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Abstract

Underwater images contain an interactive mixture of
distortions due to the physicochemical property of water
and the instability of imaging systems, which differ from
those in natural images. We cannot obtain the pristine
underwater image as the reference applied in the
traditional benchmark databases, and the groups of
gradual distortions either. In this paper, a novel
preselection based preference label evaluation method is
proposed to construct a combined subjective test
procedure for an extended preference judgment dataset of
underwater images. To the best of our knowledge, this is
the first subjective evaluation procedure for underwater
images, and also a solution for an expanding visual
preference benchmark database. We demonstrate the
excellent correlation of the proposed subjective evaluation
with the traditional image quality assessment. It is also
proven that the proposed subjective evaluation procedure
could reflect the slight change of image quality and the
authentic quality of a picture more accurately better than
the traditional methods.
Keywords: Image quality evaluation, MOS, underwater
image, subjective image quality database

1. Introduction

Vision as a scientific exploration measure is becoming
more and more indispensable in marine survey [1], [2].
The images captured in water are usually afflicted with
various complex and mixed degradations such as low
contrast, blur, non-uniform illumination, non-uniform
color casting and noises caused by optical attenuation,
adsorption and scattering of the water body [3], [4], which
are not necessarily well-modeled as opposed to the
synthetic distortions found in existing natural image
databases. An automatic quality prediction tool [6], [7]
which enable automatically obtain high quality underwater
images and marine science artificial intelligence analysis,

provide objective criteria for underwater image restoration
or enhancement [5] are thus highly desirable goals. Given
that the ultimate receivers of images are humans, the most
reliable way to understand and predict the effect of
distortions is to capture opinions from human subjects [8],
[9].

1.1. Traditional subjective image evaluation
database

Although the existing subjective image evaluation
databases, such as CSIQ database [15], LIVE database
[16], TID2008/TID2013 [17], [18], IVC database [19],
Toyama database [20], WIQ database [21], [22],
Cornell-A57 database [23] and the newest the LIVE In the
Wild Image Quality Challenge database [24], play an
important role in advancing the field of image quality
prediction, the images contained in the databases are of a
fixed number of air images with a certain degree of
individual distortion artificially synthesized from a small
original image dataset and intrinsically different from
underwater images. The comparison of existing databases
is listed in Table I. There are almost no underwater images
included. In addition, observing an original image and its
various distortions simulated in one group can lead to
over-learning of the distortion. Furthermore, the results
obtained in a strictly controlled experimental environment
need to be consistent with the subjective perception in real
life.

1.2. Underwater images

There is no pristine reference for an underwater image
[26]. It is also impossible to establish an image database
by simulating the original images with different distortions
and degrees, or to group underwater images according to
the type of distortion as is the case with natural images. In
addition to the difficulty of underwater image acquisition,
underwater images contain an interactive mixture of

Preselection based Subjective Preference Evaluation for the Quality of
Underwater Images

Miao Yang1,2,3, Yixiang Du1,7, Yue Huang4, Hantao Liu5, Zhiqiang Wei6,
Jintong Hu1, Ke Hu1, Zhibin Sheng1

1School of Electronic Engineering, HuaiHai Institute of Technology, China
2Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, China

3Qingdao National Laboratory of Marine Science and Technology, China
4Key Laboratory of Underwater Acoustic Communication and Marine Information Technology Ministry of Education, China

5School of Computer Science and Informatics, Cardiff University, U.K
6Ocean University of China School of Information Engineering

7Mining and Technology University of China School of Information and Control Engineering



2

Table I A comparison of IQA databases

Database Source
Images

Distorted
Images

Distortion
Types

Authenticity of
Distortions Evaluation Method Underwater

Images
CSIQ [15] 30 866 6 Synthetic Self-design method 0

LIVE IQA [16] 29 779 5 Synthetic Double stimulus 0
TID2013 [18] 25 3000 24 Synthetic Pairwise comparison; Single stimulus 0

