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Abstract

The condition assessment of road surfaces is essential

to ensure their serviceability while still providing maximum

road traffic safety. This paper presents a robust stereo vision

system embedded in an unmanned aerial vehicle (UAV). The

perspective view of the target image is first transformed into

the reference view, and this not only improves the disparity

accuracy, but also reduces the algorithm’s computational

complexity. The cost volumes generated from stereo match-

ing are then filtered using a bilateral filter. The latter has

been proved to be a feasible solution for the functional min-

imisation problem in a fully connected Markov random field

model. Finally, the disparity maps are transformed by min-

imising an energy function with respect to the roll angle

and disparity projection model. This makes the damaged

road areas more distinguishable from the road surface. The

proposed system is implemented on an NVIDIA Jetson TX2

GPU with CUDA for real-time purposes. It is demonstrated

through experiments that the damaged road areas can be

easily distinguished from the transformed disparity maps.

1. Introduction

The frequent detection of different types of road damage,

e.g., cracks and potholes, is a critical task in road mainte-

nance [21]. Road condition assessment reports allow gov-

ernments to appraise long-term investment schemes and al-

locate limited resources for road maintenance [5]. However,

manual visual inspection is still the main form of road con-

dition assessment [15]. This process is, however, not only

tedious, time-consuming and costly, but also dangerous for

the personnel [16]. Furthermore, the detection results are

always subjective and qualitative because decisions entirely

depend on the experience of the personnel [17]. There-

fore, there is an ever-increasing need to develop automated

road inspection systems that can recognise and localise road

damage both efficiently and objectively [21].

Over the past decades, various technologies, such as vi-

bration sensing, active or passive sensing, have been used

to acquire road data and help technicians in assessing the

road condition [18]. For example, Fox et al. [9] developed a

crowd-sourcing system to detect road damage by analysing

accelerometer data obtained from multiple vehicles. Al-

though vibration sensors are cost-effective and only require

a small amount of storage space, the shape of a damaged

road area cannot be explicitly inferred from the vibration

data [15]. Furthermore, Tsai et al. [28] mounted two laser

scanners on a digital inspection vehicle (DIV) to collect 3D

road data for pothole detection. However, such vehicles are

not widely used, because of their high equipment and long-

term maintenance costs [5].

The most commonly used passive sensors for road con-

dition assessment include Microsoft Kinect and other types

of digital cameras [30]. In [14], Jahanshahi et al. utilised a

Kinect to acquire depth maps, from which the damaged road

areas were extracted using image segmentation algorithms.

However, Kinect sensors were initially designed for indoor

use, and they do not perform well when exposed to direct

sunlight, causing depth values to be recorded as zero [3].

Therefore, it is more effective to detect road damages us-

ing digital cameras, as they are cost-effective and capable

of working in outdoor environments [5].

With recent advances in airborne technology, unmanned

aerial vehicles (UAVs) equipped with digital cameras pro-

vide new opportunities for road inspection [25]. For exam-

ple, Feng et al. [8] mounted a camera on a UAV to capture

road images. The latter was then analysed to illustrate con-

ditions such as traffic congestion, road accidents, among

others. Furthermore, Zhang [34] designed a robust pho-

togrammetric mapping system for UAVs, which can recog-

nise different road defects, such as ruts and potholes, from

the captured RGB images. Although the aforementioned

2D computer vision methods can recognise damaged road

areas with low computational complexity, the achieved level

of accuracy is still far from satisfactory [14, 16]. Addition-

ally, the structure of a detected road damage is not obvi-

ous from only a single video frame, and the depth/disparity

information is more effective than RGB information in

terms of detecting severe road damages, e.g., potholes [21].

Therefore, it becomes increasingly important to use digital

cameras for 3D road data acquisition.



