined as:

Ladv =Ex[Ds(x)]− Ex,ct [Ds(G(x, ct))]

− λgpEx̂[(||∇x̂Ds(x̂)||2 − 1)
2
]

(1)

where Ds is defined as the probability distribution over the

sources, x̂ is uniformly sampled along a straight line be-

tween a pair of a real and a generated image. In addition, G
generates an image G(x, ct) mapped from the input image

x to the target domain label ct, while D tries to distinguish

the between real and generated images.

StarGAN [7] has an auxiliary classifier on top of D to

classify images to the respective domain label. For the real

image, a domain classification loss is defined as:

Lr
cls = Ex,cs [−logDcls(cs|x)] (2)

where Dcls(cs|x) denotes the probability distribution over

domain labels given the real image x and cs means the

source domain label. For the fake image, a domain clas-

sification loss is described as:

Lf
cls = Ex,ct [−logDcls(ct|G(x, ct))] (3)

where Dcls(ct|G(x, ct)) represents a probability distribu-

tion over domain labels given the fake image G(x, ct) and

ct refers the target domain label.

In order to preserve the content of the input images while

translating the domain-related information of the image,

StarGAN used a cycle consistency loss [44] which is de-

fined as

Lrec = Ex,ct,cs [||x−G(G(x, ct), cs)||1] (4)

where the translated image G(x, ct) becomes the input for

the G with the original domain label cs and reconstruct the

original image x.

Finally, the overall StarGAN loss function is expressed

as

LD = −Ladv + λclsL
r
cls, (5)

LG = Ladv + λclsL
f
cls + λrecLrec (6)

where λcls, λrec are hyper-parameters for the relative im-

portance of each term.

3.2. Similarity Preserving StarGAN

In this paper, we employ the StarGAN model to gener-

ate camera style translated images as extra training samples

for ReID. However, we observe that the cycle consistency

term, Lrec in Equation 4, was not enough for preserving the

content of the input image related to person identity while

translating the camera domain-related content. For camera-

aware image-to-image translation, we do not want to have

dramatic changes in the image since we need to keep the

same identity while transferring the different camera set-

tings. In order to preserve the same identity while transfer-

ring the image to the different camera setting, we add two

additional terms into StarGAN generator loss (Equation 6).

We present the details of each additional term in the follow-

ing.

Identity Mapping Loss. In order to preserve the color-

consistency between the input and output, we add the iden-

tity mapping loss [30] to regularize the generator to be an

identity mapping when the real image with the source do-

main label is provided.

The identity mapping loss term is defined as

Lid = Ex,cs [||G(x, cs)− x||1] (7)

where G(x, cs) is the generated image with the source cam-

era label cs and the x is the real image from camera cs.

Multi-scale Structural Similarity. Wang et al. [35]

originally used the structural similarity between two images

across different scales. We add the MS-SSIM term to our

generator loss to preserve the structural similarity. Specif-

ically in camera-aware image translation, we need to pre-

serve the most of the structural information to maintain the

same identity. By using this term, the generator tries to pre-

serve the structural information of the input image.

Let xr = G(G(x, ct), cs) as the reconstructed image

with the source camera label cs, ct refers to the target cam-

era label and the x as the input image. The SSIM loss can

defined as

LSSIM (xr, x) = [l(xr, x)
α
c(xr, x)

β
s(xr, x)

γ
] (8)

where

l(xr, x) =
2µxr

µx + C1

µxr

2 + µx
2 + C1

(9)

c(xr, x) =
2σxr

σx + C2

σxr

2 + σx
2 + C2

(10)

s(xr, x) =
σxrx + C3

σxr
σx + C3

. (11)

l(xr, x), c(xr, x), s(xr, x), α, β, γ represent the luminance,

contrast and structure information and their relative impor-

tance, respectively. µxr
, µx are the means of xr and x and

σxr
, σx are the standard deviations of xr and x. σxrx is

the covariance of xr and x and C1 = 0.012, C2 = 0.032,

C3 = C2/2 are the fixed hyper-parameters.

