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Abstract

Robust understanding of the driving scene is among the

key steps for accurate object detection and reliable au-

tonomous driving. Accomplishing these tasks with a high

level of precision, however, is not trivial. One of the chal-

lenges come from dealing with the heterogeneous density

distribution and massively imbalanced class representation

in the point cloud data, making the crude implementation of

deep learning architectures for point cloud data from other

domains less effective. In this paper, we propose a density-

adaptive sampling method that can deal with the point den-

sity problem while preserving point-object representation.

The method works by balancing the point density of pre-

gridded point cloud data using oversampling, and then em-

pirically sample points from the balanced grid. Using the

KITTI Vision 3D Benchmark dataset for point cloud seg-

mentation and PointCNN as the classifier of choice, our

proposal provides superior results compared to the origi-

nal PointCNN implementation, improving the performance

from 82.73% using voxel-based sampling to 92.25% us-

ing our proposed density-adaptive sampling in terms of per

class accuracy.

1. Introduction

The ever-growing availability of large-scale point cloud

data and easy access to affordable Light Detection and

Ranging (LiDAR) sensors have opened new streams of re-

search in the computer vision field in recent years [10]. In-

stead of having to estimate distances between objects in

a scene from images in order to reconstruct a 3D scene,

researchers can now achieve the same objective by lever-

aging hundreds of thousands of point coordinates. Point-

Net [3] and PointCNN [13] are two popular deep learning

models for learning the features of a scene from raw point

cloud data, achieving an appealing performance of 83.7%

for PointNet and 86.14% for PointCNN in terms of part-

averaged IoU when applied on the ShapeNet Parts dataset

[13]. Due to the novelty of its approach in accounting for

the spatial information in the point cloud data, PointNet

has commonly been used as the backbone of many recently

developed deep learning models for raw point cloud data

[17, 21].

Point cloud datasets usually contain an extremely large

number of points, preventing deep learning models to in-

clude all the data points simultaneously. In that setting, it

is common practice that only a few samples are considered

in one learning iteration. The point sampling procedure in

PointNet++, for example, is carried out by first partition-

ing the point cloud data into several voxels, and then per-

forming random sampling from each of the voxels to con-

struct training sets with the maximum number of points that

is permissible by the architecture [18]. This approach pre-

sumes that the point density in each voxel is homogeneous.

While the homogeneous point density distribution setting



Figure 1. The nature of point cloud data from two different do-

mains: (a) driving scene point cloud from Velodyne-type LiDAR

(b) landscape map point cloud from airborne LiDAR along with

point density distributions (c-d).

usually holds true for some applications, e.g. geomapping

with point clouds from airborne LiDAR [1] or object scan-

ning with point clouds from close-range scanning LiDAR

[5], it is severely violated in the context of autonomous ve-

hicle (AV) applications. In this context, the point cloud data

are collected using a LiDAR with rotating beams (such as

the Velodyne LiDAR) and the AV being in the center of

the point clouds, thus the further the distance is, the less

dense the points become (see for instance the Kitti dataset

[9]). Because of this heterogeneity, the standard sampling

technique with the voxelization method is not suitable. Fig.

1 illustrates the problem. In this figure, point cloud data

from the Kitti Velodyne lidar (for a driving scene) and from

the ISPRS Vaihingen airborne LiDAR (for a mapping ap-

plication) are presented along with the top-view voxeliza-

tion grids that are commonly used in training deep learning

models.

The main contribution of our work is the use of a density-

adaptive sampling method for improving the classification

accuracy for heterogeneous point clouds with highly imbal-

anced class representation, especially when constructing the

training set with an intention of balancing the point density

distribution of the point cloud during the training process.

Other approaches have been studied in the context of learn-

ing from imbalanced datasets [2, 11]. We argue that ob-

taining point samples from grids of point cloud data with

homogeneous point density distributions provides a good

training set that is suitable with deep learning architectures

utilizing raw point cloud data as input. In the experiment,

we investigate the performance of various sampling strate-

gies and observe that a class of sampling methods that are

density-adaptive, i.e. taking into account the distribution of

point density into the sampling scheme, yields a superior

result compared to other sampling methods, including the

crude voxelization-based sampling that is implemented in

several existing deep learning architectures [13]. The exper-

imental results using the Kitti 3D dataset show a significant

improvement, from 82.73% using the original sampling to

92.25% using our proposed density-adaptive sampling, in

terms of per class accuracy. We note that the performance

of the proposed method is compared with accuracy metrics

(true positive rate), rather than MIoU score, because our

model discovered more objects compared to what the Kitti

ground truth semantic labels provide, hence computing the

MIoU score unfairly exacerbates our performance. A more

detailed discussion will be provided in Section 5.

