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Abstract

Learning discriminative, view-invariant and multi-scale

representations of person appearance with different se-

mantic levels is of paramount importance for person Re-

Identification (Re-ID). A surge of effort has been spent by

the community to learn deep Re-ID models capturing a

holistic single semantic level feature representation. To

improve the achieved results, additional visual attributes

and body part-driven models have been considered. How-

ever, these require extensive human annotation labor or de-

mand additional computational efforts. We argue that a

pyramid-inspired method capturing multi-scale information

may overcome such requirements. Precisely, multi-scale

stripes that represent visual information of a person can

be used by a novel architecture factorizing them into latent

discriminative factors at multiple semantic levels. A multi-

task loss is combined with a curriculum learning strategy to

learn a discriminative and invariant person representation

which is exploited for triplet-similarity learning. Results

on three benchmark Re-ID datasets demonstrate that better

performance than existing methods are achieved (e.g., more

than 90% accuracy on the Duke-MTMC dataset).

1. Introduction

Person re-identification (Re-ID) is usually the task of as-

sociating a person acquired by disjoint cameras at differ-

ent time instants. The problem has recently gained increas-

ing attention [52] due to its open challenges like changes in

viewing angle, background clutter, and occlusions.

To address these issues, existing approaches seek either

the best feature representations (e.g., [58, 32]), learn opti-

mal matching metrics (e.g., [38, 29, 40]), or investigate deep

learning-based methods combining the two aforementioned

solutions (e.g., [37, 10, 15, 45]). While feature representa-

tion and metric learning-based methods have obtained rea-

sonable performance on benchmark datasets (e.g., [9, 12]),

the deep learning-based solutions currently dominate this

community, with convincing superiority against competi-

tors.

Deeply-learned representations carry highly discrimina-

tive information, especially when this is obtained from body

parts. This is substantiated by the results achieved with part-

informed deep features that continuously raise the state-of-

the-art Re-ID benchmarks (e.g., [49, 46, 27]). Approaches

like [47, 54, 33] exploit external cues, e.g., leverage on hu-

man pose estimation solutions (e.g., [56, 22, 5, 14]). Other

methods directly process the input without considering se-

mantic part cues. Existing solutions apply keypoint-based

body parts division strategies [55], learn an attention mech-

anism [34], or consider a uniform partitioning scheme [49].

These do not require part labeling and yet perform on par

with part cues-based methods.

Motivation. It is a matter of fact that semantic body par-

titions offer stable cues for a good alignment and subse-

quent feature extraction. However, obtaining such parti-

tions requires optimal body part detections which inevitably

introduce additional computational efforts. While this is-

sue can be mitigated by incorporating attention-like mech-

anisms within a single architecture (e.g., [34]), existing ap-

proaches do not have considered that body partitions may

have different importance when analyzed at various scales.

Indeed, by nature, images contain objects of many sizes as

well as their representing features. Due to this, single scale

analysis may miss relevant information at other scales.

We hypothesize that these challenges can be addressed

by leveraging on pyramid methods [1]. The image pyra-

mid technique offers an efficient framework that mirrors the

multiple scales of processing in the human visual system.

Thus, with this paper, we speculate on the importance of

pyramid representations for capturing image relevancy at

different levels of detail (both semantically and visually).

With this goal, we introduce a novel deep architecture –

named PyrNet– which aims to grasp and leverage on pyra-

midal information to better tackle the Re-ID problem.

Contributions. Concretely, our contribution is a novel

siamese architecture which: (i) is capable of capturing dif-

ferent semantic concepts belonging to the input by extract-

ing information at different levels of detail (i.e., at different



network depths); (ii) aggregates the minutiae captured at

various levels to exploit multiple Re-ID decisions within a

single model; (iii) adopt a mixed learning strategy that com-

bines identity and similarity learning.