To reconstruct 3D road scenery using digital cameras,

multiple camera views are required [11]. Images from dif-

ferent viewpoints can be captured using either a single mov-

able camera or an array of synchronised cameras [5]. In

[35], Zhang and Elaksher reconstructed the 3D road scenery

using structure from motion (SfM), where the keypoints

in each frame were extracted using scale-invariant feature

transform (SIFT) [19], and an energy function with respect

to all camera poses was optimised for accurate 3D road

scenery reconstruction. However, SfM can only acquire

sparse point clouds, which are usually infeasible for road

damage detection [14]. In this regard, many researchers

have resorted to using stereo vision technology to acquire

dense point clouds for road damage detection. In [5], Fan

et al. developed an accurate dense stereo vision algorithm

for road surface 3D reconstruction, and an accuracy of ap-

proximately ± 3 mm was achieved. However, the search

range propagation strategy in their algorithm makes it dif-

ficult to fully exploit the parallel computing architecture of

the graphics cards [5]. Therefore, the motivation of this pa-

per is to explore a highly efficient dense stereo vision algo-

rithm, which can be embedded in UAVs for real-time road

inspection.

The remainder of this paper is organised as follows. Sec-

tion 2 discusses the related work on stereo vision. Sec-

tion 3 presents the proposed embedded stereo vision sys-

tem. The experimental results for performance evaluation

are provided in Section 4. Finally, Section 5 summarises

the paper and provides recommendations for future work.

2. Related Work

The two key aspects of computer stereo vision are speed

and accuracy [27]. A lot of research has been carried out

over the past decades to improve either the disparity accu-

racy or the algorithm’s computational complexity [5]. The

state-of-the-art stereo vision algorithms can be classified as

convolutional neural network (CNN)-based [2,20,32,33,36]

and traditional [1,5,12,13,23,26]. The former generally for-

mulates disparity estimation as a binary classification prob-

lem and learns the probability distribution over all dispar-

ity values [20]. For example, PSMNet [2] generates the

cost volumes by learning region-level features with differ-

ent scales of receptive fields. Although these approaches

have achieved some highly accurate disparity maps, they

usually require a large amount of labelled training data to

learn from. Therefore, it is impossible for them to work

on the datasets without providing the disparity ground truth

[36]. Moreover, predicting disparities with CNNs is still

a computationally intensive task, which usually takes sec-

onds or even minutes to execute on state-of-the-art graphics

cards [27]. Therefore, the existing CNN-based stereo vision

algorithms are not suitable for real-time applications.

The traditional stereo vision algorithms can be classified

as local, global and semi-global [5]. The local algorithms

typically select a series of blocks from the target image and

match them with a constant block selected from the refer-

ence image [5]. The disparities are then determined by find-

ing the shifting distances corresponding to either the highest

correlation or the lowest cost [27]. This optimisation tech-

nique is also known as winner-take-all (WTA).

Unlike the local algorithms, the global algorithms gener-

ally translate stereo matching into an energy minimisation

problem, which can later be addressed using sophisticated

optimisation techniques, e.g., belief propagation (BP) [13]

and graph cuts (GC) [1]. These techniques are commonly

developed based on the Markov random field (MRF) [26].

Semi-global matching (SGM) [12] approximates the MRF

inference by performing cost aggregation along all direc-

tions in the image, and this greatly improves the accuracy

and efficiency of stereo matching. However, finding the op-

timum smoothness values is a challenging task, due to the

occlusion problem [23]. Over-penalising the smoothness

term can reduce ambiguities around the discontinuous ar-

eas, but on the other hand, can cause incorrect matches for

the continuous areas [5]. Furthermore, the computational

complexities of the aforementioned optimisation techniques

are significantly intensive, making these algorithms difficult

to perform in real time [27].

In [5], Fan et al. proposed a novel perspective transfor-

mation method, which improves both the disparity accuracy

and the computational complexity of the algorithm. Fur-

thermore, Mozerov and Weijer [23] proved that bilateral

filtering is a feasible solution for the energy minimisation

problem in a fully connected MRF model. The costs can

be adaptively aggregated by performing bilateral filtering

on the initial cost volumes [5]. Therefore, the proposed

stereo vision system is developed based on the work in [5]

and [23]. Finally, the estimated disparity maps are trans-

formed by minimising an energy function with respect to

the roll angle and disparity projection model. This makes

the damaged road areas become highly distinguishable from

the road surface.

3. System Description

The workflow of the proposed stereo vision system is de-

picted in Figure 1, where the system consists of three main

components: a) perspective transformation; b) dense road

stereo; and c) disparity transformation. The following sub-

sections describe each component in turn.