In what follows, we provide some background informa-

tion describing the context of the challenges of work and

review some related works. In Section 3, we present our

method and the metrics used for evaluation. In Section 4,

we describe the experiment settings and the Kitti dataset

and show our results. In Section 5, we discuss our findings

and finally we present the conclusion in Section 6.

2. Related Work

In this section, we provide an overview of the nature of

point cloud data and an overview of selected work related to

semantic segmentation using raw 3D point cloud data and

sampling methods for learning models.

2.1. Point cloud and LiDAR

The growing interest analyzing point cloud data that cap-

ture spatial features of complex 3D scenes have become a

trend in various fields, including mapping, object recon-

struction, driving navigation, etc. A point cloud is a set

of points in 3D space, each described by x, y, z coordinate

values that are usually collected by LiDAR sensors. The

sensor sends out pulses of beams at high frequency and cal-

culates object distances based on the time for the pulses to

return. By sweeping a region of interest with the LiDAR

beams and combining the information from all points in a

scene, usually in the order of hundreds of thousands or even

a few million points, a data collection effort using LiDAR

can provide accurate spatial information of complex scenes

quite efficiently.



The point cloud data inherit unique characteristics, e.g.

in terms of the distribution of point density in various sub-

regions or grids of the scene or object of interest, depend-

ing on the nature of the scene of interest and the types of

LiDAR utilized [16, 20]. Point cloud data from Airborne

LiDAR, for instance, which is widely used for mapping ge-

ographical areas from a top-view, generally have a relatively

even point density in each grid of the scene. Point clouds

obtained from a close-range portable 3D object scanner Li-

DAR will have a point density distribution according to the

surface captured by the scanning process. In contrast, point

cloud data collected from Velodyne-type LiDARs, which

is prevalent in AV applications with 360-degree surround-

ing environment as the scene of interest, will have highly

heterogeneous point density in its grids. Fig. 1 shows the

difference of point density distribution for different types of

point cloud data.

2.2. Deep learning for point cloud segmentation

On its own, obtaining accurate semantic segmenta-

tion label from scenery data has less meaningful practical

uses. However, semantic segmentation has been shown to

be a good processing mechanism for object detection on

point cloud data [6, 15]. That is, the scene segmentation

task, which often is implemented as a supervised learning

scheme, can be coupled with a classification or clustering

method to build an accurate and efficient object detection

pipeline or end-to-end framework. Hence, achieving a good

performance for semantic segmentation on point cloud is a

good intermediate objective. [21] provides a good review of

the various frameworks used for semantic segmentation for

point cloud data.

On a high level, these frameworks can be divided into

several classes based on the input data that are exploited in

the training of the deep learning models. Some frameworks

[4, 14, 22] use an image projection or voxel representation

of the point cloud data making it ready for the convolu-

tional operations in the deep architectures. PointNet++ and

PointCNN use the raw point cloud data directly which to

some extent should have the advantage of being able to ex-

ploit the spatial information from the point cloud data. In

these frameworks, the training set is constructed via sam-

pling method. In the original PointNet++ implementation,

the sampling is done by partitioning the scene of interest

into several overlapping partitions by some distance met-

ric, from which the local features are extracted. The local

features are then clustered into larger units in a hierarchi-

cal fashion to capture the features of the whole scene [18].

PointCNN uses point cloud data and learns by utilizing the

so-called X-Conv operations [13]. Similar to the convolu-

tion operation in ConvNet [12], X-Conv includes the cal-

culation of inner products of transformed point cloud data

and convolution kernels. The learning process relies on the

Multi-Layer Perceptron (MLP) algorithm and uses a Unet-

like architecture [19] to do point-level segmentation. The

implementation of both methods on the ShapeNet data set

have yielded appealing results: 85.1% for PointNet++ and

86.14% for PointCNN. These methods, however, have not

obtained the same performance when applied on point cloud

data from Velodyne LiDAR, such as the Kitti dataset.

