
Unsupervised Domain Adaptation via Calibrating Uncertainties

Ligong Han1, Yang Zou2, Ruijiang Gao3, Lezi Wang1, and Dimitris Metaxas1

1Department of Computer Science, Rutgers University
2Department of Electrical and Computer Engineering, Carnegie Mellon University

3McCombs School of Business, The University of Texas at Austin
l.han@rutgers.edu yzou2@andrew.cmu.edu ruijiang@utexas.edu lw462@cs.rutgers.edu

dnm@cs.rutgers.edu

Abstract

Unsupervised domain adaptation (UDA) aims at infer-

ring class labels for unlabeled target domain given a re-

lated labeled source dataset. Intuitively, the model trained

on labeled data will produce high uncertainty estimation

for unseen data. Under this assumption, models trained in

the source domain would produce high uncertainties when

tested on the target domain. In this work, we build on this

assumption and propose to adapt from source and target

domain via calibrating their predictive uncertainties. We

employ variational Bayes learning for uncertainty estima-

tion which is quantified as the predicted Rényi entropy on

the target domain. We discuss the theoretical properties of

our proposed framework and demonstrate its effectiveness

on three domain-adaptation tasks.

1. Introduction

The ability to model uncertainty is important in unsuper-

vised domain adaptation (UDA). For example, self-training-

based approaches [13, 27] often requires the model to reli-

ably estimate the uncertainty of its prediction on target do-

main in the pseudo-label selection phase. However, tradi-

tional deep neural networks (DNN) can easily assign high

confidence to a wrong prediction [4, 15], thus are not able

to reliably and quantitatively render the uncertainty given

data.

Bayesian Neural Networks (BNN) [17, 4, 1, 9] tackles

this problem by taking a Bayesian view of the training pro-

cess. Instead of obtaining a point estimate of weights, BNN

tries to model the distributions over weights. We leverage

BNN as a powerful tool to model uncertainties and the in-

vestigation on the uncertainties among different domains

provides us insights on addressing domain adaptation prob-

lem. An observation is that a BNN trained on source do-

main would produce much higher uncertainties when de-

ployed on target domain. Our uncertainty-based domain-

adaptation approach is built on the intuition that a model

gives similar uncertainty estimations on the two domains

learns to adapt from source to target well. Thus, we propose

to directly match the estimated uncertainty between source

and target domain during training.

Our contributions are listed as follows:

• We propose a novel framework for unsupervised do-

main adaptation by calibrating the predictive uncer-

tainty.

• We adopt variational Bayes neural network for uncer-

tainty estimation and discuss its relationship with en-

tropy regularization [6] and self-training [13].

• Preliminary results show that the proposed BNN-based

uncertainty calibration is effective and stable in train-

ing.

2. Related Work

Shannon entropy is commonly used to quantify the un-

certainty of a given distribution. Entropy-based UDA has

already been proposed in [23]. Unlike [23], we avoid using

adversarial learning which tends to be unstable and hard

to train. Also, entropy regularization is proposed in [6]

for semi-supervised learning and can be directly applied to

UDA. However, our framework is more general since the

uncertainty is not necessarily to be the Shannon entropy. In

fact, we formalize the uncertainty as Rényi entropy which

is a generalization of Shannon entropy. Many other meth-

ods in UDA can be modeled under this framework, for ex-

ample, self-train [13, 27] can be viewed as minimizing the

min-entropy which is a special case of Rényi entropy.

As pointed out by [5], directly optimizing the esti-

mated Shannon entropy given data requires the classi-

fier to be locally-Lipschitz [16]. Co-DA [11] and DIRT-

T [21] propose to solve this problem by incorporate the
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locally-Lipschitz constraint via virtual adversarial training

(VAT) [16].

Another complimentary line of research employs self-

ensemble and shows promising results [2]. Indeed, BNN [4]

performs Bayesian ensembling by nature. This is part of the

reason why BNN provides a better uncertainty estimation.

3. Uncertainty in Deep Neural Networks

BNN models the uncertainty in DNNs by estimating a

posterior over the network parameters. Given the dataset

D = {x(i), y(i)}Ni=1, the output of BNN is denoted as

f(x|w) where x is input data and w is the weights (or pa-

rameters). For classification task, f is the predicted log-

its and the resulting probability vector is given by a soft-

max function: P (y|x,w) = softmax(f(x|w)). The pre-

dictive distribution over labels given input x is: P (y|x) =
EP (w|D)P (y|x,w). Thus, the predictive uncertainty can be

quantified as the Rényi entropy, Hα(P (y|x)). Rényi en-

tropy [24] of order α (α > 0) is defined as

Hα(P ) =
1

1− α
log(

∑

k

Pα
k ). (1)

The limiting value of Hα when α → 1 is the Shannon

entropy, and α → ∞ corresponds to the min-entropy,

H∞(P ) = mink − log(Pi) = − logmaxk Pk.