These objectives are achieved as follows.

i) The striped pyramidal block is introduced in a deep

architecture at different depths (Section 3.3). The pro-

posed pyramidal pooling captures different minutiae of

an image by processing it at various scales, while the

horizontal stripes pooling strategy carries information

about the relative displacements of image features.

ii) We propose to learn separate classifiers for each striped

pyramidal representation, then aggregate them (Sec-

tion 3.4). This allows us to fuse the Re-ID decisions

taken by looking at features with different levels of de-

tail and semantic meanings.

iii) The mixed learning strategy (Section 3.5) allows to

gradually shift from the “simple” identification task to

the “more difficult” similarity learning problem. We

first obtain a robust person representation (identifica-

tion task) that is gently modified such that it should be

similar for an akin person, dissimilar otherwise (simi-

larity learning task).

To substantiate our contributions, we have conducted exten-

sive experiments on three Re-ID benchmark datasets. Our

solution achieves better performance than existing methods,

while introducing negligible computational complexity.

2. Related Work

The Re-ID community is currently very active [52]. A

brief overview follows.

Hand-Crafted Visual Features. Works belonging to

this group address the Re-ID problem by designing dis-

criminative appearance feature descriptors. Multiple lo-

cal and global feature [35] were combined with patch

matching strategies [68], saliency learning [38], joint at-

tributes [24] and camera network-oriented schemes [6].

Among all the methods in this category, to date, the

most widely used appearance descriptors are the Gaussian

of Gaussian (GOG) [39], the Local Maximal Occurrence

(LOMO) [29] and the Weighted Histogram of Overlapping

Stripes (WHOS) [32].

Optimal Matching Metrics. Approaches grouped in the

second family learn an optimal non-Euclidean dissimilar-

ity measure. Specifically, metric learning approaches were

introduced y leveraging on positive semi-definite condi-

tions [30] , exploiting the null-space [64] or acceleration

techniques for fast optimization [36]. While most of the ex-

isting methods capture the global structure of the dissimilar-

ity space, local solutions [28, 41, 65] were also proposed.

Following the success of both approaches, methods com-

bining them in ensembles [72, 40] were introduced. Differ-

ent solutions yielding similarity measures were also inves-

tigated by proposing to learn listwise [9] and pairwise [72]

similarities.

Deep Learning. Currently, the best Re-ID performance on

benchmark datasets is obtained by deep learning-based so-

lutions (e.g., [2, 51, 44]). The success of such approaches

is commonly driven by the exploitation of body part fea-

tures. Following the impressive progress of human pose

estimation [56, 22, 5, 14], methods exploiting the output of

such frameworks were proposed [69, 47, 54, 33]. However,

the conceptual gap between the pose estimation and the

Re-ID problem does not guarantee that the detected body

parts are optimal for the Re-ID task. In light of such con-

siderations, body partitioning estimators have been aban-

doned in favor of methods either considering fixed body

parts [49] or attention-inspired mechanisms [61, 34, 67, 43].

More specifically, in [49] authors introduced a network si-

multaneously looking at image stripes which are then sep-

arately considered through a part-based classifier. Simi-

larly, in [61], highly active locations of different feature

maps were exploited to identify regions of interest later used

for part loss computation. The attention mechanism [60]

was considered in [34, 67] to let the network model decide

which body regions are more relevant for Re-ID.

In this paper, we propose to learn and exploit a hu-

man body part and multi-scale-based representation. Our

approach neither hinges on human pose estimation frame-

works nor on attention-inspired mechanisms which require

labeled part mask/box data or additional computationally

demanding network branches (e.g., [67, 66, 43]). With re-

spect to all such methods, [34] and [11] are the closest to

our approach. Specifically, in [34] an attention mechanism

is used to generate multi-level features which are concate-

nated with the output of an Inception-v2 architecture [50] to

form the feature representation. In [11], last ResNet convo-

lutional layer feature maps are split into horizontal stripes

which are separately considered for identity classification.