LIVE Challenge [24] N/A 1162 Numerous Authentic Single stimulus 2

distortions [25] and the qualities of those images are
usually relatively similar in visual perception.
Traditional subjective evaluation methods [27]-[31] fail

to distinguish the difference between the underwater
images. For instance, consider the images shown in Figs.
1(a) and (b), the single-stimulus scores of them in our
experiment were all 4.4, but when we put the two images
on one screen at the same time, there is a slight blurring
distortion on the left comparing to the right one. By using
the proposed method, observers scored the two images
with 63.1 and 71.4 respectively. In our studies, the Fig.
1(b) has higher chroma contrast than Fig. 1(a),
demonstrating the sensitivity of the preference label to
subtle mass differences. Figs. 1(c) and (d) are the only two
underwater images in the LIVE In the Wild Image Quality
Challenge Database [24]. Their mean opinion scores
(MOS) are 82.48 and 68.98, respectively (scores are from
the LIVE In the Wild Image Quality Challenge Database),
although the difference in image qualities are not
particularly noticeable. Comparatively, their subjective
scores obtained by our subjective test are 61.4 and 54.8,
respectively, which is more reasonable. An observer
evaluates the distortion (such as Gaussian noise) of an
image taken in the air, rather than the authentic mixed
degradation caused by the water body factors, often fails
to account for the quality of an underwater image.

(a) (b) (c) (d)
Figure 1. (a) - (b) Two images with the same score for the single
stimulus five-level quality scoring; (c) - (d) Two underwater
images in the LIVE In the Wild Image Quality Challenge
database.

1.3. Contributions

A prescreening based preferrence label (PPL) subjective
image quality evaluation method is proposed by which we
can collect multi-level distorted underwater images widely.
Through grouping the underwater image data into pairs,
the observers are organized to judge the relative quality,
and a preference label is generated. The accumulated label
scores of an image is computed, and then the initial
underwater image database is established according to the

label scores. By gathering the pair labels online, the MOS
of the laboratory scored images are updated, and the MOS
of a newly added underwater image is obtained.
The approach we described in this paper is on the

difficulty of establishing a subjective quality baseline for
underwater images with the expanding visual perceptive
range of an increased number of underwater images, and
summarize our contributions below:
(i)First, a subjective quality evaluation method for

underwater images is proposed in which a reference of the
original image is unnecessary. Based on a preference label,
we settle the difficulty of distinguishing the type and
degree of underwater image degradation and avoids the
sensitivity of the image content as well as groups the test
images according to the distortion types, all of which
ensures a consistency of scores among the observers.
(ii)Secondly, an objective image quality prescreening is

adopted ahead of subjective evaluation in our method,
which ensures the tested underwater images are uniformly
sampled within the existing quality range.
(iii)Progressive learning ranking is proposed in

extending the established underwater image subjective
evaluation database. By combing the laboratory with
online voting, we can gather extensive underwater image
data in real time. Furthermore, the progressive learning
ranking is in line with the psychological process for the
broadened subjective image perceptible quality
distributions.
(iv)The subjective rating procedure is more efficient

and labor-saving, which means that workload on
participants is lower and more flexible than other classical
subjective image quality evaluations.
The superiority and accuracy of the proposed PPL

subjective evaluation method is verified by comparing to
the traditional subjective evaluation methods on the
established database. Compared with the traditional
single-stimulus subjective evaluation method, the PPL
subjective underwater image quality evaluation can
correctly reflect that the image quality decreases with the
increase of the distances to the camera, in different
turbidities of water under same imaging conditions. The
performance of two common blind IQA algorithms
developed using traditional natural image databases and
two outstanding underwater IQA indicators were also
empirically studied. The experimental results showed that
the existing no reference natural image objective quality
evaluation methods based on the traditional image
databases could not correctly evaluate the underwater
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image quality which have interactive blending distortions.
This PPL subjective image quality evaluation method that
combined of laboratory and online is an effective way to
collect a large number of subjective image quality
opinions for underwater images.
The rest of this article is arranged as follows. The

proposed PPL subjective underwater image quality
evaluation method is described in Section 2. In Section 3,
how to extend the subjective underwater image quality
database based on the PPL method and some strategies
(dichotomy, ER random graphs, etc.) is described.
Experiments and discussions are given in Section 4. We
conclude the paper in Section 5.

2. Underwater image preference label
subjective quality evaluation

2.1. Collection of images

We collected nearly 3000 images1 from laboratory
underwater image sequences under controlled imaging
environments, online manual collection including
underwater photography, near-shore marine aquaculture,
pipeline engineering, coastal surveys, deep-sea images and
others taken by a variety of underwater optical cameras
and light sources. The resolution of these underwater
colour images range from 58×83 to 3000×4000, and they
have a variety of non-uniform colour degradation, blur,
fog effect or non-uniform illuminating, biological
disturbance sediment turbidity distortion, and so on. Some
of the pictures are shown in Fig. 2.