We defined MS-SSIM [35] as

LMS−SSIM (xr, x) =[lM (xr, x)]
αM

∗

M∏

i=1

[c(xr, x)]
βi [s(xr, x)]

γi .
(12)



Full SP-StarGAN loss function. Finally, the proposed

full generator loss function to optimize can be defined as

LG = Ladv + λclsL
f
cls + λclsLrec

+ λidLid − λsLMS−SSIM

(13)

where λcls, λrec, λid, λs are the relative importance of

domain classification, reconstruction, identity mapping and

MS-SSIM losses, respectively. Note that we have the same

discriminator loss function as in Equation 5.

Network Architecture. We employ the same network

architecture from [7]. The generator is consist of two con-

volutional layers with stride size 2, 6 residual blocks [15]

and two transposed convolutional layers with stride size 2.

The instance normalization [31] was used only for the gen-

erator. For the discriminator, the PatchGANs [22] was used

to classify the local image patches are real or fake.

3.3. Deep Person ReID Network

Base Deep ReID Model. We use the ID-Discriminative

Embedding (IDE) [39] to train ReID model. In this net-

work, we use ResNet-50 [15] convolutional layers followed

by global max pooling layer. We then add two fully con-

nected layers as stated in [43]. The first layer has 1024 di-

mensions followed by batch normalization [18], ReLU and

Dropout [28]. For the ID-Discriminative Embedding, we

have the second layer that has P (the number of class di-

mensions) in order to use cross-entropy loss.

Loss Function. We use the cross-entropy loss for the

real images. For the generated images, we utilize the la-

bel smoothing regularization (LSR) as suggested in [43] to

reduce the negative effect of some of the noisy generated

images. Even though we have the identity label for the gen-

erated images, some images have transfer noise due to the

occlusions or the noise in the input image. To alleviate this

problem, LSR assigns the small weights to the other classes

and give less confidence in the identity label.

Re-Rank. We employ the re-ranking method [41] as

post processing on our initial ranking results from base deep

ReID model. Zhong et al. proposed to use the k-reciprocal

encoding for ReID re-ranking. Re-rank computes features

by encoding its k-reciprocal neighbors into a single vector.

Then this vector is used to re-rank under the Jaccard dis-

tance. And the final distance is computed with the combi-

nation of the original distance and the Jaccard distance. We

will refer this method as Re-Rank in the rest of the paper.

4. Experiments

4.1. Datasets

Market-1501 [38] contains 32,668 images in total with

1,501 identities from 6 different camera views. From the

video, person images were detected using a deformable part

Method λid λs mAP
Top-1

Rank

Baseline (IDE*) - - 65.87 85.66

StarGAN 0 0 66.1 86.5

StarGAN + Identity

1 0 67.2 86.7

2 0 68.2 87.9

5 0 67.4 87.5

StarGAN + MS-SSISM

0 1 67.4 87.4

0 2 67.6 87.4

0 5 66.2 85.9

StarGAN + Both

1 1 67 87.2

1 2 67.6 87.5

1 5 67.6 86.9

2 1 68.6 88.1

2 2 68.5 87.6

2 5 67.6 87.6

Table 1: ReID accuracy evaluation on different proposed

components in SP-StarGAN loss on Market-1501

model [11]. This dataset is partitioned into 12,935 images

(751 identities) for training and 19,732 images (750 iden-

tities) for the gallery. In ReID test, 3,3668 hand-captured

images from 750 identities are pre-selected as queries to

evaluate ReID performance. Single-query evaluation pro-

tocol is used.

DukeMTMC-reID [42] has 36,411 images in total with

1,404 identities from 8 different camera views. It is com-

posed of 16,522 images (702 identities) for training samples

and 17,661 images (702 identities) for the gallery. In ReID

test, 2,228 images from 702 identities are pre-selected as

queries for the evaluation.

4.2. Experiment Setup

Similarity Preserving StarGAN. We first resize the im-

ages to 178x178 and then crop them randomly to 128x128.

The horizontal random flip is used with a probability of 0.5

as the data augmentation. As described in [7], all models are

trained using Adam [20] with β1 = 0.5 and β2 = 0.999.

