
A Hybrid Method for Tracking of Objects by UAVs

Hasan Saribas1, Bedirhan Uzun2, Burak Benligiray1, Onur Eker2, Hakan Cevikalp2

1Eskisehir Technical University, 2Eskisehir Osmangazi University
12 Eylul Kampusu, 26470, Eskisehir, Turkey, 2Meselik Kampusu, 26480, Eskisehir, Turkey

{hasansaribas48, eee.bedirhan, bbenligiray, onureker34, hakan.cevikalp}@gmail.com

Abstract

Object tracking remains one of the fundamental prob-

lems of computer vision since it becomes difficult under

some realistic conditions such as fast camera movement,

occlusion and similar of objects to the tracked target. As

a real-world application, tracking objects using cameras

mounted on unmanned aerial vehicles (UAVs) has become

very popular. With the increasing availability of small sin-

gle board computers with high parallel processing power

capabilities, tracking of objects by using onboard comput-

ers within UAVs in real time has become feasible. Al-

though these onboard computers allow a wide variety of

computer vision methods to be executed on a UAV, there

is still a need to optimize these methods for running time

and power consumption. In this paper, we propose a hy-

brid method for a UAV to detect and track other UAVs ef-

ficiently. To detect the target UAV at the beginning of the

video and in the case where the tracked UAV has been

lost, we use the deep learning-based YOLOv3 and YOLOv3-

Tiny models, which provide one of the best trade-offs be-

tween speed and accuracy in the literature. To track the

detected UAVs in real time, a kernelized correlation filter

is used. Combining these two methods provides high ac-

curacy and speed even on onboard computers. To train

the neural nets and test our method, we have collected a

new dataset composed of videos of various UAVs in flight,

captured from another UAV. The performance of the pro-

posed method has been compared with other state-of-the-

art methods in the literature on this dataset. Addition-

ally, we also tested the proposed trackers on aerial videos

captured from UAVs. Experimental results show that the

proposed hybrid trackers achieve the state-of-the-art per-

formance on all tested datasets. The code is available at

https://github.com/bdrhn9/hybrid-tracker.

1. Introduction

Visual tracking is the task of determining the spatial lo-

cation of a specific object across sequential frames captured

by a camera. Tracking is one of the fundamental problems

of computer vision, and therefore it has been studied by

researchers for a long time. Although these studies have

resulted in methods that perform satisfactorily under con-

trolled conditions, it is difficult to claim the same for dif-

ficult conditions such as fast moving cameras and objects,

occlusion, and complex backgrounds. Therefore, tracking

remains an open problem of computer vision.

Visual tracking has many real-world applications, mostly

in monitoring and surveillance. Due to their medium-low

flight altitude, unmanned aerial vehicles (UAV) are an ideal

platform to mount cameras on for these purposes. With the

recent emergence of single-board computing modules that

can be mounted on UAVs, onboard visual tracking has be-

come a feasible option. The resulting implementations can

be utilized in surveillance security systems, for traffic mon-

itoring or for some military applications.

The majority of the earlier studies followed either a gen-

erative or a discriminative approach for tracking. Genera-

tive approaches use the location of the object in the previous

frame to infer its location in the current frame [27, 33]. This

is done by producing various windows in the current frame

around the location of the object returned in the previous

frame, and choosing the window that delivers the highest

similarity to the object representation according to the met-

ric of choice. These methods require the location of the

object to be given at the beginning and are not trained be-

forehand.

Unlike generative methods, discriminative methods are

trained in advance to recognize the object to be tracked [35,

15, 18]. The trained model can then be used to detect the

object and track it across the frames. Discriminative meth-

ods tend to be able to deliver a higher accuracy compared to

generative methods. However, they also have some compar-

ative shortcomings, such as only being able to track objects

that they were trained for, not being able to recognize the

object in the case of appearance transformations unless the

model is updated, and running slower compared to genera-

tive methods.