3.1. Perspective Transformation

In this paper, the road surface is treated as a ground

plane:

n⊤pW + β = 0, (1)



Figure 1. Workflow of the proposed dense stereo system.

where pW = [xW, yW, zW]⊤ is a 3D point on the road

surface in the world coordinate system (WCS), and n =
[nx, ny, nz]

⊤ is the normal vector of the ground plane. The

projections of pW on the reference and target images, i.e.,

πref and πtar, are pI
ref = [uref, vref]

⊤ and pI
tar = [utar, vtar]

⊤,

respectively. It should be noted that the left and right im-

ages are respectively referred to as the reference and target

images in this paper. pI
ref can be transformed to pI

tar using a

homography matrix H as follows [5]:

[

pI
tar

1

]

= H

[

pI
ref

1

]

, (2)

where

H = Ktar

(

R1 −
tn⊤R0

−1

β

)

Kref
−1, (3)

t is a translation vector, R0 represents the rotation from the

WCS to the reference camera coordinate system (RCCS),

R1 denotes the rotation from the RCCS to the target cam-

era coordinate system (TCCS), and Kref and Ktar are the

intrinsic matrices of the reference and target cameras, re-

spectively. H can be estimated using at least four pairs of

matched correspondence points pI
ref and pI

tar [11]. In order

to simplify the estimation of H, the authors of [5] made sev-

eral hypotheses regarding R0, R1, Kref, Ktar, t and n. (2)

can be rewritten as follows:

utar = uref +
tcnx
β

(f sin θ − vo cos θ) + v
tcnx
β

cos θ, (4)

where f is the focus length of each camera, tc is the base-

line, θ is the pitch angle, and [uo, vo]
⊤ is the principal point.

v = vref = vtar. (4) implies that a perspective distortion

always exists for the ground plane in two images when

θ is not equal to π/2, and this further affects the stereo

matching accuracy. Therefore, the perspective transforma-

tion aims to make the ground plane in the transformed tar-

get image similar to that in the reference image [5]. This

can be straightforwardly realised by shifting each point on

row v in the target image ∆u− δp pixels to the right, where

∆u = uref − utar, and δp is a constant used to guarantee

that all the disparities are non-negative. The values of tc,
nx, f , β, vo and θ can be estimated from a set of reliable

correspondence pairs Qref = [pI
ref0
,pI

ref1
, . . . ,pI

refn
]⊤ and

Qtar = [pI
tar0
,pI

tar1
, . . . ,pI

tarn
]⊤. The transformed target im-

age is shown in Figure 1 as π′
tar.

3.2. Dense Road Stereo

3.2.1 Cost Computation and Aggregation

According to [23], finding the best disparities is equivalent

to maximising the joint probability in (5):

P (pij , q) =
∏

pij∈P

Φ(pij , qpij
)

∏

npij
∈Npij

Ψ(pij ,npij
),

(5)

where pij denotes a node at the position of (i, j)
in the graph P , qpij

represents the intensity differ-

ences corresponding to different disparities d, Npij
=

{npij1
,npij2

,npij3
, · · · ,npijk

|npij
∈ P} represents the

neighbourhood system of pij , Φ(·) expresses the compati-

bility between each possible disparity d and the correspond-

ing intensity difference, and Ψ(·) expresses the compatibil-

ity between pij and its neighbourhood system Npij
. It is

noteworthy that puv refers to pI
ref = [uref, vref]

⊤ and P

refers to the reference image. In practice, maximising the

joint probability in (5) is commonly formulated as an en-

ergy minimisation problem as follows [7]:

Ed(pij , d) =
∑

pij∈P

D(pij , d)+
∑

npij
∈Npij

V (pij ,npij
, d),

(6)

where D(·) computes the matching cost of pij , and V (·)
determines the aggregation strategy. For disparity estima-

tion algorithms based on the MRF, formulating V (·) in an

adaptive way is crucial and necessary, because the inten-

sity of a pixel in a discontinuous area usually differs greatly

from those of its neighbours [23]. Since bilateral filtering is

a feasible solution for the energy minimisation problem in

a fully connected MRF model [23], D(·) and V (·) can be

rewritten as follows:

D(pij , d) = c(pij , d), (7)



where

c(p, d) =
(σrefσtar + µrefµtar)

σrefσtar

−
1

nσrefσtar

(

∑

q∈N
+

p

iref(q)itar(q− [d, 0]⊤)

)

(8)

is the cost function; iref(p) and itar(p) represent the pixel

intensities at p in the reference and target images, respec-

tively; µref and µtar represent the means of the pixel intensi-

ties within the reference and target blocks, respectively; and

σref and σtar denote the standard deviations of the reference

and target blocks, respectively. N +
p

= {p} ∪ Np.