The generator updates after five discriminator updates as

in [3]. The initial learning rate is 0.0001 for the first 100,000

iterations and linearly decays to the learning to 0 over the

next 100,000 iterations. The batch size is 16. We use the

fixed hyper-parameter values for λgp = 10, λcls = 1,

λrec = 10 in Equation 13. We describe the analysis to

select the best value for λid, λs in Section 4.3.

Finally, for inference, we generate all combinations of

different cameras per image with the image size 128x128.

For example, if the real image is taken from camera 1 and

we have K different cameras in the dataset, then generate

the translated images with target camera domain label from

2 to K.



Component

Base

Augmentation
Base + RE Base + Re-Rank

Base

+ RE + Re-Rank

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

StarGAN 66.1 86.5 69.8 88.4 82.1 88.9 85.6 90.9

StarGAN + Identity 68.2 87.9 71 88.9 83.3 89.8 86.7 91.3

StarGAN + MS-SSIM 67.6 87.4 71 88.7 82.8 89.3 85.6 91.2

StarGAN + Both 68.6 88.1 70.9 88.5 83 89.5 86.3 91.1

Table 2: ReID accuracy evaluation on different proposed pre/post processing methods on Market-1501

Deep Person ReID Network. We follow the training

general strategy in [43] to train the base deep reID model

except for the learning rate policy. All images are resized to

256x128. Two base data augmentation method were used

for the training : random cropping and random horizontal

flipping. A model is trained with SGD solver. The initial

learning rate is set to 0.01 for the ResNet-50 convolutional

layers and 0.1 for the two additional fully connected layer

since we use ImageNet [9] pre-trained ResNet-50 layers as

the initialization. In our experiments, the initial learning is

divided by 10 after first 30 epochs out of 60 epochs in total.

The batch size is set to 128 and the dropout probability is

set to 0.5.

In the ReID test, we extract the feature from the pooling

layer and use Euclidean distance to compute the similarity

between the gallery and query images. We use the generated

images as the extra training samples and follow the strategy

of [43] in the selection of the generated images. We ran-

domly select M real images and N generated images in a

training mini-batch. We set the M : N ratio to 3 : 1 for all

experiments. We evaluate the ReID performance in terms of

mean Average Precision (mAP) and Top-1 Rank matching

accuracy.

4.3. Component Evaluation

In this section, we investigate the significance of the

components in GAN part and ReID Network Part of the

proposed method.

Similarity Preserving StarGAN. We first investigate

the effect of the additional loss terms in SP-StarGAN on

ReID accuracy metrics. We evaluate for different hyper-

parameter settings such as StarGAN + identity, StarGAN +

MS-SSIM and StarGAN + Both when λid and λs are vary-

ing from 1 − 5. Note that this evaluation was done with-

out any additional augmentation or post-processing in Deep

Re-ID network. In [43], they defined IDE* with the im-

proved learning rate policy while keeping the same network

architecture from IDE [39]. IDE* is used as the baseline

to evaluate the proposed components. As shown in Table

1, the usage of original StarGAN [7] improved around 1%

from the baseline in both mAP and Top-1 Rank accuracy.

When we included the additional loss terms into the gen-

erator loss function, we obtain around 2% improvement in

ReID accuracy depending on the hyper-parameters λid and

λs. This improvement is coming from the generating better

quality images which results that having less noise in gen-

erated samples. We also observe that we do not have the

continuing improvement as we increase the contributions of

the additional loss terms.

Deep Person ReID Network. We evaluate the differ-

ent components in Deep ReID network including Random

Erasing (RE) and Re-Rank. For this evaluation, we fix the

hyper-parameters for the GAN part as λid = 2 and λs = 1.

For any type of proposed GANs, we observe the significant

improvement in ReID accuracy by employing both RE and

Re-Rank. This result demonstrates that using Random Eras-

ing as extra data augmentation along with the Re-Rank as

the post processing has significant positive effect on ReID

accuracy. Thus, our final proposed method version in the

following section will be including both RE and Re-Rank

as well as StarGAN + Both method with the parameters

λid = 2 and λs = 1.