The most recent tracking methods that deliver state of

1

Figure 1. Example images from the UAV Tracking Dataset which is created to test the UAV tracking methods.

the art performance use either deep neural nets or correla-

tion filters. Although later layers of deep CNN models are

successful at producing high-level representations, they fail

at capturing fine details. In comparison, earlier layers of

CNN architectures are more sensitive towards the changes

in appearance of the objects, which provide better localiza-

tion. For this reason, shallower CNN architectures are pre-

ferred in tracking applications [29, 22, 26]. Furthermore, it

is not feasible to train deeper CNN architectures with a lot

of parameters online in real-time because of speed issues.

The correlation filter-based tracking methods on the

other hand solve a ridge regression problem in the fre-

quency space to locate the object to be tracked [4, 16, 9]. To

locate the object in the next frame, the learned filter is ap-

plied around the region of interest and the candidate that re-

turns the highest correlation filter response is chosen. Then,

the filter is updated with this new position. This approach is

considerably faster compared to deep learning-based meth-

ods.

Visual object detection is determining the locations and

scales of examples of a general object type in an image.

There are two major differences between the visual object

detection and tracking problems. In detection, all instances

of a general object type are desired to be localized, while

tracking is focused on a specific object instance. Further-

more, since tracking is done on sequential frames, informa-

tion from previous frames can be leveraged to better localize

the object in the current frame. This is not possible in the

detection problem, as the images are typically independent,

and not sequential frames of a video. Similar to visual track-

ing, visual detection is a challenging problem under diffi-

cult conditions. Various transformations such as scale and

viewing angle differences cause the objects to appear very

differently on the image. Moreover, some objects, such as

animals, can undergo non-rigid transformations, and mod-

eling all resulting appearances as the same object type is

hard. In addition to these, similar to all vision problems,

various illumination conditions and complex backgrounds

make detection much more difficult.

Object detection methods are typically composed of two

stages: extracting features that represent the objects and

learning to detect objects by using a machine learning algo-

rithm. HOG [5], LBP [1] and CNN [11] features are com-

monly used for detection. After extracting these features,

the second part is the training of detectors for detection. The

classic approach to detection is to train a classifier such as

support vector machines (SVM), artificial neural networks

(ANN), nearest neighbors or decision trees to distinguish

examples of objects from examples of the background us-

ing the extracted features, and using this classifier to clas-

sify candidate regions in the image. Alternatively, deep

learning-based methods provide state of the art results by

training a CNN and a detector in an end-to-end fashion, and

these methods can run in real-time on GPUs. Some popu-

lar examples to this approach can be given as YOLO [30],

SSD [24] and Faster R-CNN [32].

In this study, we propose to utilize a detector alongside

a tracker to mitigate its shortcomings. Specifically, the de-

tector acts as a localization initializer and a self-correction

mechanism whenever the tracker loses the target. The re-

sulting method both delivers good tracking accuracy, and is

also lightweight enough to run onboard within a UAV. The

performance of this method at tracking other UAVs is tested

with a dataset that we have created. Additional experiments

are provided for tracking of ground objects in videos cap-

tured from UAVs. The results of these experiments indicate

that the proposed method is suitable for tracking applica-

tions by using onboard computers with UAVs.

2. Proposed Method

In this study, we propose a hybrid method to track UAVs

in real-time. To this end, the kernelized correlation fil-

ter (KCF) [16], which is particularly fast at tracking, is used

along with the accurate and relatively fast detection models

YOLOv3 and YOLOv3-Tiny [31]. To train the YOLO mod-

els and test the proposed methods, we have created a new

dataset of videos with various kinds of UAVs (see Fig. 1).

2.1. Kernelized Correlation Filter Tracker

Correlation is a metric of similarity between two pat-

terns, where more similar patterns are more highly corre-

lated. Visual tracking methods based on correlation filters

are designed to produce the highest response when the filter

is applied on the object to be tracked. To reduce the compu-

tational complexity of the learned filter, and thus to speed

up the method, the properties of circulant matrices [10] are

used for KCFs [16]. In addition, HOG features [5] are used

to improve tracking accuracy.

