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Abstract

A major challenge to the adoption of deep neural net-

works in real-world applications is their robustness in dif-

ferent scenarios. Deep neural networks have been shown

to be particularly susceptible to adversarial attacks: ma-

licious perturbations to the input that fool networks into

predicting the wrong label. In this study, we propose a

new framework to improve adversarial robustness using

stochastically activated network ensembles (SANE), where

an ensemble of deep neural networks with heterogeneous

architectures is stochastically activated such that a subset

of the more robust networks in the ensemble are responsible

for a prediction. The proposed framework treats networks

as nodes in a probabilistic graphical model to detect net-

works in the ensemble that are likely to be robust against an

adversarial attack and activate them to be part of the deci-

sion making process. Experimental results under different

adversarial attacks show that the proposed SANE cannot

only noticeably improve robustness to adversarial attacks

compared to a general ensemble approach, but provide fur-

ther improvements against adversarial attacks when com-

bined with additional stochastic defense mechanisms.

1. Introduction

Deep learning has been responsible for a number of sig-

nificant breakthroughs in the field of machine learning and

computer vision, demonstrating remarkable performance in

a wide variety of visual perception tasks [2]. Despite these

incredible advances, recent literature has demonstrated that

deep neural networks are very vulnerable to adversarial

attacks [8], malicious perturbations designed to fool net-

works into making erroneous decisions. Such adversarial

attacks can often be so subtle that it is imperceptible to

the human eye, with an extreme case requiring only one

pixel to change[7]. Attacks do not require direct access to

the model, the property of transferability can be leveraged

where an attack generated using a network is used to attack

another that the attacker has no access to. This raises con-

cerns on their robustness in safety-critical scenarios such

as autonomous driving, security, and surveillance applica-

tions, encouraging a steadily growing body of literature on

adversarial defence [2].

Ensemble techniques [1, 6] have been recently explored

as a defense mechanism based on the variability of attack

transferability; it is intuitively more difficult to fool multi-

ple heterogeneous networks with a unique perturbation on

an input image. Such techniques have shown promising re-

sults in improved robustness while also improving accuracy

on unperturbed data. Although ensemble techniques can be

very helpful as a defense mechanism, they are usually ag-

gregated in a Bagging approach with equal weighting in the

decision step, which –while useful in reducing the variance

of the complete system in the decision-making process–

is susceptible when highly vulnerable networks within the

ensemble result in reduced robustness to the attack in the

decision-making process.

Inspired by the promise of ensemble techniques for ad-

versarial defense while motivated to address the critical

issue associated with the negative influence of vulnerable

networks within an ensemble, we propose a novel proba-

bilistic graphical model approach which aggregates the de-

cisions of the networks in the ensemble via a probabilistic

approach to increase adversarial robustness, reduce system

bias, and reduce variance. Given that the prediction is made

by a subset of robust networks that are stochastically acti-

vated within the ensemble (i.e., based on predictions of vul-

nerability made by the probabilistic graphical model) we

will refer to the proposed defense mechanism as stochasti-

cally activated network ensembles (SANE). It is worth not-

ing that, while the computational complexity of utilizing an

ensemble of networks to defend against the adversarial at-

tack is a practical challenge, the main focus of this research

is to investigate the feasibility and effectiveness of utilizing

a probabilistic graphical model to improve the robustness

of ensemble techniques in defense mechanism.

2. Methodology
A particular technique that has been shown to be robust

at dealing with noisy data is ensemble learning. Here we
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Figure 1. The proposed probabilistic graphical model in the

SANE framework.

explore the notion of ensemble learning and committee-

based decision making for constructing network ensembles

as a defense mechanism for adversarial attacks.

An issue that has not been well-explored when leverag-

ing network ensembles as a means for adversarial defense

is the fact that individual networks within the ensemble re-

main susceptible to adversarial attacks. If the majority of

networks are successfully attacked, then the network en-

semble is compromised as a whole, leading to an incorrect

prediction and it is a limitation of ensemble methods.