2.2. Preselection of evaluation pairs

Given N collected underwater images, N×(N-1)/2
possible image pairs can be generated. According to the
International Telecommunication Union [27], [28], 300
images were preselected to generate 44850 priority image
pairs. We selected CIELab spatial brightness contrast,
hue-variance, and saturation-mean as the criteria for the
preselection, which was the conclusion in our previous
work [53]. About ten images at each interval were
randomly selected. The purpose of this is to make the
quality of priority test images not concentrate on a certain
interval, so that images quality distribution of the initial
data set is as uniform as possible, which is necessary for
the extended construction of the subsequent large-scale
database.

1 Part of the collected images comes from public image resources
(such as ImageNet, etc.) and some are from the database provided by the
cvpr challenge. Some images are authorized, but images taken from the
network are difficult to find the real source. If you are the data owner,
please contact us, we hope to get the sharing permission and support.

2.3. Image quality assessment experiment

Subjective evaluation phase. All experiments were
carried out in the underwater vision laboratory of Huaihai
Institute of Technology, which guaranteed the subjective
evaluation environment requirements [27], [28]. Forty
eight students aged from 20 to 30, including 28 male and
20 female observers who had normal visual acuity and
color vision were recruited to evaluate the images. Two
images in an image pair were simultaneously displayed on
a 27-inch LCD. At the beginning of the test, five
"simulation presentations" were broadcast to stabilize the
observer's score and the preference labels given in these
demos were not recorded in the results. Our playlist was
based on a random permutation of 44850 test pairs with a
random within-pair order. To avoid the contextual and
memory effects, our program would go through the entire
playlist to determine if adjacent pairs correspond to the
same image. The observer had to vote on each image pair
in 3s, otherwise the score of the pair would not be
recorded. We also interspersed some image pairs with
significant differences in quality to check the observer's
attentiveness. For every observer, the number of pairs had
to vote on was not limited, each phase of experiment was
about 30 minutes (including inspection and demonstration),
and fatigue effects were minimized.
Mean opinion score. We unified the image size to
512×512. Suppose there are preference labels l1,2 and l2,1
for an image pair (I1, I2)in P , }300...,,2,1,|),{(  jiIIP ji ,

if the observer thought I1 was better in quality than I2, then
l1,2=+1 and l2,1=-1. On the contrary, we have l1,2 =-1,
l2,1=+1. If the observer did not mark the image pair (I1, I2)
or believed that the relative quality of the image pair could
not be determined, then l1,2 and l2,1 were both set to 0.
By obtaining the preference label li,j, i≠j for all image

pairs, the cumulative label score S for image i, which is in
the range [- 299, 299] can be computed as:





300

1
,

j
jii lS ji  . (1)

The centesimal system score Sip of the image i can be
calculated based on the linear mapping.
The observer did not have to evaluate many image pairs

in a single session, and only needed to judge the
preference for each pair. There was no lag phenomenon
between the front and back images or judgment scale
mismatch. Consistency in the ratings between the observer
groups was ensured because the test images were neither
grouped according to the degraded type, nor were graded
on a hierarchical basis.
Some of the images we measured along with their

centesimal system MOS, Sip are shown in Fig. 3. As
shown, the gradient of MOS was in consistent with our
visual inspection.
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Figure 2. Part of the collected underwater image database.

3. Adding new images

In this section, we introduce the process of inserting a
new image into the sorted initial databases. Based on 300
existing laboratory MOS, we use online voting to achieve
database extension. A strategy similar to dichotomy is
used to compare the new image with the images in the
preselected database. For a new image to be added, we
process:
(1) Compare it to a random image with the quality

score around the central of the current database, allowing
to fluctuate with five images.
(2) Rating the added image pairs with no more than

log2N times iteratively according to the label given by an
observer until the comparison range is reduced to less than
ten images.
(3) The new image will be compared to all images in the

last range, record the possible location of the new image
obtained by the observer in the current database.
(4) Steps (1), (2), and (3) are respectively performed

online to collecting the possible locations of the new
images from no less than 20 observers.
It is foreseeable that most of the collected positional

locations will be concentrated in a smaller interval. We
choose the median of these possible positions and remove
the 5% scores that is the farthest from the median distance.
The remaining scores are averaged and the final result is
considered to be the position where the image should be
inserted in the existing sequence.
(5) Add one point to all the label scores of images above