Now, let yi represent a target and f(z) = w
⊤
z be the

function that minimizes the squared error over samples xi

and their regression targets yi. The KCF briefly solves the

following ridge regression optimization problem,

min
w

∑

i

(f(xi)− yi)
2 + λ||w||2, (1)

where λ is a regularization parameter that controls over-

fitting. The solution of the problem in the frequency domain

corresponds to

ŵ =
x̂
∗ ⊙ ŷ

x̂∗ ⊙ x̂+ λ
, (2)

where ŵ indicates the Fourier transform of w, x̂∗ is the

complex conjugate of x̂, and ⊙ denotes the element-wise

product. We can easily obtain w in the spatial domain by

using inverse Discrete Fourier Transform (DFT). KCF also

utilizes the kernel trick to improve the accuracy.

Since the problem is solved in the frequency domain,

the method is extremely fast which makes the method ideal

for practical applications. Consequently, this method is one

of the fastest in the literature, robust against to translation

and scale variances, and provides high accuracy in general.

However, it only searches for the object in a region of inter-

est, and hence it fails when the object is occluded or has left

the field of view, as it does not have a self-correction mech-

anism. In addition, as in the other correlation filter based

trackers, it is not straightforward to estimate aspect ratios of

the target object bounding boxes (To the best of our knowl-

edge, there is only a single study [21] that addresses this

problem).

2.2. YOLO Detector

Multi-stage object detectors generate object proposals

and classify these [13]. Although these object proposals

can be generated using another method, a neural net can be

trained for this purpose as well [32]. Unlike these methods,

YOLO is a single-stage object detector network. The model

predicts bounding boxes and their probabilities in a single

pass. The probabilities are then used to weight the bound-

ing boxes. While multi-stage object detectors tend to run a

pass for every candidate, YOLO does a single pass for the

whole image, which results in a considerable speed-up [30].

We should emphasize that YOLO is a fast object detec-

tion method, rather than an object tracking method. It is not

possible to use YOLO by itself for tracking a specific ob-

ject with other objects of the same class in the scene, as it

would not attempt to distinguish the target object from the

others. Additionally, it is not designed to return a detection

response for all frames, which may result in a discontinuity

in tracking.

With UAV-specific applications of vision, running time,

which also affects power consumption, becomes much more

critical. While YOLO runs relatively fast on high-end GPUs

compared to multi-stage detectors, it is not comparable

to KCF, which can run with 100+ FPS on a CPU. How-

ever, this slowness can be alleviated somewhat by using

the smaller version of YOLO, YOLO-Tiny, which has a

smaller number of convolutional layers. In this study, we

use YOLOv3 and YOLOv3-Tiny, which include minor im-

provements over the original model [31].

2.3. The Proposed Hybrid Tracker

YOLO object detector is good at returning the locations

of the general object categories, but it cannot be used en-

tirely for tracking. Because, the same kind of object in-

stances such as aeroplanes and pedestrians can be consid-

ered as both the target and background in a given frame. It

also becomes slow for onboard computers. KCF tracker on

the other hand needs initialization in the first frame and in

case of tracking failures. It has also shortcoming that it is

not robust to changes in aspect ratios of the target bound-

ing boxes. Considering the advantages and limitations of

these two methods described above, it can be seen that they

complement each other. Therefore, we introduce a hybrid

tracker to take advantage of the benefits of these two meth-

ods. The proposed hybrid tracker (UAVH) uses YOLO to

detect the object in the first frame and recover in the cases

where the tracker fails, and it uses KCF to maintain the

tracking of the object. The resulting method is a hybrid

tracker that embodies the advantages of both approaches.

We first need to train a YOLO model to detect objects

in order to use the proposed hybrid method. To this end,

the YOLO model is trained to detect UAVs with a dataset

composed of UAV images in one of our experiments and

we used MS-COCO dataset for training YOLO in the other

tests. For optimal performance, we compiled the original C

implementation of the YOLO method as a dynamic library

and used the related functions in our Python code1.