The proposed SANE framework introduces a probabilis-

tic graphical model to first estimate the robustness of each

network in the ensemble at predicting the correct label

given the beliefs of the other networks. This measure of ro-

bustness is then leveraged to stochastically activate a sub-

set of the networks included in the final decision-making

process. To achieve this, each network in the ensemble

is represented as a node in a fully connected graph; with

the connections between nodes representing the relation-

ship of networks to each other. The state in the probabilistic

graphical model is formulated as a binary random variable

encoding the reliability of a particular network in the en-

semble for participating in the decision-making process.

The status of each network ni (being attacked or not) in

the ensemble C = {n1, n2, · · · , n|C|} is encoded by hi in

the graph G(·). Each node hi in the graph G(·) is associated

with an observation set x̄i representing the set of outputs

from the Softmax layer in the network. By formulating

the ensemble as a fully connected probabilistic graphical

model, each network ni in the ensemble C is judged by all

other networks nj , j 6= i such that the marginalized con-

ditional probability
∑

hj ,j 6=i P (H|X) illustrates how reli-

able the network ni is when contributing to the decision-

making process based on the beliefs of other networks in

the graph. The conditional probability P (H|X) is formu-

lated as a pairwise undirected graphical model:

P (H|X) =
1

Z

|C|
∏

i=1

φi(hi, x̄i)

|E|
∏

e=1

φe(hej , hek, x̄ej , x̄ek)

(1)

where φi(hi, x̄i) is the unary potential encoding the robust-

ness of network ni based on prior knowledge. φe(·) is a

pairwise potential demonstrating the belief of two end-node

networks nj and nk of edge e = {j, k} on each other. E

is the set of all edges in the graph where |E| = |C|×(|C|−1)
2

since the underlying graph is a fully connected.

The unary and pairwise potential functions are formu-

lated as follow:

Unary Potential:

φi(hi, xi) =

{

ri ni can be fooled

1− ri otherwise
(2)

where ri is the transfer attack success rate1 to the network

ni via the rest of networks in the ensemble.

Pairwise Potential:

φe(hej , hek, x̄ej , x̄ek) =

{

lj,k
|I| · ‖x̄ej − x̄ek‖ hj 6= hk

(1−
lj,k
|I| ) hj = hk

(3)

where x̄ej is the observation set for the network nj which

is the vector of confidence values corresponding to all class

labels. I is the set of perturbed images which is used for

the training purposes and computing the similarity of the

networks in the training stage. The
lj,k
|I| is computed at the

training stage and is fixed for the network during testing.

lj,k is the Levenshtein distance [5] on the prediction on

two network’s outputs j and k illustrating the behavior of

the two networks when they are dealing with adversarial

examples and perturbed images.

Adversarial Defense Framework. In the previous sec-

tion, we explained how to model the ensemble of the net-

works as a probabilistic graphical model to determine how

likely a network within an ensemble is fooled by an adver-

sarial attack. We can leverage this within an adversarial de-

fense framework by using the marginal probability through

the probabilistic graphical model to activate the subset of

networks which are reliable for making the final prediction

together using a weighted voting mechanism.

The weighted voting approach is formulated as follows:

clpr = argmax
j

(
∑

i∈Ĉ

wi · x̄i) (4)

where clpr is the predicted class by the committee Ĉ, Ĉ is

the set of reliable networks activated from the set of all net-

works in the ensemble C based on the probabilistic model.

x̄i shows the set of outputs after Softmax for the network

ni. The wi is formulated as

wi =
1

ri
(5)

1The transfer attack success rate ri is defined as the ratio of the num-

ber of adversarial examples (generated by other networks) that can fool

network ni over the total number of adversarial examples.
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Table 1. Accuracy of the proposed SANE framework compared to other defense mechanism based on CIFAR-10 and ImageNet trained

models. For CIFAR-10 trained models, the proposed SANE framework outperforms both EnsembleDef and RandDef, and achieves

comparable results to when both EnsembleDef and RandDef are combined together. Furthermore, the combination of RandDef and SANE

outperforms all other tested methods. For ImageNet trained models, results show that not only does SANE outperform both RandDef and

EnsembleDef, but the combination of RandDef and SANE can provide the best performance against the targeted perturbations.