the new position, and subtract one below it.
(6) Score the new image based on the number of images

above, below, and with the same quality.
ER random graphs G (n, p) start from n vertices and

draw their edges independently according to a fixed
probability p (0⩽ p⩽ 1), which was chosen to meet the
scenario that in crowd sourcing ranking raters [57]. In the
extension of the database by the dichotomy strategy, the
20 observers independently observed log2N image pairs,
the edge probability for a new vertice (image) in the image
pair ER random graph to the other N vertices (the current
image database size) must be greater than logN/N.
Therefore, the G (n, p) is almost always connected [60].
The corresponding centesimal system score error ∆Sipλ

for the image i with λ pair evaluations is:

)1(
50





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S

SSS i
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where N is the number of images in the current database.
A label score error ∆Siλ exists if only λ pair evaluations,
1≤λ≤log2N. As the number of the images in database
increases, ∆Sipλ decreases. This can be approximated as:





 2
100

)1(

50)1(22 )(log2
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





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

N
N
N

S

N

ip
(4)

It can be inferred that an authentic subjective quality
score can be achieved with a reasonable number of
evaluations (set to λ). For instance, for N=2,000, λ=9, the
∆Sipλ is only around 0.2 with Eq. (4). The number of pair
evaluations and the images in the database tend to be
independent. We can quickly gather a relatively reasonable
score of the test image with only a few pair evaluations.

(a) S1p=35.3 (b)S2p=55 (c) S3p=64.2 (d) S4p=75
Figure 3. A few underwater images from the initial evaluation database and their MOS.
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4. Experiments and discussion

Through the subjective evaluation experiment described
in the previous section, we obtained 134,550 comparisons
from 48 observers. We discarded edges that are not part of
cycles (e.g., inequalities {R1 > R2, R2 > R3, R3 > R1} are
not consistent). As introduced previously, we also
interspersed some pairs of images with obvious quality
differences, and removed the results from individuals with
an error rate of more than one-third. We averaged the
labels of the same image pair and get 44,850 comparisons
out of 300 underwater images.

4.1. Experiments

We explored the performance of the PPL subjective
image quality evaluation in groups of experiments to
compare it with the traditional subjective test. The
accuracy was illustrated through an objective software test
and image sequences. We also explored the usefulness of
the new initial underwater database by using it to evaluate
the quality prediction performance of the blind natural and
underwater IQA algorithms.
Comparison with the single stimulus. Under the same
environment and with the same observers, a 5-level
scoring test was carried out on the initial 300 underwater
images, which were divided into six groups (50 in each
group) to prevent observer fatigue [27], [28]. The
correlation of the MOS collected with the proposed
method and the single stimulus method is illustrated in Fig.
4. The correlation reached 0.95. Four groups of
underwater images and their MOS produced by PPL and
single stimulus subjective image quality evaluation
methods are shown in Fig. 5. Each row of images in Fig. 5
had the same score by the single stimulus evaluation,
although we could still perceive the subtle difference in
quality between them. It can be seen that for images whose
quality differences were not obvious, the PPL subjective
evaluation method was more susceptible to the subtle
quality difference, and the scores gathered by the proposed
method therefore, has the ability to distinguish such
nuances in scoring.
Changing turbidity of water. We compared the scores of
46 sequence images in the 300 database which were
sampled by the preselection automatically. These
underwater images were taken at the same area and angle
but in water of different turbidities [59], and can be
divided into four groups according to the content (called
photo1-4 group). The scores of each group are plotted in
Fig. 6. The larger the image number is, the lower the
turbidity of the water the image was taken in. The
Pearson’s linear correlation coefficient (PLCC), Spearma’s
rank ordered correlation coefficient (SROCC) and
Kendall’s rank ordered correlation coefficient (KROCC)
between the MOS obtained by the PPL subjective image

quality evaluation and the corresponding image order in
the sequence are listed in Table II since these images are
numbered according to the gradient of turbidity. The
number of images in each sequence is not the same
because of the automatic selection.
We can see that the results obtained from the proposed

PPL subjective evaluation were linearly related to the
turbidity of the water, which correctly reflects the image
quality levels. Obvious outliers existed in the groups
shown in Figs. 6(b) and (c) and the KROCC of photo2
group is the lowest. The two outlier images in the photo2
group are highlighted in Fig. 7. We can see that the
difference between the two adjacent images is extremely
ambiguous. The selected images in the photo2 group were
more concentrated, as shown in Fig. 6(b).
The photo4 group was the one closest to linearity, as

shown in Fig. 6(d). From this, it can be inferred that: 1)
The images in the photo4 group were more colourful than
photo2, 2) The images randomly selected in the photo4
group were scattered on the image quality gradient, as
shown in Fig. 8. There were no consecutive images of
similar image qualities.