From this point on, the terms tracker and detector are

used for the KCF and YOLO methods, respectively. Once

the YOLO is trained for the specific categories that will be

used for tracking, we need a mechanism to switch between

the detector and tracker methods.To this end, we rely on

the tracker scores: If the filter score of the KCF tracker is

below a determined threshold value, the YOLO detector is

called to detect all UAVs (or any other tracked object in-

stance) in the image. Next, we have to decide if the object

of interest is in the scene or not. We rely on object detec-

tion scores for this purpose and if the scores are higher than

a selected threshold, we consider the returned positions as

potential tracked object locations. To determine the final

position of the tracked object, we use the distances from

the last known position of tracked object and the candidate

locations. As seen in Eq. 3, among the k candidate detec-

tions (PDi
), the one with the highest IoU (Intersection-over-

Union) ratio with the latest output of the tracker is chosen

as the new position of the target and then it is used to train

the KCF tracker.

max
i∈k

(
|PT ∩ PDi

|

|PT ∪ PDi
|

)
(3)

Note that sudden movements may cause the detected

bounding boxes to not overlap with the earlier tracked ob-

ject position. In that case, as seen in Eq. 4, the Euclidean

distances between the center coordinates of the k candidate

detections (xDi
, yDi

) and the center coordinates of the latest

output of the tracker (xT , yT) are compared, and the posi-

tion with the closest distance is chosen as the new target

position.

min
i∈k

(√
(xT − xDi

)2 + (yT − yDi
)2
)

(4)

By implementing the above procedure, the tracker is en-

abled to recover from a failure and update the aspect ratio

1Our code is available at https://github.com/bdrhn9/hybrid-tracker.

Table 1. The comparison of the methods on the UAV Tracking

Dataset. Red, green and blue indicate the best results in descend-

ing order.

Method Success Precision FPS

UAVH (ours) 0.561 0.773 53.5

UAVH-Tiny (ours) 0.524 0.737 69.2

YOLOv3 [31] 0.485 0.653 16.5

YOLOv3Tiny [31] 0.461 0.630 47.1

CSRT [25] 0.232 0.402 111

TLD [18] 0.205 0.265 20.1

MIL [2] 0.215 0.379 12.3

KCF [16] 0.126 0.196 115

BACF [19] 0.213 0.339 25.8

dynamically. Since the detector is only called when the fil-

ter score of the tracker is below a certain threshold, the pro-

posed method runs faster than YOLO. As a result, the pro-

posed method inherits its speed, and the abilities to lock on

a specific object instance and produce a continuous output

from KCF, and its abilities to recover from failure and up-

date the location and aspect ratio of the bounding box from

YOLO.

3. Experiments

Although there are many datasets to test methods for

tracking objects in videos such as OTB (Object Tracking

Benchmark) [34] and VOT (Visual Object Tracking) [20],

these datasets are not solely composed of UAV videos. For

this reason, we labeled 7500 frames to create a dataset for

our specific application, which is tracking of UAVs by using

a camera mounted on another flying UAV. 2000 frames from

this dataset are used to train the YOLOv3 models, while the

remaining 5500 frames from 15 videos are used for testing.

In addition to this dataset, we have also conducted exper-

iments on the UAV123 and UAV20L datasets [28], which

are composed of videos shot from UAVs. Differently from

our dataset, the objects to be tracked in these videos are

not UAVs, but various objects on the ground. The YOLO

models used in the UAV123 and UAV20L experiments were

pretrained with the COCO dataset [23].

For a fair comparison between the methods, the OTB

evaluation protocol is used [34]. In this protocol, the re-

sults are presented with both success and precision scores.

While calculating the success score, the overlap between the

ground-truth bounding box (RGT) and the bounding box

predicted by the method (RP) is considered.

IoU =
|RGT ∩RP |

|RGT ∪RP |
(5)

When the IoU ratio is above a certain threshold value, the

result is considered to be successful, and the success score

Figure 2. Success and precision scores of the methods on the UAV Tracking Dataset using one pass evaluation (OPE) protocol.

is calculated as the ratio of the number of frames that the

method was successful to the total number of frames. This

calculation is repeated for all videos in the dataset to cal-

culate an overall success score for the dataset. To calcu-

late the second metric, precision, the distance between the

ground-truth center of the bounding box is compared with

the bounding box returned by the method. The ratio of the

number of frames where this distance is less than 20 pixels

to the total number of frames gives the precision score.