4.4. Complexity Analysis

Table 3 shows the comparison of the complexity of the

model between CamStyle [43] and proposed method. Note

that this experiment was done using a NVIDIA Titan Xp

GPU. CamStyle has around 792 M parameters to train while

our proposed method has only 52.23 M parameters to train

as shown in Table 3a. For training and inference process-

ing time as shown in Table 3b, CamStyle takes around

150 more hours in training than the proposed method for

DukeMTMC-reID [40] dataset. Camstyle can only learn

the mapping between two different camera domains at one

time due to the limitation of CycleGAN. This results the

dramatic increase in the complexity since we need to train

multiple models. On the other hand, proposed method can

model the mapping between multiple camera domains with

the single model while showing the competitive ReID accu-

racy.

4.5. Comparisons

Visual Evaluation Comparison We compare the sam-

ple generated images from Camstlyle and our proposed



Sub-Network
Number of Parameters [M]

CamStyle Ours

Generator 637.17 M 8.44 M

Discriminator 154.84 M 44.79 M

Total 792.01 M 53.23 M

(a) Number of Parameters on DukeMTMC-reID [40]

Mode
Processing Time [hours]

CamStyle Ours

Training 304.17 12.84

Inference 2.16 0.12

(b) Processing Time on DukeMTMC-reID [40]

Table 3: A complexity comparison on CamStyle [43] and

Our Proposed Method

method. Both Camstlye and our proposed method can

generate competitive quality of person images. However,

as shown in Figure 3, in this particular sample, proposed

method can generate better quality images especially in per-

son’s leg compare to Camstyle [43] and the original Star-

GAN [7]. This particular sample has a lot of noise in the

input image and it demonstrates that proposed method can

create better quality image even with the noisy input.

ReID Evaluation Comparison For the full version of

proposed method, we use the StarGAN + Both where λid =
2 and λs = 1 with RE and Re-Rank. We compare our pro-

posed method with the state-of-the-art methods on Market-

1501 and DukeMTMC-reID in Table 4 and 5. In both

datasets, our proposed method outperforms all the other

methods in terms of both mAP and Top-1 Rank accuracy.

We achieve significant improvement in especially mAP (15-

72%) by employing Re-Rank with SP-StarGAN. We also

achieve the highest accuracy in terms of Top-1 Rank accu-

racy in both datasets.

5. Conclusions

In this paper, we propose the camera-aware mul-

tiple domain image-to-image translation using Similar-

ity Preserving StarGAN (SP-StarGAN) for person re-

identification(ReID). We propose the SP-StarGAN which

has identity mapping loss and Multi-scale Structural Simi-

larity loss in the generator loss function. The SP-StarGAN

can learn the mapping among all different camera settings

in ReID dataset and generate the camera-aware translated

images as the extra training samples in ReID with a sin-

gle model. We demonstrate that having two additional loss

terms helps address the quality problem in generated images

as well as ReID performance. Our experimental results also

demonstrate that by using SP-StarGAN along with Random

Erasing and Re-Rank improves the ReID performance. In

Methods mAP
Top-1

Rank

LOMO + XQDA [25] 14.09 34.4

IDE [39] 46 72.54

Re-rank [41] 63.63 77.11

SVDNet [29] 62.1 82.3

TriNet [16] 69.14 84.92

DJL [24] 65.5 85.1

DCGAN [40] 66.07 83.97

IDE* [43] 65.87 85.66

IDE* + CamStyle [43] 68.72 88.12

IDE* + CamStyle + RE [42] 71.55 89.49

Ours (full version) 86.3 91.1

Table 4: A ReID accuracy comparison on Market-1501

Methods mAP
Top-1

Rank

BOW + KISSME [21] 12.17 25.13

LOMO + XQDA [25] 17.04 30.75

IDE [39] 44.99 65.22

SVDNet [29] 56.8 76.7

TriNet [16] 72.44 53.5

DCGAN [40] 47.13 67.68

IDE * [43] 51.83 72.31

IDE * + CamStyle [43] 53.48 75.27

IDE* + CamStyle + RE [42] 57.61 78.32

Ours (full version) 65 82.1

Table 5: A ReID accuracy comparison on DukeMTMC-

reID

the future, we want to extend this work to cross-domain

ReID problem.
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