V (pij ,npij
, d) =

∑

npij
∈Npij

ω(pij ,npij
)c(npij

, d), (9)

where

ω(p,np) = exp

{

−
‖p− np‖

2
2

σ02
−

(iref(p)− iref(np))
2

σ12

}

(10)

is controlled by two parameters σ0 and σ1, with σ0 based

on spatial distance and σ1 based on colour similarity. The

cost c of each neighbour np can therefore be adaptively ag-

gregated to p. Finally, Ed(p, d) is normalised by rewriting

(6) as follows:

Ed(p, d) =

∑

q∈N
+

p

ω(p,q)D(q, d)

∑

q∈N
+

p

ω(p,q)
, (11)

The computed matching costs are stored in two cost vol-

umes, as shown in Figure 1.

3.2.2 Disparity Optimisation and Refinement

By applying WTA optimisation on the reference and target

cost volumes, the best disparities can be estimated. Since

the perspective view of the target image has been trans-

formed in Section 3.1, the estimated disparities on row v
should be added ∆u − δp to obtain the disparity map be-

tween the original reference and target images. The oc-

cluded areas in the reference disparity map are then re-

moved by finding the pixels p satisfying the following con-

dition [4]:
∥

∥ℓref(p)− ℓtar(p− [ℓref(p), 0]
⊤)
∥

∥

2

2
> δr, (12)

where ℓref and ℓtar represent the reference and target dispar-

ity maps, respectively. δr = 1 is the threshold for occlusion

removal. Finally, a subpixel enhancement is performed to

increase the resolution of the estimated disparity values [5]:

ℓ(p) = ℓref(p) +
c(p, d− 1)− c(p, d+ 1)

2c(p, d− 1) + 2c(p, d+ 1)− 4c(p, d)
,

(13)

where ℓ, illustrated in Figure 1, represents the final disparity

map in the reference perspective view.

3.3. Disparity Transformation

The proposed system focuses entirely on the road surface

whose disparity values decrease gradually from the bottom

of the disparity map to its top, as shown in Figure 1. For

a stereo rig whose baseline is perfectly parallel to the road

surface, the roll angle ψ equals zero and the disparities on

each row have similar values, which can also be proved by

(4). Therefore, the projection of the road disparities on

a v-disparity image can be represented by a linear model:

f(v) = α0 + α1v. A column vector α = [α0, α1]
⊤ stor-

ing the coefficients of the disparity projection model can be

estimated as follows:

α = argmin
α

Et, (14)

where

Et = ‖d−Vα‖
2
2 , (15)

d = [ℓ(p0), ℓ(p1), · · · , ℓ(pn)]
⊤ stores the disparity val-

ues, v = [v0, v1, · · · , vn]
⊤ stores the vertical dispar-

ity coordinates, 1k represents a k × 1 vector of ones, and

V = [1n+1 v]. Applying (15) to (14) results in the follow-

ing expression:

α = (V⊤V)−1V⊤d. (16)

The minimum energy Etmin can be obtained by applying

(16) to (15):

Etmin = d⊤d− d⊤V(V⊤V)−1V⊤d. (17)

However, in practice, the stereo rig baseline is not always

perfectly parallel to the road surface, and this introduces a

non-zero roll angle ψ into the imaging process. The dispar-

ity values will change gradually in the horizontal direction,

and this makes the approach of representing the road dispar-

ity projection using a linear model problematic. Addition-

ally, the minimum energy Etmin becomes higher, due to the

disparity dispersion in the horizontal direction. Hence, the

proposed disparity transformation first finds the angle corre-

sponding to the minimumEtmin. The image rotation caused

by ψ is then eliminated, and α is subsequently estimated.