The experiments are repeated with both YOLOv3 and

YOLOv3-Tiny. YOLOv3-Tiny is chosen particularly to

be able to run the proposed method on a Jetson TX2 on-

board within a UAV, and the resulting method is denoted

as UAVH-Tiny. To determine the thresholds for YOLO and

KCF, we experimented on a small validation dataset and

set the YOLO threshold score to 0.5 and KCF filter score

to 0.45. The models are trained with an NVIDIA Quadro

P5000 GPU and the experiments are done on a notebook

computer with an Intel Xeon E-2186M CPU and NVIDIA

Quadro P4200 GPU. We also run the tests of the proposed

trackers on a Jetson TX2 module.

3.1. UAV Tracking Dataset

The proposed methods, UAVH (using YOLOv3) and

UAVH-Tiny (using YOLOv3Tiny), are trained with the

training set that we have collected. These are com-

pared on our test set with the following recent studies

that have achieved high tracking performance: BACF [12],

KCF [16], TLD [18], MIL [3], CSRT [25], YOLOv3 [31],

and YOLOv3-Tiny [31]. It should be noted that all these

methods are trackers except YOLOv3 and YOLOv3-Tiny.

The success and precision scores of the tested methods

on our dataset are given in Table 1 and Fig. 2. The proposed

hybrid methods deliver the highest success and precision

scores, while being the third fastest method. It can be seen

that the faster KCF and CSRT methods have performed very

poorly on our dataset. If we compare the proposed hybrid

method to its components, YOLOv3 and KCF, we can see

that it has outperformed both of them.

3.2. UAV123 Dataset

The UAV123 dataset consists of 123 challenging high-

resolution aerial video sequences [28]. These video se-

quences are classified under 12 different scenarios, such as

fast moving objects, substantial changes in aspect ratio and

scale, illumination variation, viewpoint change, similar ob-

ject and so on. In both the UAV123 and UAV20L datasets,

we compared the proposed methods with state of the art

methods in the literature (some only appear on the plots):

Note that for the UAV123 and UAV20L experiments, the

proposed method is pretrained with the COCO dataset.

The success and precision plots of the methods are given

in Fig. 3. It can be seen that UAVH provides the best re-

sults again, but UAVH-Tiny performs comparatively worse.

See Table 2 for various performance metrics. UAVH is both

the best performing method, and it is also in the best top-3

methods in terms of frame rates. Although UAVH-Tiny is

not in the best top-3 methods in success and precision, it

runs significantly faster than UAVH. Both methods can be

considered to run in real-time on a Jetson TX2, which can

be mounted on a UAV to do onboard tracking. The aver-

age speeds of the proposed methods that run on Jetson TX2

modules are given in the last column of Table 2.

The success plots of the tested methods for the 12 sce-

narios are given in Fig. 4. UAVH outperforms all other

methods in 9 out of 12 scenarios. It especially provides a

high success score under aspect ratio and scale variations

because of the adaptability YOLO provides. The perfor-

mance of the proposed method seems to have suffered in

background clutter, similar object and low resolution sce-

narios, likely because the object is searched for by apply-

ing YOLO in a region of interest around the previous loca-

Figure 3. Success and precision scores of the methods on the UAV123 Dataset using one pass evaluation (OPE) protocol.

Table 2. The comparison of the methods on the UAV123 and UAV20L Dataset. Red, green and blue indicate the best results in descending

order.
UAV123 UAV20L FPS

Methods Success Precision Success Precision PC Jetson TX2

UAVH (ours) 0.527 0.743 0.557 0.784 62.86 25

UAVH-Tiny (ours) 0.417 0.661 0.445 0.761 71.9 34

ECO [6] 0.525 0.741 0.435 0.604 8 -

ECO-HC [6] 0.506 0.725 - - 60 -

SRDCF [8] 0.464 0.676 0.343 0.507 5.37 -

MUSTER [17] 0.391 0.591 0.329 0.514 0.975 -

DSST [7] 0.356 0.586 0.270 0.459 25.4 -

OAB [14] 0.331 0.495 0.317 0.490 0.459 -

Struck [15] 0.381 0.578 0.288 0.437 17 -

KCF [16] 0.297 0.466 0.223 0.339 125 -

TLD [18] 0.283 0.436 0.197 0.336 13.8 -

tion. Object detection is particularly difficult in these cases,

which has degraded our performance. This effect is most

emphasized in the similar object scenario, where ECO has

outperformed the proposed tracker by nearly 5%. This is

expected since YOLO cannot discriminate between the in-

stances of the same object category. Compared to UAVH,

UAVH-Tiny seems to show more variance in performance

in different scenarios, indicating a comparative lack of ro-

bustness.