Though sharing the idea of considering features ex-

tracted at different semantic levels, there are significant dif-

ferences with our method. Specifically, our siamese archi-

tecture introduces (i) a pyramidal block that captures multi-

-scale image features at different depths of the architecture

and directly consider such information to compute a loss re-

lated to a specific semantic concept; (ii) an aggregated ob-

jective function that leverages on separate losses computed

with respect to features extracted at different levels of detail;

(iii) a joint identification and similarity learning strategy.

3. PyrNet

Our goal is to take a couple of person images and de-

termine their similarity. Towards this end, we introduce a





We propose to use such a multi-scale feature property

in our PyrNet architecture. This is achieved by the Striped

Pyramidal Block (SPB) which analyzes a given feature map

at different scales (see Figure 2). More specifically, the fea-

tures maps generated by the l-th dense block of the back-

bone architecture are fed into a Conv layer with kl 1 × 1
kernels, which is followed by BN and Leaky ReLU (with

a negative slope of 0.1) layers. The c-th feature map result-

ing from such a step, denoted as hl,c, is then processed by

the striped pyramid pooling function parametrized by the

number of pyramid levels ml. This computes the vector

xl,c = [P (hl,c(:, j : j + δ)) |j ∈ {0, δ, · · · , (s− 1)δ}]
T

(1)

where s = 2p−1 is the number of vertical stripes into which

the image is divided at level p ∈ {1, · · · ,ml} of the pyra-

mid. Each stripe with height δ = ⌊H
s
⌉ is fed to the stripe

pooling function P(·) : RW×δ #→ R (e.g., the max/average

pooling operator). The feature vector obtained by apply-

ing such an operator to all the kl input feature maps yields

to the striped pyramidal pooled vector xl ∈ R
dl where

dl = kl(2
ml − 1). Such an operator captures different

features at multiple levels of detail. The horizontal stripes

strategy grasps information about the relative vertical dis-

placements of image features which is crucial in Re-ID (we

no dot expect the legs features to be above the torso ones).

Since the striped pyramid pooling function has no train-

able parameters, the whole block introduces a limited set of

parameters to be learned. This boils down to the number of

1× 1 convolutions and the BN mean and standard deviation

(i.e., to k−1

l kl +2kl parameters in total, where k−1

l denotes

the number of features maps received by the SPB).

To improve network efficiency and to compress noisy

data as much as possible while preserving information

about what the SPB output represents, a bottleneck block

is introduced after each SPB. This consists of a fully con-

nected (FC) layer with 512 neurons followed by BN, Leaky

ReLU (with a negative slope of 0.1) and Dropout with 0.5
probability. The output of such a block is the bottleneck fea-

ture vector x̂l ∈ R
512.

3.4. Visual Concepts

CNNs emit features that are semantically tied to the con-

sidered level of depth (i.e., first layers respond to colors,

edges and corners, while deeper layers are activated by

more complicated and abstracted features [63]). Due to this,

as shown in [3], different layers have different importance

in retrieving objects sharing a specific characteristic. Thus

the output of the backbone architecture at its l-th level might

contain a set of features representing semantically different

concepts that can have different importance for Re-ID.

To incorporate such intuitions within the proposed archi-

tecture, we added an SPB at the output of each dense block

of the backbone architecture. Then, separately exploit the

features generated by each of such blocks to compute spe-

cialized identity and similarity losses. This performs Re-ID

using different visual concepts.

3.5. Mixed Learning Strategy

Recent works demonstrated that robust representations

can be learned by fine-tuning an existing architecture us-

ing an identity loss [71, 62, 49]. Others showed that simi-

lar results can be obtained by learning a similarity measure

through Siamese architectures looking at image pairs or

triplets [2, 18, 15]. In this paper, we combine both schemes

into a single joint identity-similarity loss.

Let consider the bottleneck features computed with l lev-

els of detail for the anchor, positive and negative images of

a triplet. These are x̂l
a
, x̂l

p
, and x̂l

n
, respectively.