2.3. Sampling methods

Selection of the training data for training a deep learning

model is always a critical task with respect to future good

generalization. The large number of point clouds in a scene

combined with the heterogeneous point density distribution

and the implementation of complex deep learning architec-

tures necessitate an efficient sampling scheme that is capa-

ble of selecting a good set of points that are informative

for training purposes. In the machine learning literature,

this problem is closely related to learning from imbalanced

classes. Researchers have proposed the use of various sam-

pling strategies, including random sampling, oversampling,

undersampling, and stratified sampling, to achieve certain

criteria that balance the training set [2, 7]. Interested readers

are referred to [11] and [7] for more extended discussions

about training set optimization for deep learning models.

3. Methodology

Our proposed method uses density-adaptive sampling

that can be achieved by performing oversampling in grid

cells where the number of points is below a certain thresh-

old. In this section, we will elaborate how this density-

adaptive sampling scheme is implemented as part of seman-

tic segmentation framework to assist the learning models

learn the most scene features from the training data.

3.1. Semantic segmentation framework

Semantic segmentation for point cloud data is essentially

a point-wise classification task, where each point in the

point cloud is classified into the class-object the point be-

longs to. In the AV context, point cloud segmentation is

utilized to assign object class (such as car, pedestrian and

cyclist) to each point and to use the segmented points for

generating object bounding boxes. We used a step-wise

semantic segmentation pipeline for Velodyne-based point

cloud data by implementing a density-adaptive sampling

technique in the preprocessing of the input data. We then

employed PointCNN feature learning to generate probabil-

ity maps. See Fig. 2 for an illustration of the framework.

3.2. Sampling method

To address the density problem, we utilize density-

adaptive sampling method. The key idea is that feature

learning using more balanced training sets will ease the



Figure 2. The proposed pipeline for semantic segmentation with PointCNN as the classifier of choice.

learning process of the deep learning kernels. In that sense,

the density-adaptive sampling aims to amplify the likeli-

hood that features from scenes with fewer points will be

considered in the learning iterations. Density-adaptive sam-

pling scheme can be achieved by using grid-based uniform

sampling. This sampling method calculates the average

point density (apd) on pre-gridded 3D point cloud data. The

point density in each grid will then be normalized by over-

sampling points within the grid cell to make the point den-

sity equal to the value of apd. Finally, an empirical or uni-

form sampling technique (without replacement) is applied

to the normalized-density-grid to select the points used for

training the deep learning model.

3.3. Classification algorithm

In this study, we use PointCNN as the classifier of

choice. The novelty of PointCNN in learning from point

cloud data is the use of nearby points as features for a point

of interest. It uses point cloud as input represented as (x, y,

and z) coordinates along with a scalar denoting the inten-

sity value for each point. With these inputs, PointCNN en-

riches the features by exploiting the spatial auto-correlation

of nearby points. Technically, PointCNN employs hierar-

chical convolution; this feature is similar to the well-known

pooling layer in ConvNet. The hierarchical convolution of

PointCNN aggregates information from neighborhood fea-

ture maps to fewer points by applying the X-Conv operation

recursively, clusters nearby points as the feature represen-

tation of the point of interest using a K-nearest neighbor

algorithm, and projects the clustered points into the local

coordinate system with the point of interest being the center

of the cluster. After a series of transformations based on the

PointCNN pipeline using MLP coupled with X-Conv oper-

ators and higher-dimensional projections, the segmentation

class for each point is acquired.

3.4. Evaluation metric

For a class-imbalanced data set, such as AV point cloud

data where the environment class by far dominates the in-

teresting classes (such as car, pedestrian, cyclist, etc.), only

a few alternative metrics will be appropriate for evaluating

the segmentation task. This is the case because metrics such

as the overall accuracy performance are meaningless. By

just ignoring building a classifier and instead using the sim-

ple rule of assigning all points into environment class would

give good results in terms of the overall accuracy. To avoid

this issue, we use Mean of Per-class Accuracy (MPA) met-

ric as a notion of accuracy. The simultaneous comparison of

true positive (TP ) rate as correct prediction and false nega-

tive (FN ) combined with false positive (FP ) rate as wrong

prediction is a common practice. Hence, we will also con-

sider the Mean Intersection over Union (MIoU). The cal-

culation of each metric is as follow, with k being the total

number of classes and pij being the number of points of

class i but classified as class j.

MPA =
1

k

k−1∑

i=0

pii∑k−1

j=0
pij

, and (1)

MIoU =
1

k

k−1∑

i=0

pii∑k−1

j=0
pij + pji − pii

. (2)

4. Data and Experiment

We use the KITTI Vision Benchmark 3D data set [8]

for our experiment, which records point clouds of driving

scenes from Karlsruhe, Germany. The Kitti point cloud data

set is collected using a Velodyne HDL-64E rotating 3D laser

scanner, collecting data with 64 beams at 10 Hz. For our ex-

periment purposes, we downloaded the 3D point cloud data

set and labels from the Kitti website, totaling 29 GB in size.