3.3. UAV20L Dataset

UAV20L is a subset of UAV123 designed to test for long-

term aerial tracking [28]. It consists of 20 video sequences

and more than 58K frames. The success and precision plots

of the tested methods can be seen in Fig. 5 . Similar to the

experiments on UAV123, UAVH delivers the best perfor-

mance. While UAVH-Tiny is close to UAVH in precision,

there is a significant difference in success.

The scores for different performance metrics are given

in Table 2. This time, UAVH-Tiny is among best perform-

ing top-3 methods, indicating that a shallower detector net-

work can be used for long-term tracking. This is reason-

able, as with shorter video sequences, the success of the

YOLO model initializing the object location becomes more

critical. On the other hand, long-term tracking depends on

the KCF more, which closes the gap between UAVH and

UAVH-Tiny.

3.4. Visual Comparison

Finally, we present a visual comparison of the proposed

methods along with others from the literature on the UAV

Tracking Dataset. See Figure 6 for examples. It can be seen

that the proposed methods both estimate the general region

that the UAV is in, and also returns a better bounding box

with an appropriate scale and aspect ratio.

4. Conclusion

In this study, YOLOv3 and KCF are used to design a hy-

brid visual tracker to detect and track UAVs. The main idea

is to combine a tracker and a detector to take advantages of

Figure 4. Success scores of the methods on the different scenarios in the UAV123 Dataset using one pass evaluation (OPE) protocol.

these two methods and reduce the limitations of the result-

ing tracking system. To compare the proposed method with

the trackers in the literature that provide high performance

in real-time, a new dataset containing UAVs has been col-

lected. The proposed hybrid tracker (UAVH) outperformed

both YOLOv3, KCF, and the other methods that it has been

compared to.

To improve the speed of the proposed method, it has

also been implemented with the YOLOv3-Tiny model. The

resulting UAVH-Tiny method has achieved a good trade-

off between accuracy and speed, and can provide real-time

performance on a single board computer mounted within a

UAV.

Acknowledgments. This work was funded by the Scientific

and Technological Research Council of Turkey (TUBITAK)

under Grant number EEEAG-116E080. We also thank

NVIDIA for the donation of Quadro P5000 GPUs used in

this study.

Figure 5. Success and precision scores of the methods on the UAV20L Dataset using one pass evaluation (OPE) protocol.

Figure 6. A visual comparison of the methods on the UAV Tracking Dataset. Bounding box colors are as follow: Black–ground truth,

red–UAVH (ours), blue–UAVH-Tiny (ours), green–CSRT, yellow–KCF.

References

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description

with local binary patterns: Application to face recognition.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 28(12):2037–2041, 2006. 2

[2] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking

with online multiple instance learning. In Proc. IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

983–990, 2009. 4

[3] B. Babenko, M.-H. Yang, and S. Belongie. Robust ob-

ject tracking with online multiple instance learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(8):1619–1632, 2011. 5

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M.

Lui. Visual object tracking using adaptive correlation filters.

In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 2544–2550, 2010. 2

[5] H. Cevikalp and B. Triggs. Visual object detection using

cascades of binary and one-class classifiers. International

Journal of Computer Vision, 123(3):334–349, 2017. 2, 3

[6] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg.

Eco: Efficient convolution operators for tracking. In Proc.

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6638–6646, 2017. 6

[7] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Dis-

criminative scale space tracking. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 39(8):1561–1575,

2017. 6

[8] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg.

Learning spatially regularized correlation filters for visual

tracking. In Proc. IEEE International Conference on Com-

puter Vision, pages 4310–4318, 2015. 6

[9] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg.