Identity Loss. Each of such feature vectors is then fed to an

FC layer predicting the identity label ŷl. This is considered

together with the ground truth label y to compute the cross

entropy loss Lid(ŷl, y).

Similarity Loss. The margin ranking loss

Lsim(x̂l
a, x̂l

p, x̂l
n) is computed as

max (‖x̂l
a − x̂l

p‖ − ‖x̂l
a − x̂l

n‖+ α, 0) . (2)

This loss ensures that the representation of the positive sam-

ple is closer to the anchor sample than that of the negative

one, by at least a margin α.

Mixed Loss. The two aforementioned losses are then com-

bined to obtain the mixed loss

Ll = λLsim(x̂l
a, x̂l

p, x̂l
n)+(1−λ)/3

∑

π∈{a,p,n}

Lid(ŷ
π
l , y

π)

(3)

with π indicating the anchor, positive and negative element

of the triplet and λ ∈ [0, 1] controlling the trade-off between

the identity and the similarity losses. The sum of the mixed

losses computed for all the levels of detail (i.e., L =
∑

l Ll)

is considered for network optimization.

4. Experimental Results

4.1. Datasets

We evaluated our approach on three publicly available

benchmark datasets, namely CUHK03[26, 75], Market-

1501 [70], and Duke-MTMC [42] (see Figure 3 for few

sample images). We report on the average performance us-

ing the Cumulative Matching Characteristic (CMC) and the

mean Average Precision (mAP) indicators.

CUHK03-NP1. The CUHK03 dataset [26] contains 14,096

images of 1,467 different identities. Each person is cap-

tured from two cameras in the CUHK campus. The dataset

provides both manually annotated and and DPM-detected

1http://www.ee.cuhk.edu.hk/˜xgwang/CUHK_

identification.html









Table 3: State-of-the-art comparisons on the three considered datasets. Results for CUHK03 are shown considering detected/labeled

bounding boxes. Results for Market-1501 have been computed considering the single-query/multiple-query protocol. Best result is in red,

second best in blue.

CUHK03 Market-1501 Duke-MTMC
Method

Rank-1 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP
Publication

SpindleNet – – 76.9/– 91.5/– –/– – – – CVPR2017 [66]

Part-Aligned – – 81.0/– 92.0/– 63.4/– – – – ICCV2017 [67]

HydraPlus-Net – – 76.9/– 91.3/– –/– – – – ICCV2017 [34]

MSCAN – – 80.3/86.8 –/– 57.5/66.7 – – – arXiv2017 [25]

Verif-Identif – – 79.5/85.8 – 59.9/70.3 68.9 – 49.3 TOMM2018 [74]

LSRO – – 84.0/88.4 – 66.1/79.1 67.7 – 47.1 ICCV2017 [73]

SVDNet 41.5/40.9 37.3/37.8 82.3/– 92.3/– 62.1/– 76.7 86.4 56.8 ICCV2017 [48]

DPFL 40.7/43.0 37.0/40.5 88.9/– 92.3/– 73.1/– 73.2 – 60.6 ICCV2017 [10]

APR – – 84.3/– 93.2/– 64.7/– 70.7 – 59.1 arXiv2017 [31]

PAN 36.3/36.9 34.0/35.0 82.81/– 93.5/– 63.3/– 71.6 83.9 51.5 arXiv2017 [73]

TriNet – – 84.9/90.5 94.2/96.3 69.1/76.4 – – – arXiv2017 [18]

RDR – – 92.2/94.7 97.9/98.6 81.2/87.3 85.2 93.9 72.8 arXiv2018 [2]

PSE – – 87.7/– 94.5/– 69.0/– 79.8 89.7 62.0 CVPR2018 [43]

HA-CNN 41.7/44.4 38.6/41.0 91.2/93.8 –/– 75.5/82.8 80.5 – 63.8 CVPR2018 [27]

Pose-transfer (D, Tri) 41.6/45.1 38.7/42.0 87.6/– –/– 68.9/– 78.5 – 56.9 CVPR2018 [33]