To rotate the disparity map around a given angle ψ, each

set of original coordinates [u, v]⊤ is transformed to a set of

new coordinates [x(ψ), y(ψ)]⊤ using the following equa-

tions [6]:

x(ψ) = u cosψ + v sinψ, (18)

y(ψ) = v cosψ − u sinψ. (19)

The energy function in (15) can, therefore, be rewritten as

follows:

Et(ψ) = ‖d−Y(ψ)α‖
2
2 , (20)



where y = [y0(ψ), y1(ψ), · · · , yn(ψ)]
⊤ and Y(ψ) =

[1n+1 y(ψ)]. (21) is obtained by applying (20) to (14):

α(ψ) = J(ψ)d, (21)

where

J(ψ) = (Y(ψ)⊤Y(ψ))−1Y(ψ)⊤. (22)

Etmin can also be obtained by applying (21) and (22) to (20):

Etmin(ψ) = d⊤d− d⊤Y
(

Y(ψ)⊤Y(ψ)
)−1

Y(ψ)⊤d.
(23)

Roll angle estimation is, therefore, equivalent to the follow-

ing energy minimisation problem:

ψ = argmin
ψ

Etmin(ψ) s.t. ψ ∈ (−
π

2
,
π

2
], (24)

which can be formulated as an iterative optimisation prob-

lem as follows [24]:

ψ(k+1) = ψ(k) − λ∇Etmin(ψ
(k)), k ∈ N

0, (25)

where λ is the learning rate. (25) is a standard form of gra-

dient descent. The expression of ∇Etmin is as follows:

∇Etmin(ψ) = −2d⊤W(ψ)d, (26)

where

W(ψ) =
(

I−Y(ψ)J(ψ)
)

∇Y(ψ)J(ψ), (27)

I is an identity matrix. If λ is too high, (25) may overshoot

the minimum. On the other hand, if λ is set to a relatively

low value, the convergence of (25) may require a lot of iter-

ations [24]. Therefore, selecting a proper λ is always essen-

tial for gradient descent. Instead of fixing the learning rate

with a constant value, backtracking line search is utilised to

produce an adaptive learning rate:

λ(k+1) =
λ(k)∇Etmin(ψ

(k))

∇Etmin(ψ(k))−∇Etmin(ψ(k+1))
, k ∈ N

0.

(28)

The selection of the initial learning rate λ(0) will be dis-

cussed in Section 4. The initial approximation ψ(0) is set to

0, because the roll angle in practical experiments is usually

small. It should be noted that the estimated ψ at time t is

used as the initial approximation at time t + 1. The opti-

misation iterates until the absolute difference between ψ(k)

and ψ(k+1) is smaller than a preset threshold δψ . α can be

obtained by substituting the estimated roll angle ψ into (21).

Finally, each disparity is transformed using:

ℓ′(p) = ℓ(p)− α0 + α1(u sinψ − v cosψ) + δt, (29)

where ℓ′, shown in Figure 1, represents the transformed dis-

parity map, and δt is a constant used to make the trans-

formed disparity values positive.

Figure 2. Experimental set-up.

4. Experimental Results

In this section, we evaluate the performance of the pro-

posed stereo vision system both qualitatively and quantita-

tively. The following subsections detail the experimental

set-up, datasets, implementation notes and the performance

evaluation.

4.1. Experimental SetUp

In the experiments, a ZED stereo camera1 is mounted

on a DJI Matrice 100 Drone2 to capture stereo road im-

ages. The maximum take-off weight of the drone is 3.6 kg.

The stereo camera has two ultra-sharp six-element all-glass

lenses, which can cover the scene up to 20 m1. The cap-

tured stereo road images are processed using an NVIDIA

Jetson TX2 GPU3, which has 8 GB LPDDR4 memory and

256 CUDA cores. An illustration of the experimental set-up

is shown in Figure 2.

4.2. Datasets

Using the above experimental set-up, three datasets in-

cluding 11368 stereo image pairs are created. The resolu-

tion of the original reference and target images is 640×360.

In each dataset, the UAV flight trajectory forms a closed

loop, which makes it possible to evaluate the performance

of the state-of-the-art visual odometry algorithms using our

created datasets. The datasets and a demo video are publicly

available at http://www.ruirangerfan.com.