Beyond correlation filters: Learning continuous convolution

operators for visual tracking. In Proc. European Conference

on Computer Vision, pages 472–488, 2016. 2

[10] P. J. Davis. Circulant Matrices. American Mathematical

Soc., 2012. 3

[11] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. DeCAF: A deep convolutional ac-

tivation feature for generic visual recognition. In Proc. Inter-

national Conference on Machine Learning, pages 647–655,

2014. 2

[12] H. K. Galoogahi, A. Fagg, and S. Lucey. Learning

background-aware correlation filters for visual tracking. In

Proc. IEEE International Conference on Computer Vision,

volume 3, page 4, 2017. 5

[13] R. Girshick. Fast R-CNN. In Proc. IEEE International Con-

ference on Computer Vision, pages 1440–1448, 2015. 3

[14] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking

via on-line boosting. In Proc. British Machine Vision Con-

ference, volume 1, page 6, 2006. 6

[15] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng,

S. L. Hicks, and P. H. Torr. Struck: Structured output track-

ing with kernels. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(10):2096–2109, 2016. 1, 6

[16] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

37(3):583–596, 2015. 2, 3, 4, 5, 6

[17] Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and

D. Tao. MUlti-store Tracker (MUSTer): A cognitive psy-

chology inspired approach to object tracking. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition,

pages 749–758, 2015. 6

[18] Z. Kalal, K. Mikolajczyk, J. Matas, et al. Tracking-learning-

detection. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 34(7):1409, 2012. 1, 4, 5, 6

[19] H. Kiani Galoogahi, A. Fagg, and S. Lucey. Learning

background-aware correlation filters for visual tracking. In

Proc. IEEE International Conference on Computer Vision,

pages 1135–1143, 2017. 4

[20] M. Kristan, J. Matas, A. Leonardis, T. Vojı́ř, R. Pflugfelder,

G. Fernandez, G. Nebehay, F. Porikli, and L. Čehovin. A

novel performance evaluation methodology for single-target

trackers. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 38(11):2137–2155, 2016. 4

[21] F. Li, Y. Yao, D. Z. P. Li, W. Zuo, and M.-H. Yang. Integrat-

ing boundary and center correlation filters for visual tracking

with aspect ratio variation. In ICCV Workshops, 2017. 3

[22] H. Li, Y. Li, and F. Porikli. DeepTrack: Learning discrimina-

tive feature representations online for robust visual tracking.

IEEE Transactions on Image Processing, 25(4):1834–1848,

2016. 2

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In Proc. European Conference on

Computer Vision, pages 740–755, 2014. 4

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

Proc. European Conference on Computer Vision, pages 21–

37, 2016. 2

[25] A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kris-

tan. Discriminative correlation filter with channel and spatial

reliability. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition, pages 6309–6318, 2017. 4, 5

[26] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchi-

cal convolutional features for visual tracking. In Proc. IEEE

International Conference on Computer Vision, pages 3074–

3082, 2015. 2

[27] X. Mei and H. Ling. Robust visual tracking using l1 mini-

mization. In Proc. IEEE International Conference on Com-

puter Vision, pages 1436–1443, 2009. 1

[28] M. Mueller, N. Smith, and B. Ghanem. A benchmark and

simulator for UAV tracking. In Proc. European Conference

on Computer Vision, pages 445–461, 2016. 4, 5, 6

[29] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In Proc. IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4293–4302, 2016. 2

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Proc.

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 779–788, 2016. 2, 3

[31] J. Redmon and A. Farhadi. YOLOv3: An incremental im-

provement. arXiv preprint arXiv:1804.02767, 2018. 3, 4,

5

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Proc. Advances in Neural Information Processing

Systems, pages 91–99, 2015. 2, 3

[33] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental

learning for robust visual tracking. International Journal of

Computer Vision, 77(1-3):125–141, 2008. 1

[34] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 37(9):1834–1848, 2015. 4

[35] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Low-rank sparse

learning for robust visual tracking. In Proc. European Con-

ference on Computer Vision, pages 470–484, 2012. 1