AACN – – 85.9/89.8 –/– 66.9/75.1 76.8 – 59.2 CVPR2018 [59]

MLFN 52.8/54.7 47.8/49.2 90.0/92.3 – 74.3/82.4 81.0 – 62.8 CVPR2018 [7]

DuATM – – 91.4/– 97.1/– 76.6/– 81.8 90.2 68.6 CVPR2018 [45]

DKP – – 90.1/– 96.7/– 75.3/– 80.3 89.5 63.2 CVPR2018 [44]

AOCS 47.1/– 43.3/– 86.5/91.3 – 70.4/78.3 79.2 – 62.1 CVPR2018 [21]

GCSL – – 93.5/– – 81.6/– 84.9 – 69.5 CVPR2018 [8]

BraidNet-CS+SRL – – 83.7/– – 69.5/– 76.4 – 59.5 CVPR2018 [53]

MGCAM 46.7/50.1 46.9/50.2 83.8/– – 74.3/– – – – CVPR2018 [46]

SPReID – – 93.7/– 97.6/– 83.4/– 85.9 92.9 73.3 CVPR2018 [23]

PyrNet 68.0/71.6 63.8/68.3 93.6/95.2 98.2/98.8 81.7/86.7 87.1 94.1 74.0 Proposed

AACN+ReRank [75] – – 88.7/92.2 –/– 83.0/87.3 – – – CVPR2018 [59]

RDR+ReRank [75] – – 93.0/94.2 95.9/96.9 90.0/91.2 89.4 93.6 85.6 arXiv2018 [2]

AOCS+ReRank [75] 54.6/– 56.1/– 88.7/92.5 – 83.3/88.6 84.1 – 78.2 CVPR2018 [21]

SPReID+ReRank [75] – – 94.6/– 96.8/– 90.9/– 88.9 93.3 85.0 CVPR2018 [23]

PyrNet +ReRank [75] 77.1/80.8 78.7/82.7 94.6/96.1 96.9/97.9 91.4/94.0 90.3 94.3 87.7 Proposed

4.3.3 Discussion and Limitations

The conducted ablation and the achieved performance on

the three considered benchmarks demonstrate that: (i) Fo-

cusing on different semantically meaningful information is

very useful for achieving good results. (ii) The proposed

multi-scale pyramid representation can capture relevant im-

age details at a low computational cost with a limited num-

ber trainable parameters. (iii) Progressively focusing on a

more difficult task while training though curriculum learn-

ing significantly increase Re-ID performance. Results show

that, such strategies yield to significant performance im-

provements over the state-of-the-art methods.

The conducted ablation study demonstrated that most of

the relevant information comes from the deeper layers of

the considered DenseNet backbone. However, visual atten-

tion insights show that lower layers are also fundamental

to correctly drive the selection of the regions to be consid-

ered. Thus, a careful selection of backbone dense blocks

to be considered for Re-ID is very important. We hypothe-

size that such a limitation can be mitigated by including an

attention mechanism [60] that selects the most appropriate

features out of the ones produced by all SPBs together.

5. Conclusion

In this paper we have proposed a novel neural architec-

ture to address the person Re-ID problem. First, to try mim-

icking the multi-scale processing conducted within the hu-

man vision system, we have introduced an SPB. This lever-

ages on the pyramid method to capture the person appear-

ance information with different levels of detail. Then, to

capture the importance of features generated at different

depths (hence with different semantic meanings), an SPB

is added at the output of each dense block belonging to the

backbone DenseNet architecture. The identity and similar-

ity losses computed by each SPB are jointly considered in a

mixed learning strategy. Significant performance improve-

ment is obtained by increasing the complexity of the learn-

ing strategy over time, through curriculum learning. Results

conducted on three datasets show the achievement of, com-

pared to the considered backbone and state-of-the-art meth-

ods, better performances at a lower computational cost.
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