4.3. Implementation Notes

In the practical implementation, the reference and target

images are first sent to the global memory of the GPU from

the host memory. However, a thread is more likely to fetch

the data from the closest addresses that its nearby threads

accessed4. This fact makes the use of cache in global mem-

ory impossible. Furthermore, constant memory and texture

memory are read-only and cached on-chip, and this makes

them more efficient than global memory for memory re-

questing4. Therefore, we store the reference and target im-

1https://www.stereolabs.com/
2https://www.dji.com/uk/matrice100
3https://developer.nvidia.com/embedded/buy/jetson-tx2
4https://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf



Figure 3. Experimental results; (a) reference images; (b) dense subpixel disparity maps; (c) transformed disparity maps.

Figure 4. Examples of the KITTI stereo experimental results; (a) reference images, where the areas in magenta are the manually selected

road regions; (b) ground truth disparity maps; (c) results obtained using PSMNet; (d) results obtained using the proposed algorithm.

ages in the texture memory to reduce the memory requests

from the global memory. This is realised by creating two

texture objects in the texture memory and binding these ob-

jects with the addresses of the reference and target images.

The pixel intensities can therefore be fetched from the tex-

ture objects instead of the global memory. In addition, (10)

is rewritten as follows:

ω(p,np) = ω0(p,np)ω1(p,np), (30)

where

ω0(p,np) = exp

{

−
‖p− np‖

2
2

σ02

}

(31)

and

ω1(p,np) = exp

{

−
(iref(p)− iref(np))

2

σ12

}

. (32)

The values of ω0 and ω1 are pre-calculated and stored in the

constant memory to reduce the repetitive computations of

ω. Moreover, the values of µref, µtar, σref and σtar are also

pre-calculated and stored in the global memory to avoid the

unnecessary computations in stereo matching.

4.4. Performance Evaluation

4.4.1 Disparity Estimation

Some experimental results are illustrated in Figure 3. N is

a 120-connected neighbourhood system. σ0 and σ1 are em-

pirically set to 1.5 and 5.5, respectively. Since the datasets

we created do not contain disparity ground truth, the KITTI5

stereo 2012 and 2015 datasets [10, 22] are utilised to quan-

tify the accuracy of the proposed system. Some experimen-

tal results of the KITTI stereo datasets are shown in Figure

4, where the road regions are manually selected to evaluate

the accuracy of the road disparities. Furthermore, we com-

pare the proposed method with PSMNet [2] in terms of the

percentage of error pixels ep and root mean squared error

er. The expressions of ep and er are as follows:

ep =
1

m

∑

p

δ
(

|ℓ(p)− ℓ̃(p)|, εd
)

× 100%, (33)

er =

√

1

m

∑

p

(

ℓ(p)− ℓ̃(p)
)2
, (34)

where

δ(x, εd) =

{

1 (x > εd)

0 (x ≤ εd)
, (35)

5http://www.cvlibs.net/datasets/kitti/



Figure 5. Disparity maps of some motion blurred images; (a) ref-

erence images; (b) disparity maps.

m is the total number of disparities used for evaluation, εd
is the disparity error tolerance, and ℓ̃ represents the ground

truth disparity map. The comparison of ep and er between

these two methods is shown in Table 1, where it can be ob-

served that the proposed method outperforms PSMNet in

terms of ep and er when εd is set to 2, while PSMNet per-

forms better than our method when εd is set to 3. It should

be noted that the proposed algorithm is capable of estimat-

ing disparity maps between a pair of motion blurred stereo

images, as shown in Figure 5. This also demonstrates the

robustness of the proposed dense stereo system.

Method er
ep

εd = 2 εd = 3

PSMNet 1.039 1.345 0.016

Ours 0.409 0.217 0.023

Table 1. Comparison between PSMNet and the proposed method

in terms of disparity accuracy.