As estimating the posterior P (w|D) is often in-

tractable [1, 9], the variational inference is proposed to

address this problem, where the posterior of weights is

approximated by Qθ(w) ≈ P (w|D) with parameter θ.

Specifically, Qθ(w) is estimated by training the model

with objective of maximizing the evidence lower bound

(ELBO) [10, 4]:

ELBO = EQθ(w)logP (y|x,w)
︸ ︷︷ ︸

(I)

−DKL(Qθ‖P (w))
︸ ︷︷ ︸

(II)

, (2)

where P (w) is the prior, and the term (I) is the standard

cross-entropy loss evaluated at w. Gal et al. [3, 4] proposes

to view dropout together with weight decay as Bayesian ap-

proximation, where sampling from Qθ is equivalent to per-

forming dropout and the (II) KL divergence term becomes

L2 regularization (or weight decay) on θ.

We adopt the method from [9], where aleatoric and epis-

temic uncertainty are jointly modeled. In [9], the logits are

assumed to be a Gaussian and the reparameterization trick

is utilized. The predicted logit is f̂(x) = µθ(x) + σθ(x)ǫ
with ǫ ∼ N(0, I). With a slight abuse of notation, the fi-

nal predicted probability vector P (y|x) is approximated by

Monte Carlo sampling,

P (y|x; θ) =
1

M

M∑

m=1

softmax(f̂ (m)(x)). (3)

Plugging the above equation into the MLE term in ELBO,

the BNN is trained via a cross-entropy (CE) loss plus weight

decay.

4. Domain Adaptation via Calibrating Uncer-

tainties

Denote source and target dataset as DS =
{x(s), y(s)}s∈S and DT = {x(t)}t∈T respectively,

where xs, xt indicate the samples and ys is the label

in source domain, and D = DS ∪ DT . We propose to

calibrate the predictive uncertainty of target dataset with the

source domain uncertainties. Concretely, we minimize the

cross-entropy loss in the source domain with the constraint

of the predicted entropy (uncertainty) in the target domain:

min
θ

LCE =
1

|S|

∑

s∈S

HCE(y
(s), P (y|x(s); θ))

s.t.
1

|T |

∑

t∈T

Hα(P (y|x(t); θ)) ≤ C, (4)

where HCE(·, ·) is the cross-entropy and C indicates the

strength of the applied constraint. Rewriting Eq. 4 as a La-

grangian with a multiplier β,

F =
1

|S|

∑

s∈S

HCE(y
(s), P (y|x(s); θ))+

β

(

1

|T |

∑

t∈T

Hα(P (y|x(t); θ))− C

)

. (5)

Since β,C ≥ 0 an upper bound on F is obtained,

F ≤
1

|S|

∑

s∈S

HCE(y
(s), P (y|x(s); θ))+

β

|T |

∑

t∈T

Hα(P (y|x(t); θ)) = Lα. (6)

In theory, Eq. 5 can be optimized via dual gradient descent

and β is jointly updated along with θ. For simplicity, we

follow the work of [8] and fix β as a hyper-parameter in the

experiment and minimize the upper bound Lα.

Note that letting α → 1 in Eq. 6 is in fact the (Shan-

non) entropy regularization as described in [5, 6], except

that here we consider a variational BNN. As pointed out

in [6], directly optimizing Eq. 6 can be difficult and expec-

tation maximization (EM) algorithms are often used. Pro-

posed in [25, 6], deterministic annealing EM anneals the

predicted probabilities as soft-labels and minimizes the re-

sulting cross-entropy. In the extreme case, soft-labels be-

come one-hot vectors and the algorithm terms out to be self-

training with pseudo-labels [13]. In our Rényi entropy regu-

larization framework, self-training is essentially optimizing
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the min-entropy (α → ∞). Then the objective reads

L∞ =
1

|S|

∑

s∈S

HCE(y
(s), P (y|x(s); θ))+

β

|T |

∑

t∈T

HCE(ŷ
(t), P (y|x(t); θ)), (7)

with ŷ(t) = onehot(argmaxk∈{1,...,K} P (yk|x
(t); θ)) to be

pseudo-labels in target domain. Subscript k denotes the k-th

element in a given K-dim vector. The relationship between

L1 and L∞ can be immediately realized by noticing that the

Shannon entropy is an upper bound of the min-entropy:

H1(P ) = −
∑

k

Pk log(Pk) ≥ −
∑

k

Pk log(max
k

Pk)

= − log(max
k

Pk) = H∞(P ) = HCE(ŷ, P ) (8)

We build our method on top of class-balanced self-

training (CBST) proposed in [27]. CBST seeks to generate

pseudo-labels from the most confident predictions that fol-

lows an “easy-to-hard” scheme, since jointly learning the

model and optimizing pseudo-labels on all unlabeled data

is naturally difficult. The authors also propose to normalize

the class-wise confidence levels in pseudo-label generation

to balance the class distribution. For a detailed formulation,

we suggest readers referring Section 4.1 and 4.2 in [27].