The data set contains 7481 scenes from an ego car view-

point located in the center of the scenes. On average, each

scene has 1.3 million points.

The labels provided are in the form of bounding box

coordinates and class label (e.g. car, pedestrian, cyclist,

etc.) for each of the boxes. We treat any points outside the

bounding boxes for the pedestrian, car, and cyclist classes



(a) (b)
Figure 3. The accuracy performance (per-class accuracy) for the trained model using (a) the original voxel-based sampling and (b) the

best-performing density-adaptive sampling.

Class
Number of Points (Percentage)

Training Data Validation Data

Environment
604,128,641

(98.46%)

273,993,242

(98.44%)

Pedestrian
561,147

(0.091%)

271,529

(0.10%)

Car
8,705,256

(1.418%)

3,990,825

(1.43%)

Cyclist
181,974

(0.029%)

87,222

(0.03%)

Table 1. The distribution of class in the data set.

as environment, so most of the points belong to the environ-

ment class (around 98% of all the points). The distribution

of classes is shown in Table 1. Moreover, the point density

is decreasing with distance. To set the stage, we prepro-

cessed the data by assigning the class label of the box to

all points it contains, so we obtained point-wise labels. We

then used 5,145 scenes for training and 2,336 scenes for

validation purposes.

4.1. Experimental setup

Each PointCNN model was trained using one 11 GB

GeForce GTX 1080 Ti graphics card with eight-point

blocks per batch, following the capacity limitation of the

GPU. The Tensorflow version of PointCNN was used as

the training code and environment. Unless otherwise noted,

initial learning rate for all models is 0.005 with 20% learn-

ing rate decay for every 5,000 iterations and was trained for

125,000 iterations. In order to force the model to recognize

objects during training for such an imbalance data set, the

weighted penalty (for loss calculation) for the environment

class was set to 0.1, and to 1 for other classes. For calculat-

Method MPA MIoU

VB Block-10 0.6329 0.3369

VB Block-20 0.6999 0.5263

VB Block-30 0.8273 0.5717

Without oversampling

GBR-Original 0.8895 0.6418

GBU-Original-XY-0.25 0.8641 0.6179

GBU-Original-XY-1 0.8731 0.6511

XY-GRID with Oversampling

GBU-XY-grid-0.25 0.8876 0.5840

GBU -XY-grid-1 0.8983 0.6304

GBR -XY-grid-0.25 0.9152 0.6342

GBR -XY-grid-1 0.8881 0.6504

XYZ-GRID with Oversampling

GBU-XYZ-grid-0.25 0.9026 0.6471

GBU-XYZ-grid-1 0.9040 0.6346

GBR-XYZ-grid-0.25 0.9225 0.6816

GBR-XYZ-grid-1 0.9217 0.6509

Table 2. The performance of each of the sampling scenario.

ing the validation accuracy, the weighted penalty for all the

classes was set to 1. The highest MPA and MIoU score for

the validation data are then used to evaluate and compare

the prediction accuracy for all models in the experiment.

4.2. Sampling scenario

We test our hypothesis by training the PointCNN with

different sampling methods. The benchmark is the voxel-

based sampling (the original PointCNN sampling package).

We also include grid-based uniform sampling and grid-

based random sampling for comparison. Each of the meth-

ods sample (without replacement) 10,000 points per block



Figure 4. Point cloud visualization with (a) Prediction results, and (b) Ground truth label with missing object bounding box.

to be used as the PointCNN input. PointCNN, for every

training iteration, will sample 2,048 random points to be

used. It should be noted that randomly selecting 2048 points

from 10,000 points per iteration will generate different point

sets, hence increasing the variation of data learned by the

PointCNN model.

In terms of sampling parameters, block sizes of 10, 20,

and 30 coordinate values were used for the voxel-based

sampling methods with the assumption that the average

point densities per block are 100, 25, and 10, respectively.

The grid-based sampling methods used grid size 0.25 and

1 coordinate values. For the sake of simplicity, we refer

to the voxel-based method as VB, grid-based uniform sam-

pling as GBU, and grid-based random sampling as GBR

throughout this paper. We also include versions of GBU and

GBR without the rebalancing point density and call these

versions GBU-Original and GBR-Original, respectively. In

addition, we also compare the results for 2D and 3D grids



Figure 5. The MPA trends of the model during training using vari-

ous sampling schemes.