Table II Correlation of the MOS and the order of the image
Numbers in
each group PLCC SROCC KROCC

Photo1 group 12 0.9877 0.9930 0.9697
Photo2 group 11 0.9880 0.9727 0.8909
Photo3 group 14 0.9787 0.9901 0.9503
Photo4 group 9 0.9923 1.0000 1.0000

Imatest test. The accuracy of the PPL subjective image
quality evaluation score with regard to the pristine image
quality is discussed by presenting the quality of the
ColorChecker 24 X-Rite Chart (21.59×27.94cm) images
taken in a tank. The tank was 2.53m long, 1.02m wide, and
1.03m high. The chart images were taken with the
OTI-UWC-325/ P/ E colour camera. Images (960×576)
were obtained in water of 94.5cm transparency [61] under
daytime lighting. The images were taken with increased
distances to the camera, part of which is shown in Fig. 9.
The certimential score (Sip) obtained by the PPL

subjective image evaluation method, the five-level quality
scores obtained by the single-stimulus system and the data
output from Imatest for the ColorChecker chart images
included in the 300 priority test images are listed in Table
III.
Imatest [62], [63] has been the most professional

software in qualifying camera imaging by comparing the
differences between real images of charts and their testing
ones. In Table III, the Mean camera chroma (saturation) is
the average camera chroma (colour saturation), which was
generally between 100% and 120%. The meaning of this
value is to test the differences between the representative
24 colours on the test image and the standard
ColorChecker chart. The greater the difference, the larger
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this value is. The ΔC*ab chroma corr, ΔC*ab uncorr, and
the ΔE*ab are color error metrics in the
device-independent CIELAB color space that are used to
illustrate the perceived difference between colors by
measuring the Euclidean distance between them. The
ΔE*ab includes the luminance L*, while ΔC*ab chroma
corr and ΔC*ab uncorr compute colors only. It can be seen

that the real qualities of the test images were linear with
our MOS by comparing the subjective scores of the
preference labels with the Imatest test output data. This
proves that the PPL subjective evaluation could reflect the
slight change of image quality and the authentic quality of
a picture more accurately than the traditional methods.

Figure 4. Comparison the scores of the two test methods.

Sa1p=22.4 Sa2p=25.8 Sa3p=26.3 Sa4p=27.8
(a) Single stimulus score is 1.8.

Sb2p=39.1 Sb2p=40.1 Sb3p=42.1 Sb4p=44.3
(b) Single stimulus score is 2.7.

Sc1p=58.1 Sc2p=59.7 Sc3p=60.5 Sc4p=61.1
(c) Single stimulus score is 3.5.

Sd1p=77.4 Sd2p=78.4 Sd3p=80.3 Sd4p=81.1
(d) Single stimulus score is 4.0

Figure 5. Comparison with the single stimulus methods.
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(a) (b) (c) (d)
Figure 6. Label scores of the photo1-4 groups.

Tables III. MOS and software output scores for the ColorChecker chart images.
Distance from camera 60cm 70cm 90cm

Image Fig. 9 (a) Fig. 9 (b) Fig. 9 (c)
Certimential score (Sip) 48.16 37.12 25.59
Five-level quality scoring 2.4 2.3 2.3

Mean camera
chroma(saturation) 134.10% 136.90% 137.70%

Color errors:
ΔC*ab chroma

corr

mean 43.2 45.0 47.9

max 85.3 89.4 101.0

ΔC*ab uncorr mean 52.1 54.9 57.7
max 24.0 24.0 24.0

ΔE*ab mean 55.2 57.6 61.0
max 93.5 97.5 110.0

Figure 7. Two outlier images in the photo 2 group.

Figure 8. Partial images in the photo4 group.