5. Experiments

We first show results on three toy datasets MNIST [12],

USPS and SVHN [18], where we consider MNIST→USPS

and SVHN→MNIST. Then we present preliminary results

on a challenging benchmark: VisDA17 (classification) [19]

which contains 12 classes. We follow the standard protocol

in [19, 22, 20].

The accuracies on source and target domains for base

models are reported in Table 1. We use DTN [26] as our

base model for MNIST→USPS and SVHN→MNIST. To

implement its Bayesian variant (BDTN), we add another

classifier to predict the logarithm of variance.

Domain adaptation results are shown in Table 2. We can

see self-training with pseudo-labels (CBST-BNN-∞) are

more stable than directly minimizing the predicted Shan-

non entropy (CBST-BNN-1). Mean accuracies on VisDA17

dataset are reported in Table 3. Following the protocol

in [27], we train a standard ResNet101 [7] as the base model

and add a second classifier (denoted as BRes101) to predict

logarithm of variance on logits.

6. Conclusion

In this work, we propose to calibrate the predictive un-

certainty for unsupervised domain adaptation. The uncer-

tainty is quantified via Bayesian networks under a general

(a) MNIST

Model Source Acc Target Acc

DTN 100.00 83.94

BDTN-M1 100.00 83.78

BDTN-M5 100.00 86.83

BDTN-M10 100.00 86.28

BDTN-M20 100.00 86.78

BDTN-M100 100.00 87.06

(b) SVHN

Model Source Acc Target Acc

DTN 97.42 72.91

BDTN-M1 95.91 65.51

BDTN-M5 99.16 71.12

BDTN-M10 99.42 71.38

BDTN-M20 99.50 73.64

BDTN-M100 99.33 74.91

Table 1: Training base models on MNIST and SVHN.

BDTN is a modified Bayesian DTN [26], with different M

values.

(a) MNIST→USPS

Model Target Acc Acc Gain

Source-DTN 83.94 -

Source-BDTN 84.78 -

CBST 93.20±0.59 9.26

CBST-BNN-1 89.31±2.02 4.53

CBST-BNN-∞ 93.85±0.16 9.07

(b) SVHN→MNIST

Model Target Acc Acc Gain

Source-DTN 64.48 -

Source-BDTN 71.07 -

MMD [14] 61.1 -

GTA-Res152 [20] 77.1 -

CBST 81.82±4.87 17.34

CBST-BNN-1 89.23±4.64 18.16

CBST-BNN-∞ 94.15±0.61 23.08

Table 2: Results on MNIST→USPS and SVHN→MNIST.

CBST [27] uses DTN as the base model for self-training.

CBST-BNN-∞ uses BDTN as the base model and opti-

mizes L∞, while CBST-BNN-1 optimizes L1.

Model Target mean-Acc Acc Gain

Source-Res101 48.02 -

Source-BRes101 46.03 -

CBST 76.81±3.41 28.79

CBST-BNN-∞ 80.59±1.39 34.56

Table 3: Preliminary results on VisDA17 [19] classification

benchmark.

Rényi entropy regularization framework. Results show the

uncertainty estimation by Bayesian networks is effective

and leads to stable performance in unsupervised domain

adaptation.
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Adversarial entropy minimization for domain adaptation in

semantic segmentation. arXiv preprint arXiv:1811.12833,

2018. 1

[24] Wikipedia contributors. Rnyi entropy — Wikipedia, the free

encyclopedia, 2018. [Online; accessed 13-May-2019]. 2

[25] A. L. Yuille, P. Stolorz, and J. Utans. Statistical physics, mix-

tures of distributions, and the em algorithm. Neural Compu-

tation, 6(2):334–340, 1994. 2

[26] X. Zhang, F. X. Yu, S.-F. Chang, and S. Wang. Deep transfer

network: Unsupervised domain adaptation. arXiv preprint

arXiv:1503.00591, 2015. 3

[27] Y. Zou, Z. Yu, B. Vijaya Kumar, and J. Wang. Unsu-

pervised domain adaptation for semantic segmentation via

class-balanced self-training. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 289–305,

2018. 1, 3

4102