(XY and XY Z axis) for both GBU and GBR sampling.

Table 2 shows the performance of the resulting models in

terms of MPA and MIoU. Fig. 5 shows the per-class ac-

curacy using the original voxel-based method and the best-

performing density-adaptive sampling method.

5. Discussion

In this section, we discuss our findings related to the ac-

curacy, learning stability, and the MIoU performances.

5.1. Perclass accuracy performance

As shown in Table 2, the proposed method, using a

density-adaptive sampling scheme, yields superior mean

per-class accuracy performance compared to the original

voxel-based sampling method. The best performance for

the proposal achieves 92.25% (GBR-XYZ-grid-0.25) com-

pared to 82.73% for the original sampling method (VB

Block-30). Table 2 shows the voxelization in the origi-

nal sampling scheme does not improve the accuracy per-

formance. It suggests that removing the partitions of the

training sets while keeping the heterogeneous density, thus

shifting from stratified sampling into randomized sampling

based on the empirical distribution of the original data, only

alleviates a part of the problem.

On the other hand, density-adaptive sampling methods,

which superficially augment the representativeness of the

features from all grids in the scene by means of oversam-

pling, seems effective in increasing the generalizability of

the trained model when classifying the unseen data, and

works best when coupled with randomized sampling and

a small grid size. The best-performing grid size for GBR-

XYZ density-adaptive sampling class is 0.25, which is rea-

sonable, because the smallest grid size forces the training

points to be most evenly distributed covering whole scene.

Finally, Fig. 3 presents the confusion matrix showing

TP , TN , FP , and FN for PointCNN trained using the

original sampling method (top) and our density-adaptive

method (bottom). It is clear that the proposed sampling

method attains a model with better accuracy performance

for all classes. The most significant increase in performance

is observed for classes with fewer points (pedestrian and cy-

clist), thus indicating the robustness of our sampling scheme

in dealing with class-imbalanced data sets.

5.2. Performance stability and learning rate

In Fig. 5, the accuracy of the model during training is

computed against the validation data set in each training it-

eration. Notice that the model trained using the original

voxel-based sampling method with grid size 10 (VB Block-

10) has the most volatile performance and the other original

VB methods have less volatile performance in earlier stages

of its learning procedure, while the density-adaptive meth-

ods have more stable performance during training. This

observation indicates that the training set from density-

adaptive methods makes it easier for the deep learning mod-

els to learn hidden features from the point cloud data, hence

achieving more stable learning rate and faster convergence.

It is therefore promising to devise an objective function and

parameterize the sampling scheme so as to maximize the

learning rate and overall performance of the deep learning

model in this setting. We plan to derive such a schema in

our future work.

5.3. The MIoU and inaccurate bounding boxes

Fig. 4 shows the comparison of our segmentation re-

sult (left) with the provided labels from the Kitti data set

(right), where the trained model discovers more car objects

than the ground truth label provides (the car highlighted in

the right figure is not labeled). We also notice some inaccu-

rate bounding box locations. Computing the MIoU metric

penalizes the trained model for discovering unlabeled ob-

jects or locating the bounding boxes more accurately, due

to the smaller intersection (appearing in the numerator of

Equation 2) and larger union (in the denominator of Equa-

tion 2) between boxes from the provided labels and model

prediction. In this situation, we argue that the MIoU cannot

be used as an appropriate metric for segmentation perfor-

mance. Therefore, we cannot use the MIoU from Table 2 to

compare the performance of the sampling methods, though

it is interesting to see that the MIoU score from the original

voxel-based sampling scheme.

6. Conclusion

In this study, we have proposed a density-adaptive sam-

pling method to be combined with a deep learning archi-

tecture for semantic segmentation using raw point cloud



data, such as the PointCNN. We have shown that the het-

erogeneous point density and the class imbalance of the

point cloud from Velodyne-type LiDARs in AV applica-

tions render the voxel-based sampling method in the orig-

inal PointCNN implementation ineffective for constructing

a good training data set. By implementing density-adaptive

sampling, i.e. by oversampling the less dense grids of the

scene hence augmenting the representativeness of the fea-

ture in the less dense scenes using various parameterization

scenarios, we show that the deep learning models yields su-

perior performance in terms of classification accuracy and

learning stability. Furthermore, we have shown empirically

that the trained model is more robust against the class im-

balance that is prevalent in real-world driving scenes.
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