(a) (b) (c)
Figure 9. Partial images of Imatest test

The Objective Quality Evaluation Methods of
Underwater Images. To further highlight the challenges

that underwater distortions present in our database pose to
the objective image quality evaluation metrics, we also
computed the median correlation values when the
algorithms were trained on the underwater image database.
We computed the median correlation value of two
common blind IQA algorithms which were developed
using the traditional natural image databases including the
Colour Image Quality Index (CIQI) [47] and the Colour
Quality Enhancement (CQE) [48], and the two prominent
underwater IQA metrics including UIQM [2] and UCIQE
[53]. These algorithms were tested on the underwater
image database constructed by the proposed dichotomy
based PPL subjective image quality evaluation. The data
includes 1000 RGB underwater images, with the size
averaging from 68×101 to 3000×4000.
We selected 80% of the images in the database as

training set and 20% for testing by applying the K-fold
decomposition, and repeated the process five times. We
computed the median SROCC and PLCC between the
predicted and MOS values. A higher value of each of these
metrics indicates better performance in terms of the
correlation with human opinions. The results were
obtained with the same parameters that were originally
presented in their work on the constructed underwater
image database. The results are reported in Table Ⅳ,
where it can be observed that the performance of the
UCIQE was significantly better than of the state-of-the-art
IQA methods designed based on the natural images and
the UIQM when the underwater image database was used
for testing. It illustrated the challenges that the authentic
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distortions present in underwater images pose to the IQA
algorithms based on the traditional image databases.

TableⅣMedian SROCC and PLCC on the proposed underwater
image database.

CIQI
[47]

CQE
[48]

UICM
[2]

UCIQE
[53]

PLCC 0.5720 0.2019 0.2086 0.7487
SROCC 0.5047 0.1809 0.1142 0.7369

4.2. Discussion

Attention problems and outliers. We checked the scored
image pairs in the evaluation process, especially the
interspersed images with significant quality differences.
Approximately 5% of the observers failed to correctly
answer the pros and cons of the two images with
significant differences. We have reason to believe that
such observers may have given an abnormal choice for
other images [64]. For the non-serious individuals, we
removed all their records.
Screening of online observers. Although the combination
of laboratory and online assessment has advantages in
collecting subjective evaluation values, there are still many
limitations that require in-depth research. For example,
risk of differences in test conditions between a large
number of observers, and how to determine whether the
observer takes this online assessment seriously. We plan to
first provide some sample image pairs when an observer
attempts to perform an evaluation on our website. These
image pairs have been tested in a lab environment (we will
avoid selecting some image pairs that are too close in
quality). Observers need to evaluate these image pairs, and
we will set a threshold for this screening. The requester
with an error rate of more than 1/4 during the test will be
rejected. Qualified observers are allowed to do online
testing. And image pairs with significant quality
differences will be scattered throughout the testing process,
as we did during the lab assessments. For those who are
not serious, we will delete all the in records. Five image
pairs would be randomly presented to each observer twice
during an online evaluation. If the observer provides
preference labels more than two pairs that are inconsistent
in the five same image pairs, we also delete all of their
records.
Online progressive learning rank. We will publish the
authorized part of the database online and support the
addition of more underwater images following the steps
described in Section 3. We hope to create a trend for the
distribution of underwater mix-distortions and to be able to
level uniformly with the increased image number. We hold
more than 100,000,000 underwater images given by the
Qingdao National Laboratory of Marine Science and
Technology, and will first add part of these images to
extend the underwater image database in the strict

laboratory environment. We will also accept image upload
and provide online image quality evaluation services after
calibration in the laboratory. The consistence of online
evaluation with the laboratory scores is still a question we
will explore [68], since the basic infrastructure and
procedures of subjective testing for the online evaluation
are different from the traditional subjective research
conducted in the laboratory. However, we are inclined to
believe that based on a huge number of subjective scores
conducted in the laboratory and the preference label
subjective evaluation, we can compare the ranking order
of the sampled underwater images viewed in the
laboratory with the online votes to compute the
consistency, calibrate the online score, and process the
outliers.

5. Summary

A preselection based preferred-pair label subjective
quality evaluation method has been proposed in this paper.
The proposed method does not require a reference.
Compared with the traditional single-stimulus subjective
evaluation, better accuracy and a higher correlation were
shown by the proposed PPL subjective image quality
evaluation. We also designed an underwater image
database construction method in which the progressive
learning ranking is proposed, and this is a new solution to
set up an extending image quality database in real time.
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