In addition to the disparity accuracy, the execution speed

of the proposed dense stereo vision system is also quanti-

fied to evaluate the overall system’s performance. Owing to

the fact that the image size and disparity range are not con-

stant among different datasets, a general way of evaluating

the performance in terms of processing speed is to measure

millions of disparity evaluations per second [27]:

Mde/s =
umaxvmaxdmax

t
× 10−6, (36)

where the resolution of the disparity map is umax × vmax,

dmax is the maximum disparity value, and t is the process-

ing time in seconds. The runtime of the proposed dense

stereo vision system on the Jetson TX2 GPU is approxi-

mately 152.889 ms, and the resolution of the disparity map

is 695 × 361. Therefore, the value of Mde/s is 49.231,

which is much higher than most stereo vision systems im-

plemented on powerful graphics cards.

4.4.2 Roll Angle Estimation

In the experiments, we select a range of λ(0) and record

the number of iterations that (25) takes to converge to the

Figure 6. Examples of the roll angle estimation experiments; (a)

reference images, the areas in magenta are the manually selected

road regions; (b) original disparity maps; (c) disparity maps ro-

tated around the estimated roll angles.

minimum. It is shown that λ(0) = 10 is the optimum value

when the threshold δψ is set to π
1.8×106 rad (0.0001◦).

Furthermore, a synthesised stereo dataset from EISATS6

[29,31] is used to quantify the accuracy of the proposed roll

angle estimation algorithm. The roll angle of each image in

this dataset is perfectly zero. Therefore, we manually rotate

the disparity maps around a given angle, and then estimate

the roll angles from the rotated disparity maps. Examples of

the roll angle estimation experiments are shown in Figure 6,

where it can be observed that the effects due to image rota-

tion are effectively corrected. When δψ is set to π
1.8×106 rad,

the average difference ∆θ between the actual and estimated

roll angles is approximately 0.012 rad. The runtime of the

proposed roll angle estimation on the Jetson TX2 GPU is

approximately 7.842 ms.

4.4.3 Disparity Transformation

In [5], Fan et al. published three road datasets containing

various types of road damages, such as potholes and cracks.

Therefore, we first use their datasets to qualitatively eval-

uate the performance of the proposed disparity transforma-

tion algorithm. Examples of the transformed disparity maps

are illustrated in Figure 7, where it can be observed that

the disparities of the road surface have similar values, while

their values differ greatly from those of the road damages.

This fact enables the damaged road areas to be easily recog-

nised from the transformed disparity maps.

The KITTI stereo datasets are further utilised to evaluate

the performance of disparity transformation. Examples of

the KITTI stereo datasets are shown in Figure 8. To quantify

the accuracy of the transformed disparities, we compute the

standard deviation σd of the transformed disparity values as

6https://ccv.wordpress.fos.auckland.ac.nz/eisats/set-2/



Figure 7. Examples of the disparity transformation experiments; (a) reference images; (b) transformed disparity maps.

Figure 8. Disparity transformation experimental results of the KITTI stereo datasets; (a) reference images, where the areas in magenta are

the manually selected road regions; (b) ground truth disparity maps; (c) transformed disparity maps.

follows:

σd =

√

1

m

∥

∥

∥

∥

s−
s⊤1m

m

∥

∥

∥

∥

2

2

, (37)

where s = [ℓ′(p0), ℓ
′(p1), . . . , ℓ

′(pm−1)]
⊤ stores the

transformed disparity values. The average σd value of the

KITTI stereo datasets is 0.519 pixels. However, if the im-

age rotation effects caused by the non-zero roll angle are

not eliminated, the average σd value becomes 0.861 pixels.

The runtime of the disparity transformation on the Jetson

TX2 GPU is around 1.541 ms.

5. Conclusion and Future Work

This paper presented a robust dense stereo vision system

embedded in a DJI Matrice 100 UAV for road condition as-

sessment. The perspective transformation greatly improved

the disparity accuracy and reduced the algorithm computa-

tional complexity, while the disparity transformation algo-

rithm enabled the UAV to estimate roll angles from disparity

maps. The damaged road areas became highly distinguish-

able in the transformed disparity maps, and this can provide

new opportunities for UAV-based road damage inspection.

The proposed system was implemented with CUDA on a

Jetson TX2 GPU, and real-time performance was achieved.

In the future, we plan to use the obtained disparity maps

to estimate the flight trajectory of the UAV and reconstruct

the 3D maps using the state-of-the-art simultaneous locali-

sation and mapping (SLAM) algorithms.
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