Dataset ǫ Single-Best Network RandDef [9] EnsembleDef [6] RandDef + SANE RandDef + SANE

EnsembleDef

CIFAR-10

2.0 74.2% 52.4% 99.3% 74.0% 99.3% 72.0%

5.0 66.0% 49.6% 93.6% 75.0% 96.2% 79.0%

10 62.0% 46.0% 70.7% 64.0% 78.2% 57.0%

20 53.7% 41.5% 43.7% 68.0% 50.3% 61.0%

ImageNet

2.0 70.4% 90.0% 99.5% 100.0% 99.6% 99.8%

5.0 53.4% 70.9% 96.8% 98.2% 97.1% 98.4%

10 43.3% 62.3% 89.4% 92.6% 91.3% 92.5%

20 39.7% 55.3% 79.2% 83.3% 82.9% 85.3%

where ri is the transfer attack success rate for network ni.

This weighting approach gives more weights to the net-

works with lower transfer attack rates as they are more ro-

bust compared to others in the ensemble.

3. Results and Discussion

For evaluation purposes, two test set of 1000 images

(From CIFAR-10 dataset [3] and NIPS adversarial attack

challenge dataset [4], where ImageNet trained models are

used) are randomly selected from the set of all images cor-

rectly classified by all networks in the ensemble, which is

consistent with evaluation methodologies in existing litera-

ture:

• EnsembleDef [6]: This technique uses a network en-

semble for improving adversarial robustness.

• RandDef [9]: This technique involves randomly re-

sizing and padding the input before being fed into the

network to improve adversarial robustness.

We analyze the robustness of the proposed SANE

framework against FGSM attack under 4 different noise

levels. Table 1 shows the experimental results for both

CIFAR-10 and NIPS adversarial attack challenge dataset.

For CIFAR-10 dataset, the proposed SANE framework

outperforms both RandDef and the best performing net-

work in the ensemble across all noise levels. While SANE

provides similar performance as EnsembleDef for ǫ = 2,

it outperforms EnsembleDef for all noise levels above that.

This is most illustrative by the reported result for ǫ = 10
and ǫ = 20 where SANE can achieve 8% and 7% higher

accuracy, respectively, when compared to EnsembleDef.

The proposed SANE framework is also compared to

the combination of RandDef and EnsembleDef (i.e., Rand-

Def+EnsembleDef) as well. Furthermore, we also experi-

mented with the combination of RandDef and SANE (i.e.,

RandDef+SANE). Results demonstrate that RandDef could

not improve robustness when used in conjunction with En-

sembleDef or SANE in this case. The poor performance of

RandDef can be justified by the fact that since CIFAR-10

images are small (32×32), randomly resizing and padding

them reduces the amount of information in the image and

thus causes a drop in modeling accuracy.

For NIPS adversarial attack challenge dataset, SANE

achieved similar accuracy as EnsembleDef at ǫ = 2, but

outperforms EnsembleDef significantly at higher noise lev-

els. RandDef performs noticeably better than the per-

formance of the single-best network, which illustrates its

effectiveness for improving robustness in the situation

where the image size is sufficiently large. Finally, it is

observed that the combination of RandDef with SANE

(i.e., RandDef+SANE) provides additional robustness over

SANE, especially at the highest noise levels, leading Rand-

Def+SANE to provide the highest adversarial robustness

out of all tested methods.

4. Conclusion

In this study, we proposed SANE, a new probabilistic

approach to improve the robustness of network ensembles.

Using a fully-connected probabilistic graphical model, a

subset of reliable networks in the ensemble is determined

and stochastically activated for the final prediction pro-

cess. Experimental results using CIFAR-10 and NIPS ad-

versarial attack challenge dataset demonstrated the effec-

tiveness of the proposed SANE framework at improving ro-

bustness in prediction adversarially attacked images when

compared to other state-of-the-art frameworks. In addition,

we showed that it is possible to combine SANE with other

stochastic mechanisms to further improve robustness. Fu-

ture work will focus on a more efficient way to leverage

the proposed SANE framework for practical applications

where computational constraints is